説明

Fターム[4G146BA42]の内容

炭素・炭素化合物 (72,636) | 製造−炭素原料、炭素前駆体 (7,083) | 特定の形状、構造、性質のもの (692) | 形状(膜状、繊維等) (345)

Fターム[4G146BA42]の下位に属するFターム

Fターム[4G146BA42]に分類される特許

41 - 60 / 208


【課題】触媒電極層と炭素繊維シートとの接触面積を増やしつつも、セパレータと炭素繊維シートとの接触抵抗を上げることのない炭素繊維シート及び該炭素繊維シートの製造方法を提供する。
【解決手段】炭素繊維シートの触媒電極層と接する側の面(以下、A面ともいう)の表面を構成する繊維に多くの微細孔を発現させて、炭素繊維の表面積を増やし、炭素繊維シートと触媒電極層との接触面積を増大させるとともに、セパレータの接する面即ちA面の裏側面(以下、B面ともいう)の表面を構成する面には微細孔を発現させないで、炭素繊維シートとセパレータとの接触抵抗の増大を抑制することにより、燃料電池性能を向上させる。 (もっと読む)


【課題】 熱伝導性、表面硬度、表面の接着性、外観に優れたグラファイトフィルムを得ることができる。さらに、各特性に優れた、原料フィルムとして75〜225μm程度の厚みの厚いものを使用して、グラファイトフィルムを得ることができる。
【解決手段】 高分子フィルムを2000℃以上の温度で熱処理するグラファイトフィルムの製造方法であって、
「(1)周辺に金属を含むカーボン粉末が存在している状態でグラファイト化する。特に、グラファイト化を通電加熱でおこなう。
(2)グラファイト化を通電加熱でおこない、原料フィルムを保持する容器が、金属を含む。
(3)グラファイト化を通電加熱でおこない、グラファイト化中に金属を含む物質を原料フィルムと接触させる。」
ことを特徴とするグラファイトフィルムの製造方法、とする。 (もっと読む)


【課題】 本発明は、カーボン繊維のように乱層構造を持つ黒鉛性構造体から強酸化剤を使用することなく、より高い収率でグラフェンシートを製造できるグラフェンシートの製造方法および前記方法により製造されたグラフェンシートを提供する。
【解決手段】 本発明は、乱層構造を持つ黒鉛性構造体を酸化させる酸化段階と、酸化された黒鉛性構造体に対してマイクロ波照射を行うことにより、数個の層からなるグラフェン層結合体を得るマイクロ波照射段階と、グラフェン層結合体を超音波分解処理する超音波処理段階と、を含むグラフェンシートの製造方法で、マイクロ波照射により数個の層からなるグラフェン層結合体を容易に得ることができ、マイクロ波照射段階は、マイクロウエーブオーブンを用いて50〜100秒間、150〜550Wで行う。 (もっと読む)


【課題】 直径が0.45〜1nmの範囲のサブナノ細孔を大容量で、且つ、シャープな分布で有し、特に、ガス吸着材として有用な多孔質炭素材の製造方法を提供する。
【解決手段】 フェノール樹脂中に水酸化カリウムを含有するフェノール樹脂複合成形体を、非酸化性雰囲気中、550〜750℃の温度で加熱して炭化物を得た後、該炭化物中に含まれる水酸化カリウムを洗浄除去する方法であり、かかる方法により、サブナノ細孔の容積が0.33cm/gを超え、且つ、直径が0.45nm〜0.4μmの範囲の細孔容積に対するサブナノ細孔容積の割合が65%以上を占める多孔質炭素材が得られる。 (もっと読む)


【課題】カーボン多孔質材料からなる燃料電池のガス拡散層を煩雑な製造工程を経ることなく提供する。
【解決手段】植物セルロース系物質及び/又は再生セルロース系物質からなるフィルムまたはシートにハロゲンまたはハロゲン化物をドーピングし、不活性ガス雰囲気中、500℃〜2800℃の熱処理温度で炭素化したカーボン材料を用いてなる空孔率30〜90%、繊維径0.1〜30μmの燃料電池用ガス拡散層。 (もっと読む)


