説明

イオンガン及び成膜装置

【課題】より高い電流密度を得ることを可能とすることにより、プロセスの高速化を図ることが可能なイオンガン及び成膜装置を提供する。
【解決手段】本発明のイオンガン1は、スリット状の開口部11が形成された陰極2と、開口部11の幅方向に磁場を発生させる磁石3と、この磁場に対して略垂直方向に電界を生じさせるように陰極2の裏面から離間して配置された陽極4と、を備え、陰極2の表面の開口部11からイオンビームBが引き出されるもので、陽極4を構成する材料が強磁性材、または非磁性のステンレス鋼を熱処理により弱磁性材化した弱磁性材である。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、イオンガン及び成膜装置に関し、さらに詳しくは、より高い電流密度を得ることを可能とすることにより、プロセスの高速化を図ることが可能なイオンガン及び成膜装置に関するものである。
【背景技術】
【0002】
近年、イオン源(イオンガン)から引き出されたイオンビームを用いたプロセスが多用されており、種々の装置に対してイオンガン搭載のニーズが高まっている。一般的なイオンガンとしては、プラズマ生成後、引き出し電極によってイオンビームを引き出す方式のものが採用されていた。この方式のイオンガンは、イオン電流及びイオンエネルギーの制御に優れており、例えば、半導体のイオン注入に代表されるような精密なプロセスに採用することができる。
しかしながら、この方式のイオンガンは、構造上、プラズマ生成室や引き出し電極等が必要になるため、装置構成が複雑で高コストとなり、上記のイオン注入装置のような高付加価値のプロセス等の限定的な使用に留まっていた。
【0003】
また、近年では、イオンガンを搭載した成膜装置も用いられている。この成膜装置では、制御性よりも生産性が重視されるために、大面積化、高スループット化が望まれている。そこで、磁場を有する隙間が形成された陰極と、これに略垂直方向に電界が掛かるように配置された陽極とを備え、これら電極間に電圧を印加し、マグネトロンタイプの放電を生じさせることでイオンビームを引き出すイオンガンが知られている(例えば、特許文献1参照)。
このイオンガンはリニアイオン源と称されるもので、上記のイオン注入に用いられるイオンガンに対し、引き出し電極の省略や、放電及びイオン加速を1台の電源で実行することができるという利点を有し、低コスト、高信頼性なものである。
【特許文献1】特表2003−506826号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
上記のリニアイオンガンをスパッタ成膜用途として採用したいという要望がある。
しかしながら、リニアイオンガンは、プラズマ生成後、引き出し電極によってイオンビームを引き出す上記の一般的なイオンガンと比べて電流密度が小さいという問題点があった。
例えば、一般的なイオンガンの一つである高周波(RF)イオンガンの電流密度が4〜5mA/cmであるのに比べて、リニアイオンガンの電流密度は約半分の2mA/cmであった。
スパッタ成膜用途では、プロセスの高速化を図るために少なくとも上記の高周波(RF)イオンガン程度に電流密度を向上させる必要があった。
【0005】
本発明は、上記の課題を解決するためになされたものであって、より高い電流密度を得ることを可能とすることにより、プロセスの高速化を図ることが可能なイオンガン及び成膜装置を提供することを目的とする。
【課題を解決するための手段】
【0006】
本発明者等は、より高い電流密度を得ることが可能なイオンガンについて鋭意検討を行った結果、スリット状の開口部が形成された陰極と、前記開口部の幅方向に磁場を発生させる磁石と、前記磁場に対して略垂直方向に電界を生じさせるように前記陰極の裏面から離間して配置された陽極と、を備え、前記陰極の表面の開口部からイオンビームが引き出されるイオンガンの場合に、前記陽極を構成する材料を、強磁性材、弱磁性材のいずれかとすれば、従来のリニアイオンガンと比べてより高い電流密度を得ることが可能であることを見出し、本発明を完成するに至った。
【0007】
