説明

インコヒーレントな放射を生成する反射ループシステム

【課題】均一照度を有するインコヒーレントな放射を生成するシステム及び方法を提供する。
【解決手段】本システム及び方法は、コヒーレントなビームからインコヒーレントなビームを形成するのに用いられる。このシステムは、放射源及び反射ループシステムを備える。放射源は、コヒーレントなビームまたは部分コヒーレントなビームを生成する。反射ループシステムは、部分コヒーレントなビームを受光し1つのループまたは非重複の複数ループを通じて反射してインコヒーレントなビームを形成する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は放射システムに関する。
【背景技術】
【0002】
露光装置は、所望のパターンを基板または基板の一部に転写する機械である。露光装置は例えばフラットパネルディスプレイや集積回路(IC)、微細構造を有する他のデバイスの製造に用いられる。通常は例えばマスクまたはレチクルと称されるパターニング用デバイスを使用して、フラットパネルディスプレイ(または他のデバイス)の各層に対応した回路パターンを形成する。このパターンは、基板に塗布された照射感応材料(レジスト)層への像形成により基板(例えばガラスプレート)の全体または一部に転写される。
【0003】
パターニング手段を使用して、回路パターンではなく例えばカラーフィルタのパターンやドットのマトリックス状配列などの他のパターンを形成する場合もある。パターニング用デバイスは、それぞれ個別に制御可能である素子の配列(以下「個別制御可能素子アレイ」という場合もある)を備えるパターニングアレイをマスクの代わりに備えてもよい。このような方式ではマスクを使用する方式に比べて迅速かつ低コストにパターンを変更することができる。
【0004】
フラットパネルディスプレイの基板は通常長方形である。この種の基板を露光するための露光装置は、長方形基板の幅全体またはその一部(例えば全幅の半分)をカバーする露光空間を有するように設計される。この露光空間の最下部で基板が走査されるとともに、マスク又はレチクルが基板の走査に同期してビームに対して走査される。このようにして基板にパターンが転写される。露光空間が基板の幅全体をカバーする場合には1回の走査で露光が完了する。露光空間が例えば基板の幅の半分をカバーする場合には、1回目の露光後に横方向に基板を移動させ、通常は基板の残りを露光するための走査をもう一度行う。
【0005】
通常リソグラフィシステムでは照明ビームを生成するための放射源としてレーザが使われる。この照明ビームは例えばコヒーレントな照明ビームであってもよいし、部分コヒーレントな照明ビームであってもよい。照明ビームはリソグラフィシステム内の各所にて反射され散乱光を発生させる。この散乱光は照明ビームに干渉して像にスペックルパターンをもたらす。スペックルパターンは、基板に形成されるパターンに誤差を生じさせうるので好ましくない。スペックルパターンは、時間的・空間的に微小に変動する部分コヒーレントビーム間の干渉によっても引き起こされる。スペックルパターンはコヒーレントな照明ビーム(または部分コヒーレントな照明ビーム)のノイズ的な特性であると言われることもある。また、スペックルパターンは、角度分布を増加させる素子が使用される場合にも引き起こされることがある。多数のコヒーレントなコピービームが生成されるからである。多数のコヒーレントなコピービームは、異なる複数のコピービーム間(例えば世代または方向が異なるビーム間)での光路差がビームのコヒーレンス長(例えば横方向のコヒーレンス長または時間的コヒーレンス長)に比べて小さい場合に互いに干渉する。
【0006】
従来は、レーザ下流に屈折光学素子または反射光学素子を配置してコヒーレントなビームからインコヒーレントなビームを形成することにより、スペックルパターンは補償されていた。これらの素子は「コヒーレンス破壊素子」と呼ばれることもある。上述のようにインコヒーレントなビームは多数のコヒーレントなコピービームを含む。
【0007】
スペックルパターンの低減は、照明ビームに対して光学素子を移動させることによっても実現できる。光学素子の移動によりコヒーレントなコピービームそれぞれの位相分布が変化され、一群のコピービームがなすスペックルパターンも変化する。すべてのスペックルパターンが統合(例えば足し合わせ)されることにより、均一化された光が生成される。ところが、スペックルパターンを実質的に除去するためには光学素子の移動量を大きくする必要がある。また、この大きな移動量を、例えば露光時間のような短時間で行わなければならない。例えば1000Hzのレーザから30パルスを用いる場合には、露光時間はおよそ30μsとなる。このような短時間での大移動はリソグラフィシステムに大きな振動や高加速度、高ジャークを引き起こすことになる。高加速度及び高ジャークはリソグラフィシステム内部に問題を発生させるおそれがある。また、1パルスにつき例えばおよそ50nsと統合時間が通常限られているので、スペックルパターンを実質的に除去すべくビームに対して充分に光学素子を移動させることはほとんど不可能になってきている。
【0008】
他のスペックルパターン補償方法は各露光サイクルで多数のレーザパルス(例えば60パルス)を用いることである。レーザパルスごとに異なるスペックルパターンが生じるので、多数のレーザパルスを用いることによりスペックルパターンを時間的に平均化して低減することができる。ところが最近のリソグラフィシステムでは各露光サイクルでレーザパルス数を小さくしたり各パルス長を短くしたりしてきている。各露光サイクルで各パルス長を短くすれば残念なことに平均化による効果が得られなくなる。また、スペックルパターンの補償に充分な光学素子移動量を短いパルス長の間に実現するのは難しい。
【発明の概要】
【発明が解決しようとする課題】
【0009】
そこで、均一照度を有するインコヒーレントな放射を生成するシステム及び方法が求められている。
【課題を解決するための手段】
【0010】
本発明の一実施形態によれば、放射源と反射ループシステムとを備えるシステムが提供される。放射源は、コヒーレントビームまたは部分コヒーレントビームを生成する。反射ループシステムは、少なくとも部分コヒーレントなビームを受けてループ内でまたは重複しない複数のループにおいて反射させ、よりインコヒーレントなビームを形成するように構成されている。
【0011】
このシステムはレーザであってもよいし、照明器であってもよい。
【0012】
2以上の反射ループシステムが光学的に直列に接続されていてもよい。
