説明

Fターム[4K017BB06]の内容

金属質粉又はその懸濁液の製造 (21,321) | 粉末の副成分 (3,507) | Fe、Co、Ni (459)

Fターム[4K017BB06]に分類される特許

21 - 40 / 459


【課題】塗設時に金属ナノワイヤーを凝集させることなく好適に分散させることができ、ヘイズが低く、ブツ故障が少なく、導電性及び透明性に優れた導電膜の製造方法、前記導電膜の製造方法により製造された導電膜、及び前記導電膜を有するタッチパネルの提供。
【解決手段】金属粒子として平均短軸長さ150nm以下の金属ナノワイヤーと、分散剤とを含有する金属ナノワイヤー分散液を、限外濾過膜を用いて限外濾過し、洗浄する洗浄工程と、前記洗浄工程後の金属ナノワイヤー分散液を含有する導電膜形成用塗布液を支持体上に塗布する塗布工程とを含み、前記洗浄工程後の金属ナノワイヤー分散液中の前記分散剤の含有量({分散剤の質量/(全金属粒子の質量+分散剤の質量)}×100)が、3.2質量%以上である導電膜の製造方法とする。 (もっと読む)


【課題】FeとNiとの合金であって磁性を有するテトラテーナイト粉の製造方法であって、より低温での合成によりテトラテーナイト粉を得られる製造方法を提供する。
【解決手段】FeとNiを含む合金の水酸化物である複合水酸化物を用意し、この複合水酸化物に水素化カルシウムを混合して混合物10とし、この混合物10を容器20に入れて320℃未満の還元温度で磁石30によって100〜10000Oe程度の磁場を印加しながら還元し、テトラテーナイト粉を得る。 (もっと読む)


【課題】組成比が一定で、微生物発生防止効果を安定して確保することができ、表面積が大きく微生物発生防止効果が大きく、粉体であることで、パッケージに封入して空気及び/又は水の微生物発生の防止に用いることができ、又は他の素材に混練し微生物発生防止作用を与える等に応用することができる微生物発生防止粉体、その製造方法、微生物発生防止繊維及び微生物発生防止シートを提供する。
【解決手段】電解めっきにより形成されためっき皮膜を粉砕して得られた微生物発生防止粉体であって、この微生物発生防止粉体は、ニッケル又はクロムを含有する微生物発生防止金属の金属元素間に、リン、イオウ、塩素、コバルト及び銀のいずれか1つ以上を含有する微生物発生防止元素が均一に分散してなる微生物発生防止粉体、その製造方法、微生物発生防止繊維及び微生物発生防止シートである。 (もっと読む)


【課題】金属微粒子が溶媒中で凝集することなく安定に分散し、かつ、金属微粒子が孤立状態で分散した分散液を基材に塗布して焼成するときに、低温で金属微粒子表面から界面活性剤及びアミンを脱離させることができる金属微粒子の製造方法を提供する。
【解決手段】槽内に金属原料と界面活性剤及びイミンを含む溶媒とを収容し、減圧下でこの金属原料を加熱して蒸発させ、この蒸発したものを捕集して溶媒に導入することで、界面活性剤とイミンが加水分解して得られたアミンとで表面全体が被覆された金属微粒子が溶媒中に分散してなる金属微粒子含有液を得る。次いで、この金属微粒子含有液に極性溶媒を加えることで、金属微粒子を沈降させる。溶媒を取り除き、沈降した金属微粒子を回収する。 (もっと読む)


