説明

Fターム[5E049BA06]の内容

磁性薄膜 (4,742) | 磁気特性、用途 (1,087) | 半硬質 (420) | 磁気記録用 (402)

Fターム[5E049BA06]の下位に属するFターム

Fターム[5E049BA06]に分類される特許

21 - 40 / 250


【課題】垂直磁気記録層の結晶粒の分離と結晶粒径の微細化を両立することで、高密度の情報の記録再生が可能な磁気記録媒体を提供する。
【解決手段】非磁性基板上に、少なくとも軟磁性裏打ち層と下地層と中間層と垂直磁気記録層を有する垂直磁気記録媒体において、垂直磁気記録層を1層以上の磁性層から構成し、その内の少なくとも1層を、Coを主成分とする強磁性結晶粒と酸化物粒界から構成し、その酸化物をCeの酸化物と、Si,Ti,V,Cr,Mn,Fe,Co,Ni,Cu,Nb,Mo,Pr,Sm,Eu,Tb,Yb,Ta,Wから選ばれる元素の酸化物を含む構成とする。また、Ceの酸化物を含む磁性層の酸化物の総量を4モル%〜15モル%の範囲内とする。 (もっと読む)


【課題】イオン注入の際にマスクとして用いたレジストを効率よく除去することができる磁気記録媒体の製造方法を提供する。
【解決手段】イオン注入処理の終了後、レジストパターンをアッシングする前に、レジストパターンをフッ素処理する。上記フッ素処理によって、イオンの照射により変質したレジストパターンは、上記アッシングによる除去処理に適した物質へ変換される。これにより、アッシング工程において効率よくレジストパターンを除去することが可能となる。また、レジストの残渣量が低減されることで、表面平坦度の高い磁気記録媒体を安定して製造することができる。 (もっと読む)


【課題】パターンマスクの除去効率を損なうことなく処理時間の短縮を図ることができる磁気記録媒体の製造方法を提供する。
【解決手段】本発明の一実施形態に係る磁気記録媒体の製造方法は、磁性層12を磁気分離するためのイオン注入工程に際して基板11をレジストパターン13の除去反応温度域にまで昇温させ、イオン注入後はその基板温度を利用してレジストパターン13のアッシング処理を実施する。これにより、レジストパターンの除去効率を損なうことなく、レジストパターン除去のための処理時間を短縮することができる。 (もっと読む)


【課題】書込み電流の増大や書込みの信用性の向上が図られた磁気記憶装置を提供する。
【解決手段】磁気記憶装置は、基板11と、基板11上に設けられたライト線WTと、ライト線WTに対して基板11の厚み方向に間隔をあけて配置され、ライト線WTの延在方向と交差する方向に延びるビット線BLと、ライト線WTおよびビット線BLの間に位置する磁気記憶素子MMとを備え、磁気記憶素子MMは、磁化方向が固定された固定層1と、外部磁界によって磁化方向が変化する記録層3とを含み、記録層3は合金膜を含み、合金膜はコバルトと鉄とホウ素とを含み、ホウ素は21at%より高い。 (もっと読む)


【課題】 磁性結晶粒が均一であり、かつ、反転磁界分散(SFD)の狭い熱アシスト記録媒体、およびこれを用いた磁気記憶装置を提供する。
【解決手段】 基板と、該基板上に形成された複数の下地層と、L1構造を有する合金を主成分とする磁性層からなる磁気記録媒体において、該下地層の少なくとも一つが、MgOを主成分として含有し、かつ、融点が2000℃以上の金属元素を少なくとも一種含有していることを特徴とする熱アシスト磁気記録媒体。 (もっと読む)


【課題】微粒子の六方晶系フェライト磁性粉末の本来の低ノイズを実現することにより、高いSNRを達成する高密度記録に適した磁気記録媒体を得る。
【解決手段】磁気記録媒体において、磁性粉末として、板状比が1〜2の範囲にあり、平均粒子サイズが10〜20nmで、かつ保磁力が79.6〜318.4kA/m(1,000〜4,000エルステッド)の範囲に、飽和磁化量が20〜60Am/kg(20〜60emu/g)の範囲にある板状の六方晶系フェライト磁性粉末を含有させる。特に、従来の板状の六方晶系フェライト磁性粉末は板状比の高いものが用いられていたのに対して、板状比が1〜2と小さい六方晶系フェライト磁性粉末を用いる。前記六方晶系フェライト磁性粉末は、バリウムフェライトあるいはストロンチウムフェライトの中から選ばれた少なくとも一種である。 (もっと読む)


【課題】1Tbit/inch以上の面記録密度を有する熱アシスト磁気記録媒体を提供する。
【解決手段】少なくとも基板101の上に、第1の磁性層106と第2の磁性層107とが順に積層された構造を有し、第1の磁性層106が、L1構造を有するFePt合金、L1構造を有するCoPt合金、又はL1構造を有するCoPt合金の何れかの結晶粒と、SiO、TiO、Cr、Al、Ta、ZrO、Y、CeO、MnO、TiO、ZnO、MgO、Cのうち少なくとも1種以上の粒界偏析材料とを含むグラニュラー構造を有し、且つ、第1の磁性層106中の粒界偏析材料の含有率が、基板101側から第2の磁性層107側に向かって減少している。 (もっと読む)