【0013】
このシステムはパターニング用デバイス及び投影系を備えるリソグラフィシステム内部に配置されていてもよい。この場合、インコヒーレントビームから照明ビームが形成される。照明ビームはパターニング用デバイスによりパターンが付与され、投影系により基板に投影される。
【0014】
他の実施形態によれば、デバイス製造方法が提供される。コヒーレントビームまたは部分コヒーレントビームがループ内でまたは重複しない複数のループにおいて反射されてインコヒーレントビームが形成される。インコヒーレントビームから照明ビームが形成される。照明ビームにパターンが付与される。パターンが付与された照明ビームが基板の目標部分に投影される。
【0015】
本発明の更なる実施形態や特徴、効果は、本発明のさまざまな実施形態の構成及び作用とともに添付図面を参照して以下に詳細に説明される。
【図面の簡単な説明】
【0016】
【図1】本発明の各実施形態に係る露光装置を示す図である。
【図2】本発明の各実施形態に係る露光装置を示す図である。
【図3】図2に示される本発明の実施形態により基板にパターンを転写する1つのモードを示す図である。
【図4】本発明の一実施形態に係る光学エンジンの配置を示す図である。
【図5】本発明の一実施形態に係る反射ループシステムを含む放射生成のための構成を示す図である。
【図6】本発明の一実施形態に係る反射ループシステムを含む放射生成のための構成を示す図である。
【図7】本発明の一実施形態に係る反射ループシステムを含む放射生成のための構成を示す図である。
【図8】本発明の一実施形態に係る第1反射ループシステムと第2反射ループシステムとを含む反射ループシステムを示す図である。
【図9】本発明の一実施形態に係る反射ループシステムの構成を示す図である。
【図10】本発明の一実施形態に係る反射ループシステムの構成を示す図である。
【図11】本発明の一実施形態に係る反射ループシステムの構成を示す図である。
【図12】本発明の一実施形態に係る反射ループシステムの構成を示す図である。
【図13】本発明の一実施形態に係る反射ループシステムの構成を示す図である。
【図14】本発明の一実施形態に係る反射ループシステムの構成を示す図である。
【図15】本発明の一実施形態に係る反射ループシステムの構成を示す図である。
【図16】本発明の一実施形態に係る反射ループシステムの構成を示す図である。
【図17】本発明の一実施形態に係る反射ループシステムの構成を示す図である。
【図18】本発明の一実施形態に係る反射ループシステムによる入射照明強度分布及び出射照明強度分布を模式的に示す図である。
【図19】本発明の一実施形態に係る方法を示すフローチャートである。
【発明を実施するための形態】
【0017】
1つまたは複数の実施形態に係るシステム及び方法は、(部分)コヒーレントビームから、よりインコヒーレントなビームを形成するために使用される。このシステムは放射源及び反射ループシステムを備える。放射源は、コヒーレントビームまたは部分コヒーレントビームを生成する。反射ループシステムは、(部分)コヒーレントなビームを受けてループ内でまたは重複しない複数のループにおいて反射させ、インコヒーレントなビームを形成するように構成されている。一実施例においては、この構成によるインコヒーレントビームの生成を通じて照明ビームのコヒーレントな部分どうしが干渉しないようになり、その結果スペックルも生成されないようになる。
【0018】
本明細書を通じて、コヒーレントなレーザビームへの処理は部分コヒーレントなビーム例えば多数のモードを含むビームにも同様に適用可能である。その逆も同様である。すなわち、本発明の実施形態においては各種ビームを包含することを意図している。
【0019】
以下では特定の構成について説明されるが、これは単に本発明の実施例をわかりやすく説明するためのものにすぎないと理解すべきである。当業者であれば本発明の趣旨を逸脱することなく他の構成を用いることが可能であると理解できよう。また当業者であれば本発明を他の多数の分野にも適用可能であることも明らかであろう。
【0020】
図1は本発明の一実施形態に係る露光装置を模式的に示す図である。この装置は、照明光学系IL、パターニング用デバイスPD、基板テーブルWT、及び投影光学系PSを備える。照明光学系(照明器)ILは放射ビームB(例えばUV放射)を調整するよう構成されている。
【0021】
パターニング用デバイスPD(例えばレチクル、マスク、または個別制御可能素子アレイ)はビームを変調する。普通は個別制御可能素子アレイは投影光学系PSに対して位置が固定されるが、あるパラメタに従って該アレイを正確に位置決めする位置決め装置に接続されていてもよい。
【0022】
基板テーブルWTは、基板(例えばレジストが塗布された基板)Wを支持するよう構成されており、あるパラメタに従って基板を正確に位置決めする位置決め装置PWに接続されている。
【0023】
投影光学系(例えば屈折投影レンズ光学系)PSは、個別制御可能素子アレイにより変調された放射ビームを基板Wの(例えば1つ又は複数のダイからなる)目標部分Cに投影するよう構成されている。
【0024】
照明光学系は、屈折光学素子、反射光学素子、磁気的光学素子、電磁気的光学素子、静電的光学素子、あるいは他の種類の光学素子などの各種の光学素子、またはこれらの組合せを含み得るものであり、放射ビームの向きや形状、あるいは他の特性を制御するためのものである。
【0025】
本明細書において「パターニング用デバイス」または「コントラストデバイス」なる用語は、例えば基板の目標部分にパターンを生成する等、放射ビーム断面を変調するのに用い得るいかなるデバイスをも示すよう広く解釈されるべきである。これらのデバイスは静的なパターニング用デバイス(例えばマスクやレチクル)であってもよいし、動的なパターニング用デバイス(例えばプログラム可能な素子の配列)であってもよい。簡単のために本説明のほとんどは動的パターニング用デバイスの観点でなされているが、本発明の範囲を逸脱することなく静的パターニング用デバイスを用いることも可能であるものと理解されたい。
【0026】
放射ビームに付与されるパターンは、パターンが位相シフトフィーチャあるいはいわゆるアシストフィーチャを例えば含む場合には基板の目標部分に所望されるパターンと厳密に一致していなくてもよい。また、基板に最終的に形成されるパターンは、個別制御可能素子アレイ上に形成されるパターンにどの時点においても一致しないようになっていてもよい。このような事態は、基板の各部に形成される最終的なパターンが所定時間または所定回数の露光の重ね合わせにより形成され、かつこの所定の露光中に個別制御可能素子アレイ上のパターン及び/またはアレイと基板との相対位置が変化する場合に起こりうる。
