説明

面発光レーザ素子および面発光レーザ素子アレイ

【課題】所望の方向に偏波したレーザ光を射出できること。
【解決手段】面発光レーザ素子100は、活性層を含む複数の半導体層が積層されるとともに柱状形成されたメサポスト10を有し、このメサポスト10上に設けられたアパーチャ7aから活性層と垂直方向にレーザ光を射出する面発光レーザ素子であって、アパーチャ7aを含む所定範囲内で一体に成膜され、活性層に対してその積層面内の所定方向に応力を加える応力付加膜としての上部DBRミラー7を備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、活性層を含む複数の半導体層が積層されるとともに柱状形成されたメサポストを有し、該メサポスト上に設けられたアパーチャから前記活性層と垂直方向にレーザ光を射出する面発光レーザ素子および面発光レーザ素子アレイに関する。
【背景技術】
【0002】
垂直共振器型面発光レーザ(VCSEL:Vertical Cavity Surface Emitting Laser。以下、面発光レーザ素子と称す。)は、基板上に積層された活性層を含む複数の半導体層の積層面に対して垂直方向に光を共振させてレーザ光を射出する。このような面発光レーザ素子は、従来の端面発光型レーザ素子と異なり、共振器としてのミラーを設けるために劈開を必要としないため、同一基板上に多数の素子を1次元または2次元的に容易に配列可能である。また、活性層体積が非常に小さく、極低閾値電流でレーザ発振が可能であるとともに低消費電力で発振可能であるなど、多くの利点を有している。このため、面発光レーザ素子は、光インターコネクションをはじめとする種々の光通信用光源、あるいはその他の様々なアプリケーション用デバイスとして注目されている。
【0003】
一般に、面発光レーザ素子は、基板上に積層された活性層を含む複数の半導体層がエッチング等によって柱状形成されたメサポストを有し、このメサポスト上に設けられたアパーチャからレーザ光を射出する。通常、メサポストは、光の共振方向に立設する円柱状あるいは切頭円錐状に形成され、アパーチャは円形とされる(例えば、特許文献1参照)。このため、面発光レーザ素子では、射出するレーザ光の偏光方向が所定方向に定まらず、動作電流を変化させた場合に容易に偏波スイッチングが生じてしまうという問題があった。これは、例えば光通信システムにおいて、過剰な雑音を発生させ、動作を不安定にさせるばかりか、通信速度の高速化を困難にさせる原因となる。
【0004】
これに対し、直交する2方向で異なるストレスを活性層に与えることで、所定方向に偏波した直線偏光をレーザ光として射出させるようにした面発光レーザ素子が特許文献2に開示されている。この面発光レーザ素子では、切頭四角錐状に形成され、矩形のアパーチャが設けられたメサポストに対し、直交する2方向に異なる温度で絶縁膜(SiNx膜、SiO2 膜等)を成膜し、その2方向の熱膨張差に応じて生じる応力差により、活性層に対して2方向に異なるストレスを与えるようにしている。
【0005】
【特許文献1】特開2004−319643号公報
【特許文献2】特公平7−73139号公報
【発明の開示】
【発明が解決しようとする課題】
【0006】
しかしながら、特許文献2にかかる面発光レーザ素子では、異なる応力を生じさせる2方向の絶縁膜を異なる工程で成膜する必要があり、半導体ウェハプロセスにおいて多大な手間と時間を要するばかりか、素子の生産性が損なわれるという問題があった。また、レーザ光として射出させる直線偏光の偏波方向が、メサポスト上に設けられた矩形アパーチャのいずれかの辺に垂直な方向に限定されるため、偏波モードの選択性の自由度が損なわれるという問題があった。
【0007】
本発明は、上記に鑑みてなされたものであって、簡易なプロセスで製作可能であるとともに所望の方向に偏波したレーザ光を射出することができる面発光レーザ素子および面発光レーザ素子アレイを提供することを目的とする。
【課題を解決するための手段】
【0008】