すなわち、本発明のイオンガンは、スリット状の開口部が形成された陰極と、前記開口部の幅方向に磁場を発生させる磁石と、前記磁場に対して略垂直方向に電界を生じさせるように前記陰極の裏面から離間して配置された陽極と、を備え、前記陰極の表面の開口部からイオンビームが引き出されるイオンガンにおいて、前記陽極を構成する材料が強磁性材であることを特徴とする。
【0008】
このイオンガンでは、前記陽極を構成する材料を強磁性材としたことで、後述する実験結果に示されるように、従来のリニアイオンガンと比べて約1.5倍のビーム電流が得られる。
したがって、これまで生産性の観点から高周波(RF)イオンガン等が使用されていたプロセスにおいてもリニアイオンガンが使用できるようになり、イオンガンの用途が拡大されたものとなる。
【0009】
また、本発明のイオンガンは、スリット状の開口部が形成された陰極と、前記開口部の幅方向に磁場を発生させる磁石と、前記磁場に対して略垂直方向に電界を生じさせるように前記陰極の裏面から離間して配置された陽極と、を備え、前記陰極の表面の開口部からイオンビームが引き出されるイオンガンにおいて、前記陽極を構成する材料が弱磁性材であることを特徴とする。
【0010】
このイオンガンでは、前記陽極を構成する材料を弱磁性材としたことで、後述する実験結果に示されるように、従来のリニアイオンガンと比べて約2倍のビーム電流が得られる。
したがって、これまで生産性の観点から高周波(RF)イオンガン等が使用されていたプロセスにおいてもリニアイオンガンが使用できるようになり、イオンガンの用途が拡大されたものとなる。
【0011】
前記陽極を構成する材料は、ステンレス鋼を熱処理により弱磁性材化してなる弱磁性材であることが好ましい。
【0012】
このイオンガンでは、ステンレス鋼を熱処理することにより弱磁性材が容易に得られ、よって、従来のリニアイオンガンと比べて約2倍のビーム電流が得られる。
したがって、これまで生産性の観点から高周波(RF)イオンガン等が使用されていたプロセスにおいてもリニアイオンガンが使用できるようになり、イオンガンの用途が拡大されたものとなる。
【0013】
本発明の成膜装置は、本発明のイオンガンと、マグネトロンスパッタ装置とを備えたことを特徴とする。
この成膜装置では、従来のリニアイオンガンと比べて約1.5倍もしくはそれ以上のビーム電流が得られるイオンガンを備えているので、プロセスの生産性が改善される。
また、リニアイオンガンの特徴である口径の長手方向を1m以上にすることが容易であることから、インライン方式の大型基板成膜装置等の大型基板成膜向け用途についても可能になる等、用途を飛躍的に拡大することができる。
【発明の効果】
【0014】
本発明のイオンガンによれば、陽極を構成する材料を、強磁性材、弱磁性材のいずれかとしたので、イオン電流密度を従来のリニアイオンガンの約1.5倍もしくはそれ以上とすることができる。したがって、従来、高周波(RF)イオンガン等が使用されていたプロセスにおいてもリニアイオンガンが使用できるようになり、イオンガンの用途を拡大することができる。
【0015】
本発明の成膜装置によれば、従来のリニアイオンガンと比べて約1.5倍もしくはそれ以上のビーム電流が得られるイオンガンと、マグネトロンスパッタ装置とを備えたので、プロセスの生産性を改善することができる。
また、リニアイオンガンの特徴である口径の長手方向を1m以上にすることが容易であるので、インライン方式の大型基板成膜装置等の大型基板成膜向け各種装置に適用することが可能になり、本発明のイオンガンを搭載することができる装置の種類を飛躍的に拡大することができる。
【発明を実施するための最良の形態】
【0016】
本発明のイオンガン及び成膜装置を実施するための最良の形態について説明する。
なお、この形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
また、以下の説明に用いられる各図面では、各部材を認識可能な大きさとするために、各部材の縮尺を適宜変更している。
【0017】
図1は、本発明の一実施形態のイオンガンを示す概略斜視図、図2は図1のA−A線に沿う断面図である。