【0027】
通常、基板の目標部分に生成されるパターンは、その目標部分に生成されるデバイス例えば集積回路やフラットパネルディスプレイの特定の機能層に対応する(例えばフラットパネルディスプレイのカラーフィルタ層や薄膜トランジスタ層)。パターニング用デバイスの例としては、レチクル、プログラマブルミラーアレイ、レーザダイオードアレイ、LEDアレイ、グレーティングライトバルブ、及びLCDアレイなどがある。
【0028】
電子的手段(例えばコンピュータ)によりパターンをプログラム可能であるパターニング用デバイスは、例えば複数のプログラム可能な素子を含むパターニング用デバイス(例えば1つ前の文章に挙げたものではレチクルを除くすべてのものが該当する)であり、本明細書では総称して「コントラストデバイス」と呼ぶこととする。一実施例ではパターニング用デバイスは少なくとも10個のプログラム可能な素子を備え、または例えば少なくとも100個、少なくとも1000個、少なくとも10000個、少なくとも100,000個、少なくとも1,000,000個、または少なくとも10,000,000個のプログラム可能な素子を備えてもよい。
【0029】
プログラマブルミラーアレイは、粘弾性制御層と反射表面とを有するマトリックス状のアドレス指定可能な表面を備えてもよい。この装置の基本的な原理は例えば、反射表面のうちアドレス指定されている区域が入射光を回折光として反射する一方、アドレス指定されていない区域が入射光を非回折光として反射するというものである。適当な空間フィルタを用いることにより、反射光ビームから非回折光を取り除いて回折光だけを基板に到達させるようにすることができる。このようにして、マトリックス状のアドレス指定可能表面にアドレス指定により形成されるパターンに従ってビームにパターンが付与される。
【0030】
なお代替例として、回折光をフィルタにより取り除いて基板に非回折光を到達させるようにしてもよい。
【0031】
同様にして回折光学MEMS(微小電気機械システム)デバイスを用いることもできる。一例としては、回折光学MEMSデバイスは、入射光を回折光として反射する回折格子を形成するよう変形される複数の反射性のリボン状部位を備える。
【0032】
プログラマブルミラーアレイの他の例においては、マトリックス状の微小ミラーの配列が用いられる。各微小ミラーは局所的に電界を適宜付与されることによりまたは圧電駆動手段を使用することにより各々が独立に軸周りに傾斜しうる。繰り返しになるが、ミラーはマトリックス状にアドレス指定可能に構成されており、アドレス指定されたミラーは入射する放射ビームをアドレス指定されていないミラーとは異なる方向に反射する。このようにしてマトリックス状のアドレス指定可能なミラーにより形成されるパターンに従って反射ビームにパターンが付与されうる。必要とされるマトリックス状アドレス指定は、適宜の電子的手段を使用して実行することができる。
【0033】
パターニング用デバイスPDの他の例はプログラム可能なLCDアレイである。
【0034】
露光装置は1つ以上のコントラストデバイスを備えてもよい。例えば、露光装置は、複数の個別制御可能素子アレイを有し、それぞれのアレイが互いに独立に制御されるものであってもよい。この構成においては、個別制御可能素子アレイのうちのいくつかのアレイまたはすべてのアレイが少なくとも1つの照明光学系(または照明光学系の一部)を共有していてもよい。斯かるアレイは当該アレイ用の支持構造及び/または投影光学系(または投影光学系の一部)を共有していてもよい。
【0035】
一実施例としては、図1に示される実施形態のように、基板Wは実質的に円形状である。基板Wは周縁部にノッチ及び/または平坦部を有していてもよい。一実施例としては、基板は例えば長方形などの多角形形状でもよい。
【0036】
基板の形状が実質的に円形の場合、基板の直径は少なくとも25mmであってもよく、または例えば少なくとも50mm、少なくとも75mm、少なくとも100mm、少なくとも125mm、少なくとも150mm、少なくとも175mm、少なくとも200mm、少なくとも250mm、または少なくとも300mmであってもよい。一実施例では、基板の直径は長くても500mm、長くても400mm、長くても350mm、長くても300mm、長くても250mm、長くても200mm、長くても150mm、長くても100mm、または長くても75mmである。
【0037】
基板が例えば長方形などの多角形の場合、基板の少なくとも1辺の長さ、または例えば少なくとも2辺または少なくとも3辺の長さが、少なくとも5cmであってもよく、または例えば少なくとも25cm、少なくとも50cm、少なくとも100cm、少なくとも150cm、少なくとも200cm、または少なくとも250cmであってもよい。
【0038】
一実施例では、基板の少なくとも1辺の長さが、長くても1000cm、または例えば長くても750cm、長くても500cm、長くても350cm、長くても250cm、長くても150cm、または長くても75cmである。
【0039】
一実施例においては、基板Wはウエハであり、例えば半導体ウエハである。一実施例ではウエハの材料は、Si(ケイ素)、SiGe(シリコンゲルマニウム)、SiGeC(シリコンゲルマニウムカーボン)、SiC(炭化ケイ素)、Ge(ゲルマニウム)、GaAs(ガリウムヒ素)、InP(インジウムリン)、InAs(インジウムヒ素)から成るグループから選択される。一実施例ではウエハは、III−V族化合物半導体ウエハ、シリコンウエハ、セラミック基板、ガラス基板、またはプラスチック基板である。一実施例では基板は透明であってもよいし(ヒトの裸眼で)、有色であってもよいし、無色であってもよい。
【0040】
この基板の厚さは例えば基板材料及び/または基板寸法に応じてある程度変更される。一実施例では、基板の厚さは、少なくとも50μmであり、または例えば少なくとも100μm、少なくとも200μm、少なくとも300μm、少なくとも400μm、少なくとも500μm、または少なくとも600μmである。一実施例では、基板の厚さは、厚くても5000μm、例えば厚くても3500μm、厚くても2500μm、厚くても1750μm、厚くても1250μm、厚くても1000μm、厚くても800μm、厚くても600μm、厚くても500μm、厚くても400μm、または厚くても300μmである。
【0041】
