説明

Fターム[2G040DA02]の内容

熱的手段による材料の調査、分析 (9,035) | 測温手段 (1,163) | 種類 (727) | 電気的温度計 (380)

Fターム[2G040DA02]の下位に属するFターム

熱電対 (142)

Fターム[2G040DA02]に分類される特許

161 - 180 / 238


【課題】構成の簡素化、サイズの小型化、及び測定精度の向上を図った露点計を提供する。
【解決手段】本発明の露点計は、少なくとも球面の一部で形成されており円環状に連続している円環状表面を有した圧電性基材1と、円環状表面を伝搬路2として基材1の周囲を周回する弾性表面波を発生させるとともに、周回する弾性表面波を検出し、検出した弾性表面波の強度に応じた電気信号を出力するすだれ状電極4と、伝搬路2の表面温度を測定する温度計13と、すだれ状電極4からの電気信号に基づいて、ある周回時における弾性表面波の強度が、1周前の周回時に比べて所定割合以上減衰している場合には、伝搬路2の周囲環境に含まれる被測定気体12の分子が伝搬路2に結露したものと判定し、結露と判定した時点に温度計13によって測定された伝搬路2の表面温度を、被測定気体12の露点として出力する制御解析及び表示部11とを備える。 (もっと読む)


【課題】 センサ素子に固着した端子部材と、自身の先端部にセンサ素子を保持し、端子部材の少なくとも一部を包囲してなる保持管とを備え、液体の状態を検知する液体状態検知センサであって、組み付け状態においてあるいは実使用において振動がかかった場合に発生する不具合を防止した液体状態検知センサを提供する。
【解決手段】 液体状態検知センサ1は、尿素水溶液と少なくとも一部が接触するセンサ素子51と、これに固着された接続端子52と、これを介して濃度センサ素子51と導通する接続ケーブル53と、ホルダ部材55を用いて先端部421に濃度センサ素子51を保持すると共に、接続ケーブル53の一部及び接続端子52全体を包囲してなる内筒42と、接続端子52と内筒42との間に介在して両者間を絶縁してなる端子−内筒絶縁部542を含むセパレータ(ゴム状弾性を有する材料から構成されるセパレータ)54と、を備える。 (もっと読む)


【課題】原料の天然ガス(NG)の組成が変更されても、連続した都市ガス製造の中でより精確に熱量が測定できるようにする。
【解決手段】熱量測定制御部110が、熱伝導率測定部108の測定結果を元に、熱量測定部106の測定に補正をかける。熱量測定制御部110は、熱伝導率測定部108が測定した熱伝導率により求めた受け入れ天然ガスの発熱量をもとに、熱量測定部106における発熱量算出の式の定数2を変更し、熱量測定部106における発熱量の算出を制御する。ここで、熱量測定制御部110は、熱伝導率を測定された天然ガスが石油ガスを混合されて熱量を測定される箇所に到達した時点で、上述した熱量測定部106における定数2の変更を行う。 (もっと読む)


【課題】原料の天然ガス(NG)の受け入れが変更されても、連続した都市ガス製造の中でより精確に熱量が測定できるようにする。
【解決手段】天然ガス導入ライン101に導入されている天然ガスの熱伝導率を熱伝導率測定部108により測定し、測定した熱伝導率をもとに天然ガスの発熱量を求め、これら測定された熱伝導率と求められた発熱量とにより、熱量測定制御部109が、熱量測定部106における発熱量算出の式の定数2を変更することで、熱量測定部106における発熱量の算出を制御する。 (もっと読む)


【課題】液体の状態を検知する液体状態検知センサに振動や衝撃が掛かった場合でも、導電経路部材と配線基板との機械的接続部分における損傷の発生が抑制できる液体状態検知センサを提供する。
【解決手段】液体状態検知センサ1は、被測定液体の状態を検知する濃度センサ素子260と、これの上方に配置された駆動制御回路41を含む配線基板40と、配線基板40に機械的に接続され下方に延び、駆動制御回路41と濃度センサ素子260とを電気的に導通してなるケーブル50と、ケーブル電経路部材260の少なくとも一部を遊挿状態に包囲する内筒221と、ケーブル50のうち配線基板40と濃度センサ素子260との間に位置する被保持部51を固定して保持する固定保持部94と、を備える。 (もっと読む)


【課題】ヒータに加えるエネルギーを必要最小限にして熱的ストレスや電気的ストレスを低減しヒータの劣化を防止するとともに、計測時間を短縮してヒータを所定の温度に制御するヒータ制御回路等を提供する。
【解決手段】ヒータ制御回路は、発熱温度により抵抗値が変化するヒータ11、ヒータ11が所定温度を示す抵抗値と等価な抵抗値を持つ固定抵抗12、これらの抵抗へ電流を流すランプ電流源14、これらの抵抗に生じる電圧を比較するコンパレータ13を具備する。そして、ランプ電流源14は、同等のランプ電流を同一のタイミングで上記抵抗へ通電し、コンパレータ13は両抵抗に発生した電圧が等しくなる点を検出する。 (もっと読む)