【課題】 発熱部品、筐体を含むスペースの狭い電子機器において、発熱部品からの熱を効率的に拡散し、筐体の表面温度低減に優れたグラファイト複合フィルムを提供する。
【解決手段】 高分子フィルムを熱処理して作製されるグラファイトフィルムであって、該グラファイトフィルムの内部にグラファイトフィルムの面に対して平行な空間が形成されたグラファイトフィルム、およびこれを用いたグラファイト複合フィルムである。 (もっと読む)


【課題】沸点が70〜120℃の範囲の有機化合物に対し特に優れた吸着性能を有する活性炭素繊維を提供する。
【解決手段】BET比表面積が1000〜1800m2/g、全細孔容積が0.4〜0.9cc/g、細孔直径1nm以下のマイクロポア細孔容積が全マイクロポア細孔容積の93〜94%であり、かつ、温度25℃、相対湿度52%における水分吸着率が6%以下である活性炭素繊維。このような活性炭素繊維において、好ましくは、カルボキシル基量が0.04meq/g以下である。 (もっと読む)


【課題】二層カーボンナノチューブを主体に構成された炭素質材料、特には膜状に形成された二層カーボンナノチューブに富む炭素質材料の製造方法を提供する。
【解決手段】本発明によって提供される二層カーボンナノチューブを主体に構成された炭素質材料の製造方法は、減圧可能な容器内に配置された一対の電極間にアーク放電を発生させて該電極の少なくとも一方からカーボンを蒸発させて行う製造方法であって、該アーク放電の発生領域に近接する外側領域であって900Kを下回らない温度領域内において前記一対の電極の少なくとも一方からの蒸発物を回収することを特徴とする。 (もっと読む)


【課題】常温の不活性ガス雰囲気中で、かつ大気圧下でカーボンナノ構造体を製造することができる、新しい原理に基づくカーボンナノ構造体の製造技術を提供する。
【解決手段】ターゲット原料をチャンバー内にセットし、常温の不活性ガス雰囲気中で、かつ、大気圧下で、電子加速器から放出される連続電子ビームをターゲット原料に照射することにより、ターゲット原料を溶融、ガス化させる。ついで、ガス化されたターゲット原料を冷却させることによりグラファイトと触媒金属との共存高温ガスとし、この共存高温ガス状態を一定時間維持した後、冷却することによりカーボンナノ構造体を生成させる。 (もっと読む)


【課題】プロピレンカーボネートの分解が抑制された高容量の非水電解質二次電池を提供することを目的とする。
【解決手段】非水電解質二次電池の負極活物質として、表層部に結晶領域11と非晶質領域12とを有する黒鉛粒子10を用いる。黒鉛粒子10は、結晶領域11に、炭素六角網平面13のベーサル面15と、炭素六角網平面13の末端同士がループ状に連結した閉塞部16を有しており、閉塞部16の積層数が、実質的に、炭素六角網平面13のc軸方向において1または2である。 (もっと読む)


【課題】製造効率を低下させることなく、シワや凹凸(うねりや反り)の発生が効果的に抑制され、しかも巻き上がりの形態も安定する多孔質炭素電極基材の連続製造方法を提供する。
【解決手段】炭素繊維と樹脂からなるロール状シート材であるシートロール3を巻き戻して炭化熱処理炉1,2内に連続供給し、炭化熱処理炉内に連続して導入された前記シート材をガイド部材を介することなく走行させて炭化処理を行い、炭化熱処理炉1,2内にて炭化処理されるシート状の多孔質炭素電極基材を巻取り部7にて連続して巻き取る。前記炭化熱処理炉内1,2を走行するシート状の多孔質炭素電極基材の張力を、張力制御手段により1〜25N/mに維持制御すると同時に、前記炭化熱処理炉から導出する前記シート状の多孔質炭素電極基材の幅方向に向かう偏り動作を偏り修正手段であるシート端縁位置修正装置5により自動的に修正する。 (もっと読む)