このイオンガン1は、例えば、全長400mm×幅l00mm×高さ80mmの大きさのもので、SS400等の鋼、あるいはさび難いSUS430、SUS304等のステンレス鋼から構成されスリット状の開口部11が形成された陰極2と、SmCo(サマリウムコバルト)合金により構成され開口部11の幅方向に磁場を発生させる磁石3と、この磁場に対して略垂直方向に電界を生じさせるように陰極2の裏面から離間して配置された陽極4と、を備え、陰極2の表面の開口部11からイオンビームBが引き出されるものである。
【0018】
陽極4を構成する材料としては、強磁性材、弱磁性材のいずれかであることが好ましく、強磁性材としては、例えば、SUS430等の強磁性のステンレス鋼、SmCo(サマリウムコバルト)合金、NdFe(ネオジウム鉄)合金等が好適に用いられる。特に、SUS430は、フェライトと称される体心立方構造相を有する。また、弱磁性材としては、SUS304等の非磁性のステンレス鋼を熱処理により弱磁性材化したものが好適に用いられる。
【0019】
また、これら磁石3及び陽極4を囲むように鉄製のヨーク5が枠状に設けられ、上記の陰極2は、このヨーク5に囲まれた領域を覆うように設けられている。
このイオンガン1には、陰極2に形成された開口部11の変形防止や、温度に依存しない安定駆動を実現するために、内部に水等の冷却媒体が流れる冷却パイプ6が複数設けられている。
【0020】
このイオンガン1は、陽極4及び陰極2間にArやO等のガスを流し、高圧電源により電圧を印加することで、陰極2と陽極4との間にマグネトロンタイプの放電(プラズマ)を生じさせ、スリット状の開口部11からイオンビームBが引き出される、いわゆるリニア(線状)イオンガンである。このリニアイオンガンは、グリッド電極等の引き出し電極を不要とする簡便な構成であり、1台の電源で放電とイオン加速を行うことができる。また、リニアイオンガンは、熱フィラメントを有しないので、酸素雰囲気下にても長時間の稼働が可能で、低コスト、信頼性が高いものとなっている。
【0021】
開口部11は、本発明の特徴的な構成要素であり、図1に示すように、開口端の全体形状が長円形のトラック形状となっており、この開口部11のコーナー部分は、平面視で曲率半径が25mmの曲線となっている。
図3は、開口部11の断面形状を示す断面図であり、以下の説明においては、陰極2の裏面とは、イオンガン1の内部側(陽極4側)に相当し、陰極2の表面とは、イオンビームが引き出される側に相当する。
【0022】
この開口部11は、陰極2の裏面から表面に向かって垂直に延びる隙間(a)が一定の垂直部11aと、この垂直部11aに連続し、陰極2の表面に向かって隙間が漸次拡がる傾斜部11bとから構成されている。この傾斜部11bを設けたことで、イオンガン1内部で発生したプラズマpを外部に引き出し易くし、イオンビームB量を増加させることができる。この開口部11の傾斜部11bにおける陰極2の表面に対する傾斜角度θは、例えば、45°に設定されている。
なお、このイオンガン1における電流密度とは、発生するビーム電流を開口部11で囲まれる面積Sで除した数値である。
【0023】
このイオンガン1は、磁石3を中央部に配置することで、磁石を外側に設ける構造と比べて磁石の数を半分にした簡便な構造となっている。また、ヨーク5上に陰極2を配置することで、陰極2内を通る磁束により、図2に示す開口部11の幅方向、すなわちイオンビームBの引き出し方向に一致する電界方向と直交する方向に磁場が形成される。
近年スパッタ成膜用途として、上述したような低コストで信頼性の高いリニアイオンガンを用いたいとの要望がある。ここで、スパッタ成膜用途とは、イオンビームをターゲットに照射して対向する基板に成膜するイオンビームスパッタや、スパッタ成膜時のアシスト(例えば、酸化源として使用)としてイオンガンを使用する場合を意味している。
【0024】
次に、本実施形態のイオンガンの実験例について説明する。