【課題】冷却管を有する金属粉末製造用のプラズマ装置において、冷却管の内壁に付着・堆積した付着物を容易に除去することができ、より生産効率の良いプラズマ装置を提供する。
【解決手段】金属原料が供給される反応容器2と、反応容器2内の金属原料との間でプラズマを生成し、金属原料を蒸発させて金属蒸気を生成するプラズマトーチ4と、金属蒸気を搬送するためのキャリアガスを反応容器2内に供給するキャリアガス供給部10と、反応容器2からキャリアガスによって移送される金属蒸気を冷却して金属粉末を生成する冷却管3を備える金属粉末製造用プラズマ装置1であって、冷却管3をその長手方向下流側が上方にあるように水平方向に対し10〜80°傾けて反応容器2に設置すると共に、冷却管3の内壁に付着した付着物を除去するスクレーパー20を、冷却管3の長手方向下流端から冷却管3内に嵌挿した。 (もっと読む)


【課題】基材表面に金属微粒子分散液を比較的厚く塗布しても、焼成時にクラックが発生することを防止できる金属微粒子分散液を提供する。
【解決手段】本発明の金属微粒子分散液は、脂肪酸と脂肪族アミンとで表面が被覆された金属微粒子を、脂肪酸誘導体が添加された疎水性溶媒中に分散させてなる。脂肪酸誘導体の濃度は0.1重量%〜5重量%の範囲内であることが好ましい。脂肪酸誘導体は脂肪酸エステルであることが好ましく、脂肪酸エステルは脂肪酸メチルエステル又は脂肪酸エチルエステルであることが好ましい。 (もっと読む)


【課題】平均粒径が小さく、電池反応の効率と充放電サイクル特性を向上させることができる二次電池用電極材およびその二次電池用電極を低コストで且つ高い生産性で製造することができる方法を提供する。
【解決手段】Snおよび(Co、Ni、Fe、Cu、Cr、In、AgおよびTiからなる群から選択される1種以上の)遷移金属の水酸化物とAl、Si、Zrおよび(Yを含む)希土類元素からなる群から選択される1種以上の添加元素とを含む粒子を生成させ、得られた粒子を乾燥した後、還元性ガス雰囲気下で加熱する。 (もっと読む)


【課題】金属微粒子を安定に生成でき、金属微粒子が孤立状態で分散した分散液を焼成するときに分散液の用途に応じた焼成温度で焼成可能な金属微粒子の製造方法を提供する。
【解決手段】直鎖又は分岐構造を有する炭素数6〜18の第1のカルボン酸で表面が覆われたAu微粒子を生成する。生成されたAu微粒子を、直鎖又は分岐構造を有する炭素数4〜22の第2のカルボン酸と混合し、Au微粒子の表面を覆う第1のカルボン酸を第2のカルボン酸に置換する。表面が第2のカルボン酸で覆われたAu微粒子を、直鎖又は分岐構造を有する炭素数4〜22の1級アミンと混合し、表面が第2のカルボン酸及び該1級アミンで覆われたAu微粒子を得る。 (もっと読む)


【課題】磁化容易軸制御に必要な印加磁場を低減しつつ透磁率を向上させ、磁性粒子の酸化の影響を軽減して高性能化した磁気部品を提供する。
【解決手段】乾式法を用いてパラジウムを含む非磁性材料で磁性粒子を被覆する工程と、非磁性材料で被覆された磁性粒子を、回転磁場、加熱、および振動下でプレスする工程とを含む磁気部品の製造方法である。パラジウムを含む非磁性材料で被覆された磁性粒子を含み、周波数100kHz時の透磁率が150を超えて200以下であり、印加磁場800kA/m時の飽和磁束密度が2.20Tを超えて2.45T以下である、磁気部品である。 (もっと読む)


【課題】低コストで簡便なナノ粒子の合成方法を提供する。
【解決手段】 本発明による水素化処理方法は、溶媒(Sv)に金属塩(MS)および還元剤(R)を混合した溶液(S)を用意する工程と、密閉容器(X)内で、溶液(S)を、溶媒(Sv)の大気圧下の沸点以上180℃以下の温度に加熱する工程とを包含する。例えば、溶媒(Sv)として水およびアルコールからなる群から選択された少なくとも1つが用いられる。金属塩(MS)として、金、銀、銅、白金、パラジウム、ルテニウム、コバルト、ニッケル、モリブデン、インジウム、イリジウムおよびチタンからなる群から選択された少なくとも1つの金属の塩が用いられる。還元剤(R)としてポリビニルピロリドンが用いられる。 (もっと読む)