【課題】凹凸パターンで形成された記録層を有し記録密度が高く磁気信号の記録の信頼性が高い磁気記録媒体を提供する。
【解決手段】磁気記録媒体10は、基板12と、基板12の上に所定の凹凸パターンで形成され該凹凸パターンの凸部が記録要素14を構成する記録層16と、を有し、記録層16の材料はCo、Cr及びPtを含む磁性粒子と、Crを含み磁性粒子の間に存在する非磁性材料と、を含む材料であり、記録要素14を構成するCo、Cr及びPtの原子数の合計値に対する記録要素14を構成するCrの原子数の比率が記録要素14の側壁部14Aにおいて記録要素14の中央部14Bにおけるよりも低くなるように記録要素14中にCrが偏って分布している。 (もっと読む)


【課題】垂直異方性をもつMgOベースの磁気トンネル接合(MTJ)デバイスを提供すること。垂直異方性をもつMgOベースの磁気トンネル接合(MTJ)デバイスは、MgOトンネル障壁によって分離された垂直磁化をもつ強磁性ピンおよび自由層を本質的に含む。金属Mg堆積とその後の酸化処理によってまたは反応性スパッタリングによって作製されるMgOトンネル障壁の微細構造はアモルファスまたは不完全な(001)面垂直方向組織をもつ微晶質である。
【解決手段】本発明では、少なくとも強磁性ピン層のみまたは強磁性ピンおよび自由層の両方が、トンネル障壁と強磁性ピン層のみとの間に、またはトンネル障壁とピンおよび自由層の両方との間に位置する結晶好適結晶粒成長促進(PGGP)シード層を有する構造とすることが提案される。この結晶PGGPシード層は、堆積後アニーリングに際してMgOトンネル障壁の結晶化および好適結晶粒成長を誘起する。 (もっと読む)


【課題】従来の連続膜媒体の作製プロセスに近い簡便な方法を用い、磁気記録層において配向分散を抑制しつつ磁気クラスターサイズを減少させることができる下地層の分離構造を形成し、かつ下地層の薄膜化による記録性能の高性能化が可能な垂直媒体の提供。
【解決手段】非磁性基体上に少なくとも下地層および磁気記録層が順次積層されてなる垂直磁気記録媒体であって、前記下地層は結晶粒子と非晶質結晶粒界とからなり、該結晶粒子が、(成長初期の底面積)>(上部の面積)である形状を有することを特徴とする垂直磁気記録媒体。 (もっと読む)


【課題】鮮明な磁気記録パターンを有する磁性層の平滑化プロセスを高速で行うことを可能とした磁気記録媒体の製造方法を提供する。
【解決手段】研磨加工は、回転する研磨パッド101を非磁性基板1の表面に押し付けながら、この非磁性基板1の表面と研磨パッド101との間に研磨液Sを供給し、非磁性基板を回転又は揺動させることにより行い、研磨液Sは、単結晶のダイヤモンド粒子と研磨助剤とを含み、ダイヤモンド粒子は、その1次粒子径が1〜10nmの範囲、その2次粒子径が50〜100nmの範囲にあり、研磨助剤は、スルホン酸基又はカルボン酸基を有する有機重合物を含む。 (もっと読む)


【課題】磁性層のパターン形状を精度よく形成できる、歩留まりの高い磁気記録媒体の製造方法を提供する。
【解決手段】非磁性基板1に、磁性層2と、炭素により構成される炭素マスク層3と、Si、SiO、Taのいずれかを主として構成される膜厚0.5nm〜2nmの薄膜10と、レジスト層4とを順次積層して、前記レジスト層4に前記磁気記録パターンを転写する工程と、前記レジスト層4をマスクにして前記炭素マスク層3を酸素を用いたイオンエッチングによりパターニングする工程と、前記レジスト層4と前記薄膜10及び前記炭素マスク層3を除去する工程を有することを特徴とする、磁気記録媒体の製造方法を採用する。 (もっと読む)


【課題】磁性層を備えたトラック及びそれを備える磁性素子を提供する。
【解決手段】複数の磁区及びそれらの間に磁壁を有するトラックと、前記トラックに連結された磁壁移動手段と、前記トラックについての情報の再生及び記録のための読み取り/書き込み手段と、を備え、前記トラックは、前記磁区及び磁壁を有する磁性層と、前記磁性層の第1面に備えられた第1非磁性層と、前記磁性層の第2面に前記第1非磁性層と異なる物質で形成され、原子番号が14以上である金属及びマグネシウムのうち少なくとも一つを含む第2非磁性層と、を備える磁性素子である。かかる構造に起因して、磁性層は、高い非断熱係数(β)を有する。磁性素子は、例えば、情報保存素子(メモリ)である。 (もっと読む)