基板は露光前または露光後において例えばトラック(典型的にはレジスト層を基板に塗布し、露光後のレジストを現像する装置)、計測装置、及び/または検査装置により処理されてもよい。一実施例ではレジスト層が基板に設けられる。
【0042】
本明細書では投影光学系または投影系という用語は、使用される露光光、あるいは液浸露光用液体や真空の利用などの他の要因に関して適切とされるいかなる投影光学系をも包含するよう広く解釈されるべきである。投影光学系には例えば屈折光学系、反射光学系、反射屈折光学系、磁気的光学系、電磁気的光学系、静電的光学系、またはこれらの任意の組み合わせなどが含まれる。以下では「投影レンズ」という用語は、より一般的な用語である投影光学系または投影系という用語と同義に用いられ得る。
【0043】
投影系は、個別制御可能素子アレイにおけるパターンが基板上にコヒーレントに形成されるように当該パターンの像を形成する。これに代えて投影系は二次光源の像を形成してもよく、この場合個別制御可能素子アレイの各素子はシャッタとして動作してもよい。この場合には投影系は、例えば二次光源を形成し基板上にスポット状に像形成するために、例えばマイクロレンズアレイ(micro lens array、MLAとして知られている)やフレネルレンズアレイなどの合焦用素子のアレイを含んでもよい。一実施例では合焦用素子のアレイ(例えばMLA)は少なくとも10個の合焦用素子を備え、または例えば少なくとも100個、少なくとも1000個、少なくとも10000個、少なくとも100,000個、または少なくとも1,000,000個の合焦用素子を備えてもよい。一実施例においては、パターニング用デバイスにおける個別制御可能素子の数と合焦用素子のアレイにおける合焦用素子の数とは等しいか、あるいは、パターニング用デバイスにおける個別制御可能素子の数が合焦用素子のアレイにおける合焦用素子の数よりも多い。一実施例では、合焦用素子のアレイにおける1つ以上(例えばたいていは各アレイにつき1000以上)の合焦用素子は、個別制御可能素子アレイにおける1つ以上(例えば2つ以上、または3つ以上、5つ以上、10以上、20以上、25以上、35以上、または50以上)の個別制御可能素子に光学的に連関していてもよい。一実施例では、MLAは、少なくとも基板に近づく方向及び遠ざかる方向に例えば1以上のアクチュエータを用いて移動可能である。基板に近づく方向及び遠ざかる方向にMLAを移動させることができる場合には、基板を動かすことなく例えば焦点合わせをすることが可能となる。
【0044】
図1及び図2に示されるように本装置は反射型(例えば反射型の個別制御可能素子アレイを用いる)である。透過型(例えば透過型の個別制御可能素子アレイを用いる)の装置を代替的に用いてもよい。
【0045】
露光装置は2つ以上(2つの場合にはデュアルステージと呼ばれる)の基板テーブルを備えてもよい。このような多重ステージ型の装置においては、追加されたテーブルは並行して使用されるか、あるいは1以上のテーブルで露光が行われている間に1以上の他のテーブルで準備工程が実行されるようにしてもよい。
【0046】
露光装置は、基板の少なくとも一部が「液浸露光用の液体」で覆われるものであってもよい。この液体は比較的高い屈折率を有する例えば水などの液体であり、投影系と基板との間の空隙を満たす。液浸露光用の液体は、例えばパターニング用デバイスと投影系との間などの露光装置の他の空間に適用されるものであってもよい。液浸技術は投影系の開口数を増大させる技術として周知である。本明細書では「液浸」という用語は、基板等の構造体が液体に完全に浸されているということを意味するのではなく、露光の際に投影系と基板との間に液体が存在するということを意味するに過ぎない。
【0047】
図1に示されるように照明器ILは放射源SOから放射ビームを受け取る。一実施例では、放射源により、少なくとも5nm、または例えば少なくとも10nm、少なくとも11乃至13nm、少なくとも50nm、少なくとも100nm、少なくとも150nm、少なくとも175nm、少なくとも200nm、少なくとも250nm、少なくとも275nm、少なくとも300nm、少なくとも325nm、少なくとも350nm、または少なくとも360nmの波長を有する放射が供される。一実施例では、放射源SOにより供される放射は、長くても450nm、または例えば長くても425nm、長くても375nm、長くても360nm、長くても325nm、長くても275nm、長くても250nm、長くても225nm、長くても200nm、または長くても175nmの波長を有する。一実施例では、この放射は、436nm、405nm、365nm、355nm、248nm、193nm、157nm、及び/または126nmの波長を含む。一実施例では、この放射は365nm程度、または355nm程度の波長を含む。一実施例では、この放射は例えば365nm、405nm、及び436nmの波長を含む広帯域の波長を含む。355nmの波長のレーザ光源を使用し得る。例えば光源がエキシマレーザである場合には、光源と露光装置とは別体であってもよい。この場合、光源は露光装置の一部を構成しているとはみなされなく、放射ビームは光源SOから照明器ILへとビーム搬送系BDを介して受け渡される。ビーム搬送系BDは例えば適当な方向変更用ミラー及び/またはビームエキスパンダを含んで構成される。あるいは光源が水銀ランプである場合には、光源は露光装置に一体に構成されていてもよい。光源SOと照明器ILとは、またビーム搬送系BDが必要とされる場合にはこれも合わせて、放射系または放射システムと総称される。
【0048】
照明器ILは放射ビームの角強度分布を調整するためのアジャスタADを備えてもよい。一般にはアジャスタADにより、照明器の瞳面における強度分布の少なくとも半径方向外径及び/または内径(通常それぞれ「シグマ−アウタ(σ−outer)」、「シグマ−インナ(σ−inner)」と呼ばれる)が調整される。加えて照明器ILは、インテグレータIN及びコンデンサCOなどの他の要素を備えてもよい。照明器はビーム断面における所望の均一性及び強度分布を得るべく放射ビームを調整するために用いられる。照明器IL及び追加の関連構成要素は放射ビームを複数の分割ビームに分割するように構成されていてもよい。例えば各分割ビームが個別制御可能素子アレイにおける1つまたは複数の個別制御可能素子に対応するように構成してもよい。放射ビームを分割ビームに分割するのに例えば二次元の回折格子を用いてもよい。本明細書においては「放射ビーム」という用語は、放射ビームがこれらの複数の分割ビームを含むという状況も包含するが、これに限定されないものとする。