上述した課題を解決し、目的を達成するために、請求項1にかかる面発光レーザ素子は、活性層を含む複数の半導体層が積層されるとともに柱状形成されたメサポストを有し、該メサポスト上に設けられたアパーチャから前記活性層と垂直方向にレーザ光を射出する面発光レーザ素子において、前記アパーチャを含む所定範囲内で一体に成膜され、前記活性層に対してその積層面内の所定方向に応力を加える応力付加膜を備えたことを特徴とする。
【0009】
また、請求項2にかかる面発光レーザ素子は、上記の発明において、前記応力付加膜は、前記所定方向に最も広く成膜されることを特徴とする。
【0010】
また、請求項3にかかる面発光レーザ素子は、上記の発明において、前記応力付加膜は、前記レーザ光に対する光透過性を有し、前記アパーチャ上に成膜されることを特徴とする。
【0011】
また、請求項4にかかる面発光レーザ素子は、上記の発明において、前記応力付加膜は、誘電体膜であることを特徴とする。
【0012】
また、請求項5にかかる面発光レーザ素子は、上記の発明において、前記応力付加膜は、組成が異なる複数の誘電体層が積層された誘電体多層膜であることを特徴とする。
【0013】
また、請求項6にかかる面発光レーザ素子は、上記の発明において、前記応力付加膜は、SiO、SiN、a−Si、AlO、MgF、ITOまたはTiOの少なくとも1つを用いて形成されることを特徴とする。
【0014】
また、請求項7にかかる面発光レーザ素子アレイは、上記の発明のいずれか一つに記載の面発光レーザ素子を同一基板上に複数備えたことを特徴とする。
【0015】
また、請求項8にかかる面発光レーザ素子アレイは、上記の発明において、複数の前記面発光レーザ素子は、それぞれ前記応力付加膜によって前記活性層に対し、前記積層面内の同一方向に応力が加えられることを特徴とする。
【発明の効果】
【0016】
本発明によれば、簡易なプロセスで製作可能であるとともに所望の方向に偏波したレーザ光を射出することができる面発光レーザ素子および面発光レーザ素子アレイを提供することができる。
【発明を実施するための最良の形態】
【0017】
以下、添付図面を参照して、本発明にかかる面発光レーザ素子および面発光レーザ素子アレイの好適な実施の形態を詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、図面の記載において、同一部分には同一の符号を付して示している。
【0018】
(実施の形態1)
まず、本発明の実施の形態1にかかる面発光レーザ素子および面発光レーザ素子アレイについて説明する。図1〜図3は、本実施の形態1にかかる面発光レーザ素子100の要部構成を示す図である。図1は平面図であり、図2および図3は、それぞれ図1中に示したII−II断面およびIII−III断面を示す断面図である。これらの図に示すように、面発光レーザ素子100は、半絶縁性の基板1上に積層された下部DBR(Distributed Bragg Reflector)ミラー2、Nクラッド層3、活性層4、電流狭窄層5、Pクラッド層6、上部DBRミラー7、P電極8およびN電極9を備える。このうち、Nクラッド層3上に積層された活性層4、電流狭窄層5、Pクラッド層6および上部DBRミラー7は、エッチング処理等によって柱状形成されたメサポスト10として構成されている。
【0019】
下部DBRミラー2は、例えばAlAs/GaAsからなる複合層が複数積層された半導体多層膜ミラーとして形成され、この複合層を構成する各層の厚さは、λ/4n(λ:発振波長、n:屈折率)とされている。一方、上部DBRミラー7は、例えば誘電体膜としてのSiO2 およびSiNx 等が複数積層され、全体として所定透過率の光透過性を有した誘電体多層膜ミラーとして形成されている。
【0020】
電流狭窄層5は、開口部5aと選択酸化層5bとから構成されている。電流狭窄層5は、例えばAlAsからなるAl含有層によって形成され、選択酸化層5bは、このAl含有層が外周部から積層面に沿って所定範囲だけ酸化され、輪帯上に形成されている。選択酸化層5bは、絶縁性を有し、P電極8から注入される電流を狭窄して開口部5a内に集中させ、開口部5a内の電流密度を高めている。