【課題】植物系天然素材を炭化して優れた防火耐火断熱性能を持つ材料を提供する。
【解決手段】処理溶液として、株式会社JERICOの防火薬剤ARTEX(アルテックス)MFの水溶液(濃度12重量%)を用意した。また、植物系天然素材として、綿、木、もみがら、稲わら、麻、パームヤシ、かやを用意した。各素材につき、各処理溶液に十分含浸させたあと、24時間自然乾燥するか70℃で3時間の強制乾燥を行い、サンプルを作製した。各サンプルを窒素ガス(5リットル/分、封入)雰囲気下、電気炉中、270℃で10分加熱することにより炭化を行った。こうして得られた材料は、優れた防火耐火性能を有していた。 (もっと読む)


【課題】新規な炭素膜製造装置を提供することを目的とする。
【解決手段】本発明の炭素膜製造装置は、供給ガスに電子ビームを照射し、プラズマを発生させる電子ビーム発生装置7と、炭素源を収容し、炭素源を加熱して気化させる炭素源容器4と、炭素膜を堆積させる基板3を有する。ここで、供給ガスは、アルゴンガスであることが好ましい。また、電子ビーム発生装置7の電子通過量は10〜100Aの範囲内にあることが好ましい。また、炭素源は、フラーレンC60、フラーレンC70、その他ナノメートルスケールのカーボン粒子であることが好ましい。また、基板3の広さは1〜100cm2 の範囲内にあることが好ましい。また、基板3のバイアス電圧は-500〜0Vの範囲内にあることが好ましい。 (もっと読む)


【課題】溶液中で安定なグラフェンのコロイド分散系、特に、分散剤を必要としないコロイドのグラフェン分散系を生成するための方法を提供すること。
【解決手段】コロイドのグラフェン分散系を生成するための方法であって、(i)分散媒中にグラファイト酸化物を分散させることによって、コロイドのグラフェン酸化物またはマルチグラフェン酸化物分散系を形成するステップと、(ii)分散系中のグラフェン酸化物またはマルチグラフェン酸化物を熱還元するステップとを含む方法が開示されている。出発分散系を調製するために使用される方法に応じて、グラフェンまたはマルチグラフェン分散系が得られ、これは、さらに処理することによって、グラファイトより大きい面間距離を有するマルチグラフェンにすることができる。そのような分散系およびマルチグラフェンは、例えば、充電式リチウムイオン電池の製造において適切な材料である。 (もっと読む)


【課題】軟化点の低い熱硬化性樹脂組成物を用いることでユーティリティコストを低減しながら、厚み方向の比抵抗が低い多孔質電極基材を提供する。
【解決手段】平面内に分散した炭素短繊維集合体に、環球法で測定した軟化点が75〜95℃であるノボラック型フェノール樹脂Nと、B型粘度計で測定した見掛け粘度が50〜140mPa・sであるレゾール型フェノール樹脂Rの60wt%メタノール溶液を固形分質量比でN:R=80:20〜85:15となるように混合した樹脂組成物を、炭素繊維100質量部に対して樹脂組成物が70〜130質量部になるように含浸して中間基材を得る工程;
前記中間基材を加熱して前記樹脂組成物を炭素化する工程;
を有する多孔質電極基材の製造方法。 (もっと読む)


【課題】新規のグラフェン製造方法を提供する。
【解決手段】本発明はグラフェンの製造方法に関し、以下の段階を含む。
・基板上にアモルファス炭素を含む薄層を堆積する段階、
・光及び/又は電子照射の下で前記薄層をアニーリングし、それによってグラフェンを含む層が得られる段階。 (もっと読む)