【課題】測定中に被測定気体の露点が急に高くなった場合、素早く鏡面温度を高くし、露点温度の計測までの待ち時間を大幅に短縮する。
【解決手段】受光量急上昇検出部16Aにおいて、光ファイバ17−2を介して受光される鏡面10−1からの散乱光の受光量の急上昇を検出し、熱電冷却素子2に逆電流を流す。これにより、熱電冷却素子2は、それまで低温側とされていた面2−1が高温側とされ、高温側とされていた面2−2が低温側とされ、鏡10が積極的に加熱され、鏡面温度が素早く上昇する。 (もっと読む)


【課題】被検ガスの温度変化による擬似信号を発生を防止すること。
【解決手段】基台12を貫通する2本のステー13、13にヒータ線11を張設して構成された温度補償用エレメント10と、中継台22を貫通する2本のステー23、23にヒータ線21を張設して構成された検出用エレメント20と、ガス取り入れ口31を備え基台12に固定されるキャップ30とを備え、検出用エレメント20のステー23、23を基台12を貫通させて温度補償用エレメント10に層状に配置して基台12と中継台22とキャップ30とにより密閉空間からなる補償室50を形成する。 (もっと読む)


【課題】 適切な強度を確保しつつも、感度が良好な液体状態検知素子、及び液体状態検知素子の破損が抑制され、しかも、液体の状態を精度良く検知できる液体状態検知センサを提供する。
【解決手段】 本発明の液体状態検知素子110は、同時焼成されてなり、第1セラミック絶縁層111と、第2セラミック絶縁層112と、これらの間に液密に封止され、自身の温度に応じて抵抗値が変化する発熱抵抗体117とを備え、液体に浸漬される液体状態検知素子である。特に、第2セラミック絶縁層112の厚みに比べて、第1セラミック絶縁層111の厚みが薄くされている。なお、この液体状態検知素子110は、発熱抵抗体117の抵抗値に対応して出力される出力される出力信号に基づいて液体の状態(例えば、液体中の特定成分の濃度)を検知する検知部と共に、液体状態検知センサを構成し得る。 (もっと読む)


【課題】 模擬皮膚の表面温度をリアルタイムで調節でき、皮膚温度が経時的に変化する過渡状態を模擬することが可能な模擬皮膚装置を提供する。
【解決手段】 模擬皮膚装置1は、模擬皮膚部材10と、電気エネルギーと熱エネルギーとの変換を行うペルチェ素子22と、模擬皮膚部材10とペルチェ素子22との間に設けられ模擬皮膚部材10とペルチェ素子22との間で熱エネルギーを伝達するとともに伝達される熱エネルギー量を検出する熱流束センサ20と、熱流束センサ20を介することなく模擬皮膚部材10とペルチェ素子22との間で伝達される熱エネルギーを遮断する断熱部材30と、熱流束センサ20の検出結果に基づいてペルチェ素子22に供給する電力を調節する電子制御装置40とを備える。 (もっと読む)


【課題】液体の状態を検知する液体状態検知センサにおいて、当該液体状態検知センサを液体に浸漬したとき、液体の状態を検知する検出素子の周囲に対し、液流が無い状態に近づけるようにしながらも、液体の内外の流通を可能とした包囲を設けることにより、液体の状態の検知精度を向上させることができる液体状態検知センサ、及びこのような液体状態検知センサを具備した液体状態検知装置を提供することを目的とする。
【解決手段】液体状態検知装置100の液面レベルセンサ部120は、自身の温度で抵抗値が変化し、通電により発熱する発熱抵抗部154bを有する検出素子151と、これを包囲するプロテクタ181とを備える。プロテクタ181は、外周包囲部184及び底側包囲部185を含み、検出素子151の周囲とプロテクタ181の外部との間の尿素水溶液の流通を可能とする液体流通部位186b及び液体流通孔187を有する。 (もっと読む)


被検体の皮膚の熱伝導率の測定値を得るために過渡モードで使用されるサーミスタ7と、熱伝導率測定値からスキンハイドレーション値を決定するためのプロセッサ8とを有する、被検体のスキンハイドレーションを測定するための非侵襲性システム及び方法である。スキンハイドレーションを測定するための本システムは、例えば赤外線3を発生する赤外線源2を有する分光デバイスと、被検体の部分1(例えば指)を通じて伝達された放射を検出するための検出器6とを含む、血液分析対象物濃度、好ましくはグルコース濃度を検出するための非侵襲性システムで構成されてもよい。本システムは、制御ループにおいて、スキンハイドレーションを測定するためのシステムに接続される、皮膚を加湿するスキンハイドレータ9を含んでいてもよい。血液分析対象物濃度を検出するためのシステムは、光音響デバイス又は代謝熱整合デバイスを含んでいてもよい。
(もっと読む)