【0021】
活性層4は、例えばGaInNAs/GaAsからなる3層の量子井戸構造を有し、P電極8から注入されて電流狭窄層5によって狭窄された電流に応じて自然放出光を発生する。発生した自然放出光は、下部DBRミラー2と上部DBRミラー7との間の活性層4を含む各層に対して垂直方向に共振されて増幅された後、上部DBRミラー7の上面部に設けられた射出窓(透過窓)としてのアパーチャ7aからレーザ光として射出される。ここで、アパーチャ7aは、上部DBRミラー7の上面部における開口部5a直上の円形領域である。
【0022】
P電極8は、開口部5aの直上に積層された上部DBRミラー7の一部をその積層面に沿って取り囲むように、リング状にしてPクラッド層6上に積層されている。一方、N電極9は、メサポスト10を積層面に沿って取り囲むように、C字状にしてNクラッド層3上に積層されている。これらP電極8およびN電極9は、それぞれP引出電極11およびN引出電極12(図1参照)によって、図示しない外部回路(電流供給回路)に電気的に接続されている。
【0023】
つづいて、メサポスト10の上部に形成された上部DBRミラー7について詳細に説明する。上部DBRミラー7は、図1に示すように、全体として積層面方向の断面が円形のメサポスト10に対し、アパーチャ7aを含む所定範囲内で一体に長円状に成膜されて積層されている。この長円状の上部DBRミラー7における長軸方向の端部は、図3に示すように、P電極8の上面部からメサポスト10の側面を介し、Nクラッド層3の上面部まで成膜されている。これによって、上部DBRミラー7は、応力付加膜として活性層4に対し、その積層面内の所定方向に応力を加えている。
【0024】
ここで、上部DBRミラー7が活性層4に対して所定方向に加える応力とは、上部DBRミラー7が活性層4に対して積層面方向に及ぼす非対称な応力における最大応力を意味し、具体的には、上部DBRミラー7がその成膜範囲内で最も広く(長く)成膜された方向に及ぼす応力に相当する。つまり、長円状に成膜された上部DBRミラー7は、活性層4に対し、その長円状の長軸方向に最大応力を加え、この長軸方向に偏った歪を生じさせている。これによって、面発光レーザ素子100では、活性層4を介して共振されるレーザ光が活性層4に生じた歪方向に偏波された直線偏光、もしくは歪方向に対して垂直方向に偏波された直線偏光として射出される。
【0025】
偏波方向が歪方向となるか、歪方向に対して垂直方向となるかは、上部DBRミラー7が活性層4に加える応力が引張応力であるか圧縮応力であるかによって決定される。一般に、レーザ光は、活性層に生じた歪による圧縮方向に対して垂直方向に偏波する。したがって、面発光レーザ素子100が射出するレーザ光は、上部DBRミラー7から活性層4に加わる応力が圧縮応力である場合、その応力方向と垂直な方向に偏波され、引張応力である場合、その応力方向に偏波される。この活性層4に加わる応力は、上部DBRミラー7の成膜材料、成膜温度等、各種成膜条件によって圧縮応力と引張応力とのいずれにも制御することができる。つまり、面発光レーザ素子100では、上部DBRミラー7の成膜条件によってレーザ光の偏波方向を制御することができる。
【0026】
また、面発光レーザ素子100では、長円状に成膜する上部DBRミラー7の長軸方向を、基板1に対してその積層面に沿った所望の方向に設定することが可能であり、これによってレーザ光の偏波方向を所望の方向に設定することができる。その際、P引出電極11およびN引出電極12の引出方向も上部DBRミラー7の長軸方向に合わせて適宜設定することができる。
【0027】
このような応力付加膜としての上部DBRミラー7は、例えば、Nクラッド層3上に活性層4からP電極8までの各層をメサポスト10として積層形成した後、その上から素子全面に成膜し、図1に示した長円状の部分を残してエッチング処理することで形成される。つまり、上部DBRミラー7は、成膜とエッチングとを組み合わせた一連の膜形成工程を1回行うことで形成可能であり、上述した特許文献2にかかる面発光レーザ素子における絶縁膜のように2回以上の膜形成工程を要する場合に比して、簡易なプロセスで製作することが可能である。このため、面発光レーザ素子100における素子製作の効率およびスループットは大幅に向上される。