【課題】 初期サイクル時にみられる充放電不可逆容量が十分に小さく、優れた高温保存特性を有し、初期サイクル時、及び高温保存時におけるガス発生が低減されるリチウムイオン二次電池を得ることが可能な負極材料を提供する。
【解決手段】 下記式1で表される表面官能基量O/C値が1%以上、4%以下であり、かつ、下記式2で表される表面官能基量Cl/C値と下記式3で表される表面官能基量S165/C値の和(Cl/C+S165/C)が0.05%以上、0.5%以下であることを特徴とするリチウムイオン二次電池用炭素材料。
式1
O/C値(%)=X線光電子分光法(XPS)分析におけるO1sのスペクトルのピーク面積に基づいて求めたO原子濃度/XPS分析におけるC1sのスペクトルのピーク面積に基づいて求めたC原子濃度×100
式2
Cl/C値(%)=XPS分析におけるCl2pのスペクトルのピーク面積に基づいて
求めたCl原子濃度/XPS分析におけるC1sのスペクトルのピーク面積に基づいて求めたC原子濃度×100
式3
165/C値(%)=XPS分析におけるS2pに対応するスペクトルのうち165eV付近のピークのピーク面積に基づいて求めたS165原子濃度/XPS分析におけるC1sのスペクトルのピーク面積に基づいて求めたC原子濃度×100 (もっと読む)


【課題】ポリイミドフィルムを焼成する際に異常発泡するため形成されたグラファイトシートに大きなうねりが生じる課題があった。
【解決手段】ピロメリット酸二無水物と4,4’−ジアミノジフェニルエーテルとを加熱乾燥して一部イミド化させたゲルフィルムを延伸させた後、イミド化させ単位厚み当りの端裂抵抗が9000N/(20mm・mm)〜15000N/(20mm・mm)かつ厚みが30μm〜150μmのポリイミドフィルムとし、このポリイミドフィルムを不活性ガス中で一定の昇温速度で昇温させ2400℃〜3500℃で焼成することによりグラファイト化する。 (もっと読む)


【課題】従来、結合材である熱可塑性樹脂を主体とする有機バインダーの可塑化に伴う変形を来さない脱脂及び焼成の条件の確保に制約される。そのほか、有機バインダーの分解した痕跡である微細気孔が生成して粒子間の結合力低下を来して成形品の強度が過度に低下し、カーボン焼結体本来の高い熱伝導率を損ない易いという課題があり、その課題を解決するために強度と熱伝導率を向上することができるカーボン凝結体の成形材料を提供する。
【解決手段】この発明に係る成形材料は、フェノール基を含む化合物とアルデヒド基を含む化合物を界面活性剤の存在下で重合させたフェノール樹脂未硬化物を被覆したカーボン粉粒に、易分解性の繊維状物質が液状樹脂を介して表面に固定して成ることを特徴とする。 (もっと読む)


本発明は、高い電池容量を示し、充放電サイクル特性が良好で、かつ充電特性に優れた二次電池負極用として有用な複合黒鉛粒子、並びにこの複合黒鉛を用いた負極用ペースト、負極及びリチウム二次電池を提供する。
本発明の複合黒鉛粒子は、d(002)面の層間距離(d値)が0.337nm以下の黒鉛であり、かつラマン分光スペクトルで測定される1300〜1400cm-1の範囲にあるピーク強度(ID)と1580〜1620cm-1の範囲にあるピーク強度(IG)との強度比ID/IG(R値)が0.01以上0.1以下である芯材と、ラマン分光スペクトルで測定される1300〜1400cm-1の範囲にあるピーク強度(ID)と1580〜1620cm-1の範囲にあるピーク強度(IG)との強度比ID/IG(R値)が0.2以上である炭素質表層とからなり、バインダーと混合して1.55〜1.65g/cm3の密度に加圧成形したものをXRD測定したとき、黒鉛結晶の(110)面のピーク強度(I110)と(004)面のピーク強度(I004)の比I110/I004が0.2以上である。 (もっと読む)


41 - 60 / 208