【課題】ガス状流体の所定の成分を測定する際の湿分の影響を大幅に低減する。
【解決手段】ケーシングが少なくとも1つの第1の加熱素子を有しており、この加熱素子を介して測定室が加熱されるセンサを構成する。 (もっと読む)


【課題】液体収容容器内に収容される液体のレベルの検知結果に基づいて静止状態を判定し、より正確な濃度異常の判定を行うことができる液体状態検知装置を提供する。
【解決手段】通電開始後および一定時間後に測定した発熱抵抗体の電圧値の差分値ΔVmnあるいはその濃度換算値Cnを閾値と比較し、尿素水溶液の異常状態の検出を行う(S51,S52,S71)。異常状態であればレベルの検知結果に基づく静止状態判定を行い(S61,72,81)、静止状態になければ静止状態よりカウンタの加算値を減らす。これにより、尿素水溶液の揺れ等の影響で異常状態が一時的に検出されても、直ちに報知(S66,77,86)を行わず、異常状態と判定するまでに行う異常状態の検出機会を増やすことで異常状態の判定の信頼性を高めている。 (もっと読む)


ラパマイシンを精製するための方法が記載される。また、ラパマイシンまたはその誘導体を含有するサンプルの粒子の質、平均粒子径および結晶化度を測定するための方法も提供される。
(もっと読む)


【課題】小型化を図る。組立時の作業性をよくする。
【解決手段】熱電冷却素子2の加熱面2−2に円柱状のヒートシンク18を取り付け、このヒートシンク18に沿って、その上端部をJ字型に湾曲させたステンレス製のチューブ17を設ける。チューブ17は、J字型に湾曲された端部17Aにつながる直線部17Bで、ヒートシンク(胴部)18に固定する。チューブ17には、発光側の光ファイバ17−1と受光側の光ファイバ17−2とが収容されている。発光側の光ファイバ17−1と受光側の光ファイバ17−2のJ字型に湾曲された端部(発光部、受光部)の先端面は、鏡10の鏡面10−1に向けられ、鏡面10−1に対して所定の傾斜角で傾けられている。 (もっと読む)


測定装置を提供する。測定装置に含まれる要素は:
i)少なくとも一つの点温度センサーが先端部を有して対象物の温度をはかること、
ii)レーザーが前記点温度センサーの前記先端部を加熱するためにレーザー光線を前記点温度センサーの前記先端部に照射すること、
iii)光学部材が前記レーザーと前記点温度センサーの間に配置されること、
iv)測定素子が前記点温度センサーからの信号を検出して、この信号を測定すること、
V)信号発生器が参照信号を供給すること
である。
(もっと読む)


【課題】温度や湿度を測定するセンサー部と比較や演算を行いテーブルサーチするきこうを持ったデータ処理部が分離可能とした炉短計測法および露点計を提供する。
【解決手段】データー処理部10に予め温度と湿度に対応させて露点温度を示す露点温度テーブル24aを準備し、センサー部30で温度と湿度の測定値を求め、センサー部30からデーター処理部10に温度と湿度の測定値を送り、その後データー処理部10で温度と湿度の測定値から露点温度テーブル24a上でテーブルサーチすることによって露点温度の値を求めた。 (もっと読む)


【課題】液体の温度検知と濃度検知とを発熱抵抗体を有する一つの素子で行え、また、液体凍結時におけるその素子の破損防止機能を有した液体状態検知センサを提供する。
【解決手段】発熱抵抗体への通電開始後に取得した発熱抵抗体の抵抗値に対応する電圧値に基づき尿素水溶液の温度情報を求め(S1〜S6)、凍結温度以下なら通電を停止して発熱抵抗体の損傷を防止する(S7:YES,S8)。凍結温度より高ければ(S7:NO)、700msec後に発熱抵抗体の抵抗値に対応した電圧値を取得し(S10,S11)、先に取得した電圧値と差分値ΔVから尿素水溶液の尿素濃度を求める。このとき、先に得た尿素水溶液の温度情報を用いて補正を行うことで、より正確な尿素濃度の検知を行う(S13〜S18)。 (もっと読む)


【課題】気体燃料の低位発熱量を測定するための方法を提供すること。
【解決手段】方法は、気体燃料を空気と混合して、可燃性混合気を提供することを含む。混合気は、一定の温度で保たれる第1のマイクロホットプレート(50)の流れ表面(52)をわたって流れるように送られる。第1のマイクロホットプレート流れ表面から混合気への対流および伝導熱伝達による、第1のマイクロホットプレート流れ表面の一定の温度を保つために必要とされるパワーの変化が測定される。混合気は、一定の温度で保たれる第2のマイクロホットプレート(60)の流れ表面(62)をわたって流れるように送られる。混合気は、第2のマイクロホットプレート流れ表面をわたって流れるときに燃焼される。混合気の燃焼による、第2のマイクロホットプレート流れ表面の一定の温度を保つために必要とされるパワーの変化が測定される。 (もっと読む)


161 - 180 / 238