【0028】
図4は、本実施の形態1にかかる面発光レーザ素子アレイ200を示す図である。この面発光レーザ素子アレイ200は、基板1を共通にして面発光レーザ素子100が複数配列され、一体に形成されている。各面発光レーザ素子100のP引出電極11およびN引出電極12は、それぞれ個別あるいは共通に外部の電流供給回路に電気的に接続され、その電流供給回路からの注入電流に応じて個別あるいは同時に発光制御される。
【0029】
ここで、面発光レーザ素子アレイ200における各面発光レーザ素子100の上部DBRミラー7は、それぞれ長軸方向を所定方向(図4中、上下方向)に揃えて配列されている。これによって、各面発光レーザ素子100では、活性層4に対し、その積層面内の同一方向に応力が加えられ、その方向に偏波した直線偏光であるレーザ光が基板1に対して垂直方向に射出される。なお、面発光レーザ素子アレイ200における各面発光レーザ素子100の偏波方向、つまり各上部DBRミラー7の長軸方向は、必ずしも同一方向に揃える必要はなく、個別に任意の方向に設定することもできる。
【0030】
(実施の形態2)
つぎに、本発明の実施の形態2にかかる面発光レーザ素子および面発光レーザ素子アレイについて説明する。図5は、本実施の形態2にかかる面発光レーザ素子300の構成を示す断面図であって、図3に示した面発光レーザ素子100のIII−III断面に相当する断面内の構成を示している。この図に示すように、面発光レーザ素子300は、面発光レーザ素子100の構成をもとに、上部DBRミラー7に替えて上部DBRミラー13を備えるとともに、誘電体膜である保護膜14をさらに備える。
【0031】
ここで、上部DBRミラー13は、上部DBRミラー7およびP電極8に代わってPクラッド層6上に積層され、P電極8は、上部DBRミラー13上でリング状に積層されている。また、保護膜14は、上部DBRミラー13上に積層され、面発光レーザ素子100における上部DBRミラー7と同様に長円状に成膜されている。なお、面発光レーザ素子300では、上部DBRミラー13の上面部であってリング状のP電極8に取り囲まれた領域が射出窓としてのアパーチャ13aとして設けられている。また、Nクラッド層3上に積層された活性層4から保護膜14までの積層部分が柱状形成されたメサポスト15として構成されている。その他の構成は面発光レーザ素子100と同じであり、同一構成部分には同一符号を付して示している。
【0032】
上部DBRミラー13は、例えばAlAs/GaAsからなる複合層が複数積層された半導体多層膜ミラーとして形成され、この複合層を構成する各層の厚さは、λ/4n(λ:発振波長、n:屈折率)とされている。また、保護膜14は、例えばSiO2 、SiNx 等からなる単層あるいは多層の誘電体膜によって形成され、少なくともアパーチャ13a上の領域で所定透過率の光透過性を有している。
【0033】
保護膜14は、実施の形態1で説明した上部DBRミラー7と同様に、全体として積層面方向の断面が円形のメサポスト15に対し、アパーチャ13aを含む所定範囲内で一体に長円状に成膜されて積層され、その長軸方向の端部は、P電極8の上面部からメサポスト15の側面部を介し、Nクラッド層3の上面部まで成膜されている。これによって、保護膜14は、応力付加膜として活性層4に対し、その積層面内の所定方向、つまり長軸方向に応力を加えている。
【0034】
この結果、面発光レーザ素子300では、面発光レーザ素子100と同様に、保護膜14の長軸方向、もしくは長軸方向と垂直な方向に偏波された直線偏光がレーザ光として射出される。射出されるレーザ光の偏波方向がどちらの方向になるかは、保護膜14の成膜材料、成膜温度等の成膜条件によって決定されるものであって、言い換えると、その成膜条件によって制御されるものである。また、保護膜14の長軸方向は、上部DBRミラー7と同様に、積層面に沿った所望の方向に設定することが可能であり、これによってレーザ光の偏波方向を所望の方向に設定することができる。