【課題】タガント粒子として用いられる、耐久性が高く、意匠性に優れた金属粒子が得られる製造方法を提供する。
【解決手段】このような金属粒子の製造方法の一例は、表面に凹凸形状9を有する基材7上に、アルカリ可溶性金属を含む金属製犠牲層11を形成する犠牲層形成工程と、前記金属製犠牲層上に、所定のパターンを有するアルカリ可溶性樹脂を含むレジスト層13を形成するレジスト層形成工程と、電気メッキにより、前記金属製犠牲層上であって、前記レジスト層以外の個所に、アルカリ不溶性金属層15を形成するアルカリ不溶性金属層形成工程と、アルカリ性の現像液により、前記金属製犠牲層及び前記レジスト層を除去し、前記アルカリ不溶性金属層を前記基材から剥離する剥離工程と、を具備することを特徴とする金属粒子1a,1bの製造方法である。 (もっと読む)


【課題】より容易に低コストで希少金属が回収できるようにする。
【解決手段】作製した混合粉末を粉砕処理する。例えば、ボールミルを用いて粉砕処理を行えばよい。この粉砕処理により、混合粉末中の金属酸化物と還元剤とが、メカノケミカル反応により固相で反応し、金属酸化物が還元される。ボールミルによる粉砕用ボールを用いての回転運動による粉砕処理では、物理的な粉砕処理のみでなく、機械的エネルギーによる化学反応を起こすメカノケミカル反応を起こすことが知られている。この還元により、金属酸化物より金属などの還元体が生成される。 (もっと読む)


【課題】安定性に優れ、200℃以下の低温焼成によって優れた導電性が発現する銀ナノ粒子、その製造方法、及び前記銀ナノ粒子を含む銀塗料組成物を提供する。
【解決手段】銀含有ナノ粒子の製造方法であって、銀化合物と安定剤としての分枝脂肪族アミン化合物とを混合し混合物を得て、前記混合物に、還元剤を添加し、無溶媒の反応系において、前記銀化合物を前記還元剤と反応させて、銀含有ナノ粒子を形成する、ことを含む銀含有ナノ粒子の製造方法。 (もっと読む)


【課題】均一な形状、粒径及び磁気特性を有するFePt又はCoPtナノ粒子を、その磁化容易軸の向きを垂直に揃えて非磁性基板の表面に均一に配列することが可能な磁気記録媒体及びその製造方法を提供する。
【解決手段】非磁性基板2の表面2aにテクスチャリング処理を施すことにより、円周方向成分を有する複数の溝3を形成する工程と、テクスチャリング処理が施された非磁性基板2の表面2aに、FePt又はCoPtナノ粒子5の分散溶液を接触させることにより、この非磁性基板2の上に垂直磁性層4となるFePt又はCoPtナノ粒子配列体5Aを形成する工程とを含む。 (もっと読む)


【課題】分散安定性に優れた金属ナノワイヤを含有する分散液およびそれを用いて形成される導電膜の提供。
【解決手段】金属ナノワイヤを含有する分散液であって、前記金属ナノワイヤの直径が10〜200nmであり、直径の変動係数が30%未満であり、直径に対する長さの比(長さ/直径)が10以上であり、前記金属ナノワイヤが、金、ニッケルおよび銅からなる群から選択される少なくとも1種の金属を主体とする金属部材である分散液。 (もっと読む)