図4は、陽極材料として、ステンレス鋼(SUS304)を熱処理し、部分的に強磁性化(弱磁性材化と称する)したものを用いた場合の放電特性(図中A)を示す図である。比較のために、従来の熱処理しないステンレス鋼(SUS304)を使用した場合の放電特性(図中B)も示している。なお、縦軸はビーム電流(mA)、横軸は印加電圧(放電電圧;V)であり、イオンガンにArガスを50sccm流したときの測定室圧力は7×10−2Paである。
【0025】
図4から、弱磁性材化した陽極を使用した場合、放電電圧2kV〜3kvのときに、従来の場合に比べて約2倍のビーム電流が得られたことが分かる。
ステンレス鋼(SUS304)は、常温で面心立方構造を有し(オーステナイト)非磁性である。これを600℃以上に加熟し、急冷することにより、結晶構造が一部マルテンサイトとなり、磁性を有するようになる。即ち、非磁性のオーステナイト相内にマルテンサイト相がミクロ的に分散した状態になる。
この一部磁性材化したステンレス鋼(SUS304)は、例えば、溶接などにより高温にし、自然空冷しても得られる。上記実験に使用した磁性化した材料は、このようにして得られたものであり、これを、ここでは弱磁性材と称する。
【0026】
図5は、陽極に複数種の材料を用いた場合のそれぞれの陽極のビーム電流(mA)を示す図である。
ここでは、陽極の材料として、従来のステンレス鋼(SUS304)(図中S(非磁性材))、弱磁性材化したステンレス鋼(SUS304)(図中A(弱磁性材))、強磁性材であるステンレス鋼(SUS430)(図中B(強磁性材))を使用した場合のそれぞれのビーム電流を示している。
図5から、従来のものに比べて、強磁性材であるステンレス鋼(SUS430)の場合は1.5倍のビーム電流が得られており、弱磁性材化したステンレス鋼(SUS304)の場合は2倍のビーム電流が得られていることが分かった。
【0027】
図4及び図5の結果から、陽極に強磁性材を用いることにより、従来の非磁性材に比べて、放電電流を増加させることができ、ビーム電流を増加させることができることが分かった。さらに、陽極に強磁性材を使うより、弱磁性材を使ったものの方が、ビーム電流をより増加させることができることが分かった。
【0028】
ここで、陽極に磁性材を使用することによりビーム電流が増加する理由を、図6を用いて説明する。
従来のように、磁力線の向きが全て電界に垂直(磁力線Bのみ)になっている場合は、プラズマを閉じ込める領域を生じない。一方、磁力線の向きが一部電界と略平行(磁力線B、磁力線B)になっている場合は、プラズマ閉じ込め領域12が生じる。即ち、磁力線B、B、Bによる磁場配位がプラズマ閉じ込め領域12を構成し、この領域12にプラズマpを閉じ込めるように作用する。
また、数ミリ幅の狭い放電領域においては、この電界と、それに平行な方向の磁場とにより、電子の軌道が螺旋状になり、気体分子をイオン化する距離が伸びる。
以上の二つの要因によりプラズマ密度が向上するために、放散電流が増加し、ビーム電流が向上する。
【0029】
次に、本発明の一実施形態の成膜装置及び成膜方法について説明する。
図7は、本実施形態のイオンガンを搭載したインラインスパッタ成膜装置の概略構成を示す図である。
このインラインスパッタ成膜装置21は、ガラス基板22を大気中から真空中に導入するロードロックイン室23と、このガラス基板22上に異なる種類の金属やセラミックスの薄膜を成膜する複数の成膜室24〜26と、成膜されたガラス基板22を大気中に取り出すロードロックアウト室27とから構成されている。
なお、成膜室24と成膜室25とは連通部28により連通されており、同様に成膜室25と成膜室26とは連通部29により連通された状態となっている。
【0030】
本実施形態では、三層の異なる種類の成膜を行う場合について説明するが、目的に応じてさらに多い層(あるいは少ない層)を成膜する場合には、その層数に対応する数の成膜室を設ければよい。
【0031】
これら成膜室24〜26には、それぞれマグネトロンスパッタ装置31〜33が設置されており、これらマグネトロンスパッタ装置31〜33には、各層に対応した金属、セラミックス等の材料からなるターゲット34〜36がそれぞれ取り付けられており、これらのターゲット34〜36を放電で生じた高エネルギーのイオンによりたたいてターゲット物質をたたき出し(スパッタリング)、ガラス基板22の上に金属、セラミックス等の材料を堆積させる構成である。