【0035】
さらに、応力付加膜としての保護膜14は、上部DBRミラー7と同様に、成膜とエッチングとを組み合わせた一連の膜形成工程を1回行うことで形成可能であり、上述した特許文献2にかかる面発光レーザ素子における絶縁膜のように2回以上の工程を要する場合に比して、簡易なプロセスで製作することが可能である。このため、面発光レーザ素子300における素子製作の効率およびスループットは、大幅に向上される。
【0036】
なお、本実施の形態2にかかる面発光レーザ素子アレイは、上述した面発光レーザ素子アレイ200と同様に、基板1を共通にして面発光レーザ素子300が複数配列され、一体に形成される。この面発光レーザ素子アレイにおける各面発光レーザ素子300から射出されるレーザ光の偏波方向は、各保護膜14の長軸方向に応じて同一方向に揃えることが可能である一方、個別に設定することも可能である。
【0037】
ここまで、本発明を実施する最良の形態を実施の形態1および2として説明したが、本発明は、上述した実施の形態1および2に限定されず、本発明の趣旨を逸脱しない範囲であれば、種々の変形が可能である。
【0038】
例えば、上述した実施の形態1および2では、上部DBRミラー7または保護膜14をメサポストの上面部から側面を介して底面部(Nクラッド層3)まで成膜するものとして説明したが、必ずしも成膜範囲を底面部まで広げる必要はなく、活性層4に対して所定方向に十分な応力を加えられるものであれば、メサポスト側面部まで、あるいはメサポスト上面部だけに成膜するものであってもよい。
【0039】
また、上述した実施の形態2では、保護膜14をアパーチャ13a上に成膜するものとして説明したが、必ずしもアパーチャ13a上に成膜する必要はなく、例えば、膜全体を一体に成膜するものであれば、アパーチャ13a上の領域をエッチング処理等によって後から取り除いてもよい。さらに、保護膜14は、全体として活性層4に対し、所定方向に十分な応力を加えられるものであれば、長円状の成膜範囲内の所望の箇所をエッチング処理等によって取り除くこともできる。これによって、保護膜14から活性層4に加える応力の大きさを制御することができる。これについては、実施の形態1における上部DBRミラー7においても同様にすることができる。すなわち、活性層4に対して所定方向に十分な応力を加えられるものであれば、長円状の成膜範囲内のアパーチャ7a部分以外の領域について、上部DBRミラー7を適宜取り除くことができる。なお、上部DBRミラー7および保護膜14の成膜範囲は、長円状に限定されず、例えば矩形状であってもよく、その他の形状であってもよい。
【0040】
また、上述した実施の形態1および2では、上部DBRミラー7および保護膜14を構成する誘電体膜が、例えばSiO2 、SiNx 等を用いて形成されるものとして説明したが、膜材料をこの2つに限定して解釈する必要はなく、SiO、SiN、a−Si、AlO、MgF、ITOまたはTiOの少なくとも1つを用いて形成される膜を単層あるいは多層に適宜組み合わせて用いることができる。さらに、下部DBRミラー2および上部DBRミラー13を構成する半導体の複合層がAlAs/GaAsで示される半導体複合層をもとに形成されるものとして説明したが、一般にAlxGax-1As/AlyGay-1As(0≦x,y≦1)で示される半導体複合層であればよい。
【0041】
また、上述した実施の形態1および2では、面発光レーザ素子100および300は、上部DBRミラーまたは下部DBRミラーの少なくとも一方には注入電流を流さないイントラキャビティー構造を有するものとして説明したが、これに限定されず、上部DBRミラーより上部にP電極を備え、下部DBRミラーより下部にN電極を備える構成であってもよい。さらに、面発光レーザ素子100および300では、活性層4に対して上部側にP電極8を備え、下部側にN電極9を備えるものとして説明したが、これら上部側および下部側の電極の極性を入れ換えてもよい。この場合、下部DBRミラーおよび上部DBRミラーには、p型あるいはn型の不純物が適宜ドープされる。