【0049】
放射ビームBは、パターニング用デバイスPD(例えば、個別制御可能素子アレイ)に入射して、当該パターニング用デバイスにより変調される。放射ビームはパターニング用デバイスPDにより反射され、投影系PSを通過する。投影系PSはビームを基板Wの目標部分Cに合焦させる。位置決め装置PWと位置センサIF2(例えば、干渉計、リニアエンコーダ、静電容量センサなど)により基板テーブルWTは正確に移動され、例えば放射ビームBの経路に異なる複数の目標部分Cをそれぞれ位置決めするように移動される。また、個別制御可能素子アレイ用の位置決め手段が設けられ、例えば走査中にビームBの経路に対してパターニング用デバイスPDの位置を正確に補正するために用いられてもよい。
【0050】
一実施例においては、ロングストロークモジュール(粗い位置決め用)及びショートストロークモジュール(精細な位置決め用)により基板テーブルWTの移動を実現する。ロングストロークモジュール及びショートストロークモジュールは図1には明示されていない。一実施例では基板テーブルWTを移動させるためのショートストロークモジュールを省略してもよい。個別制御可能素子アレイを位置決めするためにも同様のシステムを用いることができる。必要な相対運動を実現するために、対象物テーブル及び/または個別制御可能素子アレイの位置を固定する一方、放射ビームBを代替的にまたは追加的に移動可能としてもよいということも理解されよう。この構成は装置の大きさを小さくするのに役立ち得る。例えばフラットパネルディスプレイの製造に適用可能な更なる代替例として、基板テーブルWT及び投影系PSを固定し、基板Wを基板テーブルWTに対して移動させるように構成してもよい。例えば基板テーブルWTは、実質的に一定の速度で基板Wを走査させるための機構を備えてもよい。
【0051】
図1に示されるように放射ビームBはビームスプリッタBSによりパターニング用デバイスPDに向けられるようにしてもよい。このビームスプリッタBSは、放射ビームがまずビームスプリッタBSにより反射されてパターニング用デバイスPDに入射するように構成される。ビームスプリッタを使わずに放射ビームをパターニング用デバイスに入射させるようにすることもできる。一実施例では放射ビームは0度から90度の間の角度でパターニング用デバイスに入射する。または例えば5度から85度の間、15度から75度の間、25度から65度の間、または35度から55度の間の角度であってもよい(図1には90度の例が示されている)。パターニング用デバイスPDは放射ビームBを変調し、再度ビームスプリッタBSに向かって戻るように放射ビームBを反射する。ビームスプリッタBSは変調されたビームを投影系PSへと伝達する。しかしながら放射ビームBをパターニング用デバイスPDに入射させ、そのまま更に投影系PSに入射させるという代替的な構成も可能であることも理解されよう。特に透過型のパターニング用デバイスが用いられる場合には図1に示される構成は必要とはされない。
【0052】
図示の装置はいくつかのモードで使用することができる。
【0053】
1.ステップモードにおいては、放射ビームに付与されたパターンの全体が1回の照射で目標部分Cに投影される間、個別制御可能素子アレイ及び基板は実質的に静止状態とされる(すなわち1回の静的な露光)。そして基板テーブルWTがX方向及び/またはY方向に移動されて、異なる目標部分Cが露光される。ステップモードでは露光フィールドの最大サイズによって、1回の静的露光で結像される目標部分Cの寸法が制限されることになる。
【0054】
2.スキャンモードにおいては、放射ビームに付与されたパターンが目標部分Cに投影される間、個別制御可能素子アレイ及び基板は同期して走査される(すなわち1回の動的な露光)。個別制御可能素子アレイに対する基板の速度及び方向は、投影系PSの拡大(縮小)特性及び像反転特性により定められる。スキャンモードでは露光フィールドの最大サイズが1回の動的露光での目標部分Cの(非走査方向の)幅を制限し、走査移動距離が目標部分の(走査方向の)長さを決定する。
【0055】
3.パルスモードにおいては、個別制御可能素子アレイは実質的に静止状態とされ、パルス放射源により基板Wの目標部分Cにパターンの全体が投影される。基板テーブルWTが実質的に一定の速度で移動して、ビームBは基板上を線状に走査させられる。個別制御可能素子アレイ上のパターンは放射系からのパルス間に必要に応じて更新される。パルス照射のタイミングは、基板上の複数の目標部分Cが連続して露光されるように調整される。その結果、基板上の1つの短冊状領域にパターンが完全に露光されるようビームBにより基板Wが走査されることになる。この短冊状領域の露光を順次繰り返すことにより基板Wは完全に露光される。
【0056】
4.連続スキャンモードは基本的にパルスモードと同様である。異なるのは、変調された放射ビームBに対して基板Wが実質的に等速で走査され、ビームBが基板W上を走査し露光しているときに個別制御可能素子アレイ上のパターンが更新されることである。個別制御可能素子アレイのパターンの更新に同期させるようにした、実質的に一定の放射源またはパルス放射源を用いることができる。
【0057】
5.ピクセルグリッド結像モードでは、基板Wに形成されるパターンはスポット状の露光を連続的に行うことにより実現される。このモードは図2の露光装置を使用して実現することができる。このスポット状の露光はスポット発生器により形成され、パターニング用デバイスPDへと向けられる。スポット状の露光はそれぞれ実質的に同形状である。基板W上には露光スポットが実質的に格子状に露光される。一実施例では、このスポットの寸法は露光されるピクセルのピッチよりも大きいが、毎回の露光時に露光スポットが形成する格子の大きさよりはかなり小さい。転写されるスポットの強度を変化させることによりパターンが形成される。露光照射の合間に各スポットの強度分布が変更される。
【0058】
上記で記載したモードを組み合わせて動作させてもよいし、モードに変更を加えて動作させてもよく、さらに全く別のモードで使用してもよい。
【0059】