【課題】簡易な方法で、所望の微細孔、特にナノメータオーダの微細孔を有する金属多孔質体を提供する。
【解決手段】平均粒子径が50nm〜1μmの範囲内にある第1の金属粒子と、第2の金属材料を含有する金属粒子の平均粒子径が5nm〜500nmの範囲内にあり、第1の金属粒子の平均粒子径以下である第2の金属粒子とを準備する。次いで、前記第1の金属粒子及び前記第2の金属粒子を混合して混合物を得るとともに、前記第2の金属粒子を溶融させ、得られた溶融物によって前記第1の金属粒子を結合し、金属多孔質体を製造する。 (もっと読む)


【課題】HDDR法を用いて良好な角型性と高い保磁力を有するR−T−B系永久磁石を提供する。
【解決手段】50%体積中心粒径が1μm以上10μm未満であり、R214B相を含むR−T−B系合金粉末(RはNdおよび/またはPrを50原子%以上含む希土類元素、TはFe、またはFeとCo)と、粒径75μm未満のR’(R’はNd、Pr、Dy、Tbから選ばれる1種以上)、またはR’−M系合金(MはAl、Ga、Cu、Co、Ni、Cr、Fe、Si、Geから選ばれる1種以上)の粉末との混合粉末の圧粉体を200℃以上600℃以下の水素雰囲気中で熱処理を施す第一熱処理工程と、圧粉体に対し水素雰囲気中で650℃以上1000℃以下の温度で熱処理を施す第二熱処理工程と、真空または不活性雰囲気中で圧粉体に対し650℃以上1000℃以下の温度で熱処理を施す第三熱処理工程とを実行する。 (もっと読む)


【課題】複数のターゲットを用いることなく、炭素含有量の多いFePtC系薄膜を単独で形成できるFePt−C系スパッタリングターゲット及びその製造方法を提供する。
【解決手段】Fe、PtおよびCを含有するFePt−C系スパッタリングターゲットであって、Ptを40〜60at%含有して残部がFeおよび不可避的不純物からなるFePt系合金相と、C相とが互いに分散した構造を有するようにし、ターゲット全体に対するCの含有量を21〜70at%にする。
また、Ptを40〜60at%含有して残部がFeおよび不可避的不純物からなるFePt系合金粉末にC粉末を添加し、酸素の存在する雰囲気下で混合して混合粉末を作製した後、作製した該混合粉末を加圧下で加熱して成形する。 (もっと読む)


【課題】水素の吸蔵・放出特性を改善した水素吸蔵合金を提供する。
【解決手段】下記一般式(16)で表され、かつCuKα線を用いたX線回折パターンにおける2θ=8〜13゜の範囲に現れる最強ピークの強度(I1)と、全ピークの最強線ピークの強度(I2)との強度比(I1/I2)が0.15未満である合金を含む水素吸蔵合金。
R41-a-bMgaM8b(Ni1-xM9xz …(16)
ただし、R4はイットリウムを含む希土類元素およびCaから選ばれる少なくとも1つの元素、M8はMgより電気陰性度の大きな元素(ただし、R4、Ni、M9を除く)、M9はCo,Mn,Fe,V,Cr,Nb,Al,Ga,Zn,Sn,Cu,Si,P,Bから選ばれる少なくとも1つの元素であり、a、b、x、zはそれぞれ0<a≦0.6、0≦b≦0.5,0≦x≦0.9,2.5≦z<4.5を示す。 (もっと読む)


【課題】粒子を小さくしても粒子同士の凝集を抑制して粒子の独立性を高くすることができ、磁性塗料に使用した場合に分散性を向上させることができるとともに、嵩密度を高くすることができる、金属磁性粉末およびその製造方法を提供する。
【解決手段】オキシ水酸化鉄(α−FeOOH)のスラリーにカルボキシル基を有する化合物からなる分散剤を添加してオキシ水酸化鉄のスラリーを湿式粉砕し、得られたオキシ水酸化鉄の粒子の表面に(イットリウムを含む)希土類元素から選ばれる1種以上を含む焼結防止成分を被着させた後にオキシ水酸化鉄を還元することにより、金属磁性粉末を製造する。 (もっと読む)


21 - 40 / 459