【0042】
また、上述した実施の形態1および2では、本発明にかかる面発光レーザ素子アレイが面発光レーザ素子100または300を1方向に複数配列して構成されるものとして説明したが、1次元配列に限定する必要はなく、2次元配列させることもできる。その際、配列する各面発光レーザ素子100または300から射出されるレーザ光の偏波方向は、上部DBRミラー7または保護膜14の長軸方向に応じて、同一方向に揃えることも個別に設定することもできる。
【0043】
なお、上述した面発光レーザ素子100および300が基板1上に備える各層は、有機金属気相成長(MOCVD:Metal Organic Chemical Vapor Deposition)または分子線エピタキシ(MBE:Molecular Beam Epitaxy)等によって形成されるものであるが、これら2つの成膜法に限定されず、種々の成膜方法を適宜選択して用いることが可能である。
【図面の簡単な説明】
【0044】
【図1】本発明の実施の形態1にかかる面発光レーザ素子の構成を示す平面図である。
【図2】図1に示したII−II断面を示す断面図である。
【図3】図1に示したIII−III断面を示す断面図である。
【図4】本発明の実施の形態1にかかる面発光レーザ素子アレイの配列構成を示す平面図である。
【図5】本発明の実施の形態2にかかる面発光レーザ素子の構成を示す断面図である。
【符号の説明】
【0045】
1 基板
2 下部DBRミラー
3 Nクラッド層
4 活性層
5 電流狭窄層
5a 開口部
5b 選択酸化層
6 Pクラッド層
7 上部DBRミラー
7a アパーチャ
8 P電極
9 N電極
10 メサポスト
11 P引出電極
12 N引出電極
13 上部DBRミラー
13a アパーチャ
14 保護膜
15 メサポスト
100,300面発光レーザ素子
200 面発光レーザ素子アレイ

【特許請求の範囲】
【請求項1】
活性層を含む複数の半導体層が積層されるとともに柱状形成されたメサポストを有し、該メサポスト上に設けられたアパーチャから前記活性層と垂直方向にレーザ光を射出する面発光レーザ素子において、
前記アパーチャを含む所定範囲内で一体に成膜され、前記活性層に対してその積層面内の所定方向に応力を加える応力付加膜を備えたことを特徴とする面発光レーザ素子。
【請求項2】
前記応力付加膜は、前記所定方向に最も広く成膜されることを特徴とする請求項1に記載の面発光レーザ素子。
【請求項3】
前記応力付加膜は、前記レーザ光に対する光透過性を有し、前記アパーチャ上に成膜されることを特徴とする請求項1または2に記載の面発光レーザ素子。
【請求項4】
前記応力付加膜は、誘電体膜であることを特徴とする請求項3に記載の面発光レーザ素子。
【請求項5】
前記応力付加膜は、組成が異なる複数の誘電体層が積層された誘電体多層膜であることを特徴とする請求項4に記載の面発光レーザ素子。
【請求項6】
前記応力付加膜は、SiO、SiN、a−Si、AlO、MgF、ITOまたはTiOの少なくとも1つを用いて形成されることを特徴とする請求項4または5に記載の面発光レーザ素子。
【請求項7】
請求項1〜6のいずれか一つに記載の面発光レーザ素子を同一基板上に複数備えたことを特徴とする面発光レーザ素子アレイ。
【請求項8】
複数の前記面発光レーザ素子は、それぞれ前記応力付加膜によって前記活性層に対し、前記積層面内の同一方向に応力が加えられることを特徴とする請求項7に記載の面発光レーザ素子アレイ。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2008−98338(P2008−98338A)
【公開日】平成20年4月24日(2008.4.24)
【国際特許分類】
【出願番号】特願2006−277281(P2006−277281)
【出願日】平成18年10月11日(2006.10.11)
【出願人】(000005290)古河電気工業株式会社 (4,457)
【Fターム(参考)】