リソグラフィでは基板上のレジスト層にパターンが露光される。そしてレジストが現像される。続いて追加の処理工程が基板に施される。基板の各部分へのこれらの追加の処理工程の作用は、レジストへの露光の程度によって異なる。特にこの処理は、所与の線量閾値を超える照射量を受けた基板の部位が示す反応と、その閾値以下の照射量を受けた部位が示す反応とが異なるように調整されている。例えば、エッチング工程においては上記の閾値を超える照射量を受けた基板上の区域は、レジスト層が現像されることによりエッチングから保護される。一方、この閾値以下の照射量を受けたレジストは露光後の現像工程で除去され、基板のその区域はエッチングから保護されない。このため、所望のパターンにエッチングがなされる。特に、パターニング用デバイス内の個別制御可能素子は、パターン図形内部となる基板上の区域での露光中の照射量が線量閾値を超えるように実質的に高強度であるように設定される。基板の他の領域は、ゼロまたはかなり低い放射強度を受けるように対応の個別制御可能素子が設定されることにより、線量閾値以下の放射を受ける。
【0060】
実際には、パターン図形端部での照射量は所与の最大線量からゼロへと急激に変化するわけではない。この照射量は、たとえ図形の境界部分の一方の側への放射強度が最大となり、かつその図形境界部分の他方の側への放射強度が最小となるように個別制御可能素子が設定されていたとしても急激には変化しない。回折の影響により、照射量の大きさは移行領域を介して低下するからである。パターン図形の境界位置は最終的にレジストの現像により形成される。その境界位置は、照射された線量が閾値を下回る位置によって定められる。この移行領域での線量低下のプロファイル、ひいてはパターン図形の境界の正確な位置は、当該図形境界上または近傍に位置する基板上の各点に放射を与える個別制御可能素子の設定により、より正確に制御できるであろう。これは、強度レベルの最大値または最小値を制御するだけではなく、当該最大値及び最小値の間の強度レベルにも制御することによっても可能となるであろう。これは通常「グレイスケーリング」と呼ばれる。
【0061】
グレイスケーリングによれば、個別制御可能素子により基板に2値の放射強度(つまり最大値と最小値)だけが与えられるリソグラフィシステムよりも、パターン図形の境界位置の制御性を向上させることができる。一実施例では、少なくとも3種類の放射強度が基板に投影されてもよく、または例えば少なくとも4種類の放射強度でも、少なくとも8種類の放射強度でも、少なくとも16種類の放射強度でも、少なくとも32種類の放射強度でも、少なくとも64種類の放射強度でも、少なくとも128種類の放射強度でも、または少なくとも256種類の放射強度でもよい。
【0062】
グレイスケーリングは上述の目的に加えてまたは上述の目的に代えて使用されてもよい。例えば、照射された線量レベルに応じて基板の各領域が2種以上の反応を可能とするように、露光後の基板への処理が調整されていてもよい。例えば、第1の線量閾値以下の放射を受けた基板の部位では第1の種類の反応が生じ、第1の線量閾値以上で第2の線量閾値以下の放射を受けた基板の部位では第2の種類の反応が生じ、第2の線量閾値以上の放射を受けた基板の部位では第3の種類の反応が生じるようにしてもよい。したがって、グレイスケーリングは、基板上での線量のプロファイルが2以上の望ましい線量レベルを有するようにするのに用いることができる。一実施例では、この線量プロファイルは少なくとも2つの所望の線量レベルを有し、または例えば少なくとも3つの所望の線量レベル、少なくとも4つの所望の線量レベル、少なくとも6つの所望の線量レベル、または少なくとも8つの所望の線量レベルを有してもよい。
【0063】
線量プロファイルの制御は、上述のように基板上の各点が受ける放射強度を単に制御するという方法以外の方法によっても可能である。例えば、基板上の各点が受ける照射量は、各点への露光時間を代替的にまたは追加的に制御することによっても制御することができる。他の例として、基板上の各点は、連続的な複数回の露光により放射を受けてもよい。このような連続的複数露光から一部の露光を選択して用いることにより代替的にまたは追加的に各点が受ける照射量を制御することが可能となる。
【0064】
基板上に要求されるパターンを形成するために、露光処理中の各段階でパターニング用デバイスの各個別制御可能素子を必要な状態に設定する必要がある。よって、この必要状態を表す制御信号が各個別制御可能素子に伝達されなければならない。一実施例では、露光装置はこの制御信号を生成する制御部を含む。基板に形成されるべきパターンは、例えばGDSIIなどのベクトルで規定されるフォーマットで露光装置に供給されうる。デザイン情報を各個別制御可能素子用の制御信号に変換するために、制御部は、1つ以上のデータ処理装置を含む。各データ処理装置は、パターンを表すデータストリームに処理を施すように構成されている。各データ処理装置は「データパス」とも総称される。
【0065】
このデータパス及びデータ処理装置は、次に示す機能の1つ以上を実行するように構成されていてもよい。その機能とは、ベクトルベースのデザイン情報をビットマップのパターンデータに変換すること、ビットマップのパターンデータを必要とされる線量マップ(つまり基板上で必要とされる線量のプロファイル)に変換すること、必要とされる線量マップを各個別制御可能素子用の必要放射強度値に変換すること、及び、各個別制御可能素子用の必要放射強度値を対応する制御信号に変換することである。
【0066】
図2は、本発明に係る露光装置の一例を示す図である。この実施例は例えばフラットパネルディスプレイの製造に用いることができる。図1に示される構成要素に対応するものには図2においても同じ参照符号を付している。また、基板やコントラストデバイス、MLA、放射ビームなどについてののさまざまな構成例などを含む上述のさまざまな変形例は同様に適用可能である。
【0067】
図2に示されるように、投影系PSは、2つのレンズL1、L2を備えるビームエキスパンダを含む。第1のレンズL1は、変調された放射ビームBを受け、開口絞りASの開口部で合焦させる。開口部には他のレンズALを設けてもよい。そして放射ビームBは発散し、第2のレンズL2(例えばフィールドレンズ)により合焦させられる。
【0068】
投影系PSは、拡大された変調放射ビームBを受けるように構成されているレンズアレイMLAをさらに備える。変調放射ビームBの異なる部分はそれぞれレンズアレイMLAの異なる部分を通過する。この変調放射ビームBの異なる部分はそれぞれ、パターニング用デバイスPDの1つ以上の個別制御可能素子に対応している。各レンズは変調放射ビームBの各部分を基板W上の点に合焦させる。このようにして基板W上に照射スポットSの配列が露光される。図示されているレンズアレイには8つのレンズ14が示されているだけであるが、レンズアレイは数千のレンズを含んでもよい(パターニング用デバイスPDとして用いられる個別制御可能素子アレイについても同様である)。