【0032】
また、ロードロックイン室23と成膜室24との間には、ゲートバルブ37が設けられており、これによりロードロックイン室23と成膜室24との雰囲気が分離可能となっている。また、ロードロックアウト室27と成膜室26との間にも、同様にゲートバルブ38が設けられている。これら各室には、真空ポンプ(図示略)等が接続されており、これにより各室の内部圧力が調整可能となっている。
さらに、成膜室26内には、酸化を促進するための酸化源となる本実施形態のイオンガン1が設けられている。
【0033】
通常、放電は、高圧電源により陽極4と陰極2との間に13.56MHzの交流電圧を印加し、成膜室内にAr等のガスを導入することで生じさせる。このとき、放電に必要な圧力は10−2Pa〜数Paである。この圧力が高くなると、放電によるプラズマ密度が増加し、その結果、ターゲットをたたくイオンの数が増加することで、たたき出される物質の量が増加し、成膜速度が上昇し、生産性が向上する。一方、圧力が高すぎると平均自由工程が短くなり、したがって、たたき出されたターゲット物質が導入ガス分子により散乱され、その結果、堆積速度が低下してしまう。
【0034】
このため、放電に必要な圧力を、成膜物質や堆積物に応じて最適な条件とする必要がある。導入ガスは1種類だけとは限らず、複数のガスを導入してもよい。例えば、酸化物膜をスパッタにより成膜する場合には、堆積された膜中の酸素が減少する場合があるので、酸素を混ぜることがある。
そこで、本実施形態では、酸化を促進するための酸化源として、成膜室26内にイオンガン1を設けている。
【0035】
次に、このインラインスパッタ成膜装置を用いて基板22上に各種薄膜を成膜する方法について説明する。
ここでは、ガラス基板22上に、金属電極、誘電体膜等を成膜した後、Taからなるバリア膜、MgOからなる保護膜を順次成膜する場合を例にとることとする。
【0036】
まず、ターゲット34〜36を選択し、これらターゲット34〜36をそれぞれのマグネトロンスパッタ装置31〜33に取り付ける。
ターゲット34としては、プラズマディスプレイ(PDP)の電極、誘電体膜等を順次成膜するために、電極成膜用ターゲット、誘電体膜成膜用ターゲット等の各種ターゲットから必要に応じて選択して用いる。
また、ターゲット35としては、プラズマディスプレイ(PDP)のバリア膜を成膜するためのタンタル(Ta)ターゲットを、ターゲット36としては、プラズマディスプレイ(PDP)の保護膜を成膜するための酸化マグネシウム(MgO)ターゲットを、それぞれ選択して用いる。
【0037】
次いで、大気中からロードロックイン室23に、処理基板としてのガラス基板22を取り込んだ後、ロードロックイン室23から成膜室24内に、所定時間の後搬送される。そして、成膜室24内にて、ガラス基板22上に、ターゲット34をスパッタし金属電極、誘電体膜等を成膜する。
【0038】
次いで、ガラス基板22を成膜室25に搬送し、この成膜室25内にて、ガラス基板22上にTaターゲットを用いて10nmの膜厚のバリア膜を成膜する。
次いで、このガラス基板22を成膜室26に搬送し、この成膜室26内にて、MgOターゲットを用いて400nmの膜厚のMgOからなる保護膜を成膜する。
これら成膜室24〜26内においては、ガラス基板22を所定速度で移動しつつ、各処理を行う。
【0039】
MgOからなる保護膜を成膜する場合、酸素が欠乏するので、成膜室26内に混合ガス(95v/v%Ar+5v/v%O)を導入し、更に酸化を促進するための酸化源として、上述したイオンガン1を敗り付けている。
このイオンガン1に酸素(O2)ガスを、例えば40sccm流して酸素イオン(O−2)及び酸素ラジカル(O)を生成し、ガラス基板22上に化学量論的組成のMgO膜を堆積させる。
【0040】
MgOが堆積されたガラス基板22は、成膜室26内の処理エリア(マグネトロンスパッタ装置33に対向する位置)から、ガラス基板22の大きさに設定された退避領域(スパッタ処理が行われない領域)を通って、ロードロックアウト室27内に搬送された後、外部に取り出される。