【課題】本発明は、磁気トンネル接合デバイスおよびその製造方法に関する。
【解決手段】磁気トンネル接合デバイスは、i)(A100−x100−yの化学式を有する化合物を含む第1磁性層と、ii)第1磁性層の上に位置する絶縁層と、iii)絶縁層の上に位置し、(A100−x100−yの化学式を有する化合物を含む第2磁性層とを含む。第1磁性層および第2磁性層は垂直磁気異方性を有し、Aおよび前記Bはそれぞれ金属元素であり、CはB(ホウ素)、C(炭素)、Ta(タンタル)、およびHf(ハフニウム)からなる群より選択された一つ以上の非晶質化元素である。 (もっと読む)


【課題】 強磁性層における磁性結晶粒子を適切に微細化する。
【解決手段】 垂直磁気記録に用いる磁気ディスク10であって、基体12と、下地層18と、グラニュラー構造の微細化促進層20(非磁性グラニュラー層)と、グラニュラー構造の強磁性層32を有する磁気記録層22とを備え、微細化促進層20は、無機酸化物のマトリックスと、非磁性の金属結晶粒子とを有し、強磁性層32は、無機酸化物のマトリックスと、金属結晶粒子の結晶方位に応じた所定の方位に磁化容易軸が向く磁性結晶粒子とを有する。 (もっと読む)


【課題】量産時、TMR素子を用いたMARMの完成品間で、MRAMのメモリー特性にバラツキがあり、不良品発生頻度が高かった。このバラツキは、量産時のTMR素子のMR比がウエハー製品間で一定値に維持されず、変動していたことが原因していたので、バラツキを抑制する製造方法を提供する。
【解決手段】高周波成分カットフィルターにより高周波成分をカットした直流電力印加の下で、強磁性体ターゲットをDCスパッタリングすることによってアモルファス状態の強磁性体膜を成膜し、そして酸化マグネシウムターゲットを高周波スパッタリングすることによって結晶酸化マグネシウム膜を成膜する工程及び該工程を実行する制御プログラムを備えた成膜スパッタリング装置200。 (もっと読む)


【課題】低温プロセスで短時間に作製可能であり、高[100]垂直配向、高L1規則度、低キュリー温度、及び高結晶磁気異方性を有する、L1FePt薄膜を備えた磁気記録媒体を製造できる方法、並びに、該方法によって得られるL1FePt薄膜を備えた磁気記録媒体を提供することを課題とする。
【解決手段】FePt合金とCu酸化物とを含む薄膜を形成する薄膜形成工程、及び該薄膜を加熱する加熱工程を経て、L1規則構造を有したFePt合金とCu酸化物とを含有した磁気記録層を形成する磁気記録媒体の作製方法、および該製造方法で得られる磁気記録媒体とする。 (もっと読む)


【課題】記録された磁気信号の安定性に優れ、かつ、熱アシスト磁気記録方式による磁気信号記録の可能な磁気記録媒体を提供する。
【解決手段】Pt含有量が44at%以上55at%以下であり、かつ、Ni/(Co+Ni)の原子含有量比が0.64以上0.8以下であるCo−Ni−Pt合金の強磁性結晶粒子を含む磁気記録層50を磁気記録媒体1に適用する。この磁気記録媒体1は、磁気記録層50を構成する上記Co−Ni−Pt合金が常温では非常に高い異方性磁界を有するため、記録された磁気信号の安定性に極めて優れている。また、この磁気記録媒体1は、磁気記録層50を構成する上記Co−Ni−Pt合金が適切な温度範囲のキュリー点をもつため、熱アシスト磁気記録方式での信号記録が可能である。 (もっと読む)


【課題】スピン消極を引き起こすことなく、また、加熱処理を必要とせずに、[Co/Ni]x積層構造の十分な垂直磁気異方性を確保する。
【解決手段】このスピンバルブ構造は、上部の[Co/Ni]x積層リファレンス層23の垂直磁気異方性を向上させるため、Ta層と、fcc[111]またはhcp[001]構造を有する金属層とを含む複合シード層22を備える。[Co/Ni]x積層リファレンス層23は、CoとNiとの界面の損傷を防止し、これにより垂直磁気異方性を保つため、低いパワーと高圧のアルゴンガスとを用いたプロセスにより成膜する。その結果、薄いシード層を用いることが可能となる。垂直磁気異方性は220℃の温度で10時間にわたって熱処理を行った後であっても維持される。この構造は、CPP−GMR素子やCPP−TMR素子に適用できるほか、スピントランスファー発振器やスピントランスファーMRAMにも適用できる。 (もっと読む)


【課題】高密度記録を実現する垂直磁気記録媒体を提供する。
【解決手段】基板100上に第一中間層106、第二中間層107、磁気記録層108,109を備える。第一中間層はRu又はRu合金とする。第二中間層は、CoとFeから選ばれる少なくとも一元素を含みCuを主成分とし、CoとFeの合計割合が10〜30at.%となる合金で構成し、膜厚を5nm以上100nm以下とする。 (もっと読む)


21 - 40 / 250