【0069】
図3は、本発明の一実施形態に係り、図2のシステムを用いて基板W上にどのようにパターンが生成されるのかを模式的に示す図である。図中の黒丸は、投影系PSのレンズアレイMLAによって基板に投影されるスポットSの配列を示す。基板は、基板上での露光が進むにつれて投影系に対してY方向に移動する。図中の白丸は、基板上で既に露光されている露光スポットSEを示す。図示されるように投影系PSのレンズアレイMLAによって基板に投影された各スポットは基板上に露光スポット列Rを形成する。各スポットSEの露光により形成される露光スポット列Rがすべて合わさって、基板にパターンが完全に形成される。上述のようにこのような方式はよく「ピクセルグリッド結像」と称される。
【0070】
照射スポットSの配列が基板Wに対して角度θをなして配置されている様子が示されている(基板Wの端部はそれぞれX方向及びY方向に平行である)。これは、基板が走査方向(Y方向)に移動するときに、各照射スポットが基板の異なる領域を通過するようにするためである。これにより、照射スポット15の配列により基板の全領域がカバーされることになる。一実施例では、角度θは大きくても20°または10°であり、または例えば大きくても5°、大きくても3°、大きくても1°、大きくても0.5°、大きくても0.25°、大きくても0.10°、大きくても0.05°、または大きくても0.01°である。一実施例では、角度θは小さくても0.001°である。
【0071】
図4は、本発明の一実施形態において、どのようにしてフラットパネルディスプレイの基板W全体が複数の光学エンジンを用いて1回の走査で露光されるのかを模式的に示す図である。この例では照射スポットSの配列SAが8つの光学エンジン(図示せず)により形成される。光学エンジンはチェス盤のような配列で2つの列R1、R2に配置されている。照射スポットの配列の端部が隣接の照射スポット配列の端部に(走査方向であるY方向において)少し重なるように形成される。一実施例では光学エンジンは少なくとも3列、例えば4列または5列に配列される。このようにして、照射の帯が基板Wの幅を横切って延び、1回の走査で基板全体の露光が実現されることとなる。光学エンジンの数は適宜変更してもよい。一実施例では、光学エンジンの数は少なくとも1個であり、または例えば少なくとも2個、少なくとも4個、少なくとも8個、少なくとも10個、少なくとも12個、少なくとも14個、または少なくとも17個である。一実施例では、光学エンジンの数は40個未満であり、または例えば30個未満または20個未満である。
【0072】
各光学エンジンは、上述の照明系IL、パターニング用デバイスPD、及び投影系PSを別個に備えてもよい。あるいは2個以上の光学エンジンが1以上の照明系、パターニング用デバイス、及び投影系の少なくとも一部を共有してもよい。
【0073】
[放射生成のための代表的構成]
図5乃至図7はそれぞれ、本発明の実施形態に係り、反射ループシステムを備える放射生成のための構成を示す。
【0074】
図5は本発明の一実施形態に係る放射システム500を示す。放射システム500は、放射源SO、反射ループシステムRL、及び照明器ILを含む。放射源SO及び反射ループシステムRLは照明器ILから分離されて配置されている。例えば反射ループシステムRLは、図1及び図2におけるビーム搬送系BDに置き換えて、あるいはビーム搬送系BDに含まれて用いられてもよい。
【0075】
放射源SOは部分コヒーレント放射ビーム502またはコヒーレント放射ビーム502を生成する。この放射ビーム502は反射ループシステムRLを用いて、よりインコヒーレントな放射ビームへと形成される。図9乃至図17を参照して後述するように、反射ループシステムRLは、1つのループ経路または重複しない複数のループ経路(例えば、反射ループシステムRL内の周回経路)を備える。これにより、よりインコヒーレントなビーム504が生成される。一実施例においては、各ループまたは周回経路を通って生成された出力ビームの特性を1回または複数回のループにわたって重ね合わせることによってインコヒーレントなビーム504が生成される。なお以下では他に注記のない限り、ループという用語及び周回経路という用語は互いに置換可能であるものとする。また、これら2つの用語を総称して単にループという場合もある。なお、1回のループは部分コヒーレントビーム502の時間的コヒーレンス長よりも長く、これにより反射ループシステムRL内部で光の干渉が生じない。干渉を除去することにより、スペックルパターンが除去される。
【0076】
反射ループシステムRLは、具体的な光学系内部での位置づけ及び適用分野に応じて、例えばビームエキスパンダでも遅延ループでもフィールド画定素子であってもよい。これは、本明細書を理解する当業者には明らかであろう。これらの反射ループシステムの代表例は後述される。
【0077】
図6は本発明の一実施形態に係る放射システム600を示す。放射システム600は放射源SOと照明器ILとを備える。放射源SOは、放射デバイスRD及び反射ループシステムRLを備える。なお、ビーム搬送系BD(本図では図示せず。図1及び図2を参照。)が放射源SOと照明器ILとの間において放射システム600に含まれていてもよい。放射システム600は、上述の放射システム500と同様に機能する。1つの相違点は、放射源SOが反射ループシステムRLを用いてインコヒーレント放射504を生成するということである。なお放射源SOの機能のうち反射ループシステムRLの上流側で機能するものがあってもよいし、下流側で機能するものがあってもよい。
【0078】
図7は本発明の一実施形態に係る放射システム700を示す。放射システム700は、放射源SOと反射ループシステムRLとを備える照明器ILを有する。なお、反射ループシステムRLから出射した光は、光学系またはパターニング用デバイス(図示せず。図1及び図2を参照。)へと向けられてもよい。放射システム700は上述の放射システム500と同様に機能する。なお照明器ILの機能のうち反射ループシステムRLの上流側で機能するものがあってもよいし、下流側で機能するものがあってもよい。
【0079】
なお、放射システム500、600、及び700を本発明の趣旨から逸脱することなくリソグラフィ装置の他の照明系に用いることもできる。他の照明系というのは例えば露光用の照明系以外のアライメント照明光学系や検出用の光学系である。
【0080】