【0041】
以上により、化学量論的組成のMgO膜が成膜されたプラズマディスプレイ(PDP)用ガラス基板を作製することができる。
このMgO膜は、化学量論的な酸化数を達成することにより、光の透過率を略100%とすることができる。したがって、このMgO膜を保護膜とすることで、緻密で長寿命な保護膜を容易に得ることができる。その結果、プラズマディスプレイ(PDP)の誘電体膜の保護膜として極めて有効なものとなる。
【0042】
以上説明したように、本実施形態のイオンガン1によれば、陽極4を強磁性材または弱磁性材により構成したので、従来と比べて高いビーム電流を得ることができ、従来より高い圧力条件下においても、高インピーダンス放電を維持することができ、0.3Pa以上の圧力条件が必要とされるスパッタ成膜用途へも容易に適用することができる。
【0043】
また、本実施形態のインラインスパッタ成膜装置21及び成膜方法によれば、成膜条件を、より高い圧力条件下へ拡大することができる。したがって、従来のリニアイオンガンを用いた場合では不可能とされていたスパッタ成膜用途(酸化源)やイオンビームスパッタ等にも適用することができ、成膜装置自体の適用可能な範囲(用途)を拡大することができ、プロセスの生産性を向上させることができる。
【図面の簡単な説明】
【0044】
【図1】本発明の一実施形態のイオンガンを示す概略斜視図である。
【図2】図1のA−A線に沿う断面図である。
【図3】本発明の一実施形態のイオンガンの開口部を示す断面図である。
【図4】複数種のステンレス鋼を陽極に用いた場合のそれぞれの放電特性を示す図である。
【図5】複数種のステンレス鋼を陽極に用いた場合のそれぞれのビーム電流を示す図である。
【図6】陽極に磁性材を使用した場合のビーム電流の増加を説明するための模式図である。
【図7】本発明の一実施形態のイオンガンを搭載したインラインスパッタ成膜装置を示す概略構成図である。
【符号の説明】
【0045】
1 イオンガン
2 陰極
3 磁石
4 陽極
5 ヨーク
6 水冷用パイプ
11 開口部
11a 垂直部
11b 傾斜部
12 プラズマ閉じ込め領域
21 インラインスパッタ成膜装置
22 ガラス基板
23 ロードロックイン室
24〜26 成膜室
27 ロードロックアウト室
28、29 連通部
31〜33 マグネトロンスパッタ装置
34〜36 ターゲット
37、38 ゲートバルブ
B イオンビーム
p プラズマ
θ 傾斜角度

【特許請求の範囲】
【請求項1】
スリット状の開口部が形成された陰極と、前記開口部の幅方向に磁場を発生させる磁石と、前記磁場に対して略垂直方向に電界を生じさせるように前記陰極の裏面から離間して配置された陽極と、を備え、前記陰極の表面の開口部からイオンビームが引き出されるイオンガンにおいて、
前記陽極を構成する材料が強磁性材であることを特徴とするイオンガン。
【請求項2】
スリット状の開口部が形成された陰極と、前記開口部の幅方向に磁場を発生させる磁石と、前記磁場に対して略垂直方向に電界を生じさせるように前記陰極の裏面から離間して配置された陽極と、を備え、前記陰極の表面の開口部からイオンビームが引き出されるイオンガンにおいて、
前記陽極を構成する材料が弱磁性材であることを特徴とするイオンガン。
【請求項3】
前記陽極を構成する材料は、ステンレス鋼を熱処理により弱磁性材化してなる弱磁性材であることを特徴とする請求項2記載のイオンガン。
【請求項4】
請求項1ないし3のいずれか1項記載のイオンガンと、マグネトロンスパッタ装置とを備えたことを特徴とする成膜装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2009−170355(P2009−170355A)
【公開日】平成21年7月30日(2009.7.30)
【国際特許分類】
【出願番号】特願2008−9392(P2008−9392)
【出願日】平成20年1月18日(2008.1.18)
【出願人】(000231464)株式会社アルバック (1,740)
【Fターム(参考)】