また、放射システム500、600、及び700は、インコヒーレント光及び/またはより均一化された光、例えばスペックルが起こらないようにしてスペックルパターンが実質的に除去された光を形成する必要がある照明系に置き換えて用いることができる。
【0081】
図8は本発明の一実施形態に係る反射ループシステムRLを示す。反射ループシステムRLは、第1反射ループシステムRL1(例えば上流側のシステム)と第2反射ループシステムRL2(例えば下流側のシステム)を備える。第1反射ループシステムRL1及び第2反射ループシステムRL2の間に光学系が設けられてもよい。この光学系は例えば、反射ループシステムRL1及びRL2を光学的に結合するためのシリンドリカルレンズを含んでもよい。2つの連続する反射ループシステムRL1及びRL2を用いることにより、放射源SOからの放射が第1及び第2の方向に混合される。この2重ループの構成により、例えばX方向及びY方向の両方向の混合が可能となる。
【0082】
次式で示されるように、合成されたコヒーレンス長が時間的コヒーレンス長よりも大きいことが望ましい。
【数1】

【0083】
この式でn及びmはそれぞれ第1反射ループシステムRL1及び第2反射ループシステムRL2における周回数である。nはループ1における総周回数N以下の整数である。mはループ2における総周回数M以下の整数である。L1及びL2は、第1反射ループシステムRL1及び第2反射ループシステムRL2のそれぞれにおけるループ経路の長さである。Lcoherenceは、放射源SOの放射例えば少なくとも部分コヒーレントである放射502の時間的コヒーレンス長である。なお、さらに反射ループシステムが追加された場合には次式で表される。
【数2】

【0084】
なお、本発明の他の実施形態においては、光学的に直列に結合された1つ以上の反射ループシステムRLm(m=1,2,3,・・・)を追加して用いてもよい。各反射ループシステムRLmは、上流の反射ループシステムRLからインコヒーレント放射を受光し、このインコヒーレント放射を1回または複数回のループまたは周回経路でループさせて、別のインコヒーレント放射ビームを生成する。例えば、M個のループ経路系が直列に接続されており、各ループ経路が少なくとも部分コヒーレントであるビーム502のインコヒーレントなコピービームをN個生成する場合を考える。この場合、一連の反射ループシステムRLにより実現されるモードの総数はN^Mに等しい。これに対して単一の反射ループシステムRLでコピービームを生成する場合にはN*Mである。ある用途では直列接続の反射ループシステムRLが望ましい場合がある。これは例えば、反射量がN*Mに応じて増減し、透過量がおよそRe^(N*M)に応じて増減するからである(ここでReは各反射ループシステム内部の反射デバイスの反射率である)。よって、多数の直列の反射ループシステムを用いる場合のほうが単一の大きな反射ループシステムを用いる場合よりもトータルの透過放射強度を大きくすることができる。
【0085】
例えば、1回のループにつき4回の反射があって、N=2である場合には、透過率は、
【数3】

に等しい。ここで、Rは1つのミラーの反射率(例えば、R〜0.98%)であり、xは1回目に通過するビームの割合(例えばxは50%よりも若干小さい)であり、次式が成立することが好ましい。
【数4】

【0086】
この場合、0回目及び1回目の通過は実質的に同強度を有し、透過率は約96%である。よって、4つの反射ループシステムを直列接続した場合には透過率は84.8%(0.96^4)であり、少なくとも部分コヒーレントであるビーム502のインコヒーレントなコピービームが2^4=16個生成される。
【0087】
ところが、代替例として1つのループ経路系を用いた場合には15+1回の周回経路となり、透過率は次式で与えられる。
【数5】

【0088】
よって、トータルでの透過ビーム強度を高くすることが望ましい場合には、1つの大きな反射ループシステムで全ループを生成するよりも、1つのシステムにつき例えば1ループを生成する反射ループシステムを直列接続とするほうが好ましい。
【0089】
[反射ループシステムの代表的構成]
図9乃至図17はそれぞれ本発明の実施形態に係る反射ループシステムを示す。
【0090】
[反射ループシステムの第1の代表例]
図9は反射ループシステムRL9の第1の構成例を示す。図10、図11、及び図12はそれぞれ類似の反射ループシステムRL10、RL11、及びRL12を示し、これらはそれぞれ異なる入口部と出口部とを有する。
【0091】
図9に示されるように、反射ループシステムRL9は、第1反射器910と第2反射器912と第3反射器914と第4反射器916とを備える。例えば、各反射器はミラーまたは他の同様の反射デバイスであってもよく、これらに限られない。第1反射器910は半径Rで湾曲する反射器である。一実施例においては、反射ループシステムRL9は、該システムの焦点距離が第1反射器910の半径Rの1/2となるよう構成されている。第2反射器912、第3反射器914、及び第4反射器916はそれぞれ平面反射器である。第2反射器912及び第4反射器916はそれぞれ0度乃至90度の角度例えば45度に傾斜し、かつ反射ループシステムRL9の瞳に関連して配置されている。第3反射器914は反射ループシステムRL9の視野(フィールド)に関連して配置されている。通常、フィールドは周回ビームが最も集束する場所であり、瞳は周回ビームが最も拡散する場所である。反射ループシステムRL9内部のどの場所であっても、フィールドまたは瞳面に選択することが可能である。フィールドと瞳との関係は、1つの場所における角度が他の場所での位置差に対応するということである(逆も同様)。ビームの入口及び出口を設けるには、フィールド及び瞳の一方または双方をミラー表面に設定することが望ましいがこれに限られない。一実施例では、第2反射器912及び第4反射器916の一方または双方を移動または傾斜させることにより、第3反射器914への照射位置が変化する。同様に、第3反射器914を移動または傾斜させることにより、第2反射器及び第4反射器への照射位置が変化する。
【0092】
なお、第1ミラーは2つのミラー片に分割されていてもよい。この場合、各ミラー片は1つの周回経路において1度だけビーム照射を受けることになる。
【0093】
また、第1乃至第4反射器910乃至916はそれぞれ、反射ループシステムRL9内の1つのループ経路が少なくとも部分コヒーレントな放射ビーム502(図9には具体的に図示されていないが図5乃至図8を参照)の時間的コヒーレンス長よりも大きくなるように構成されていてもよい。
【0094】
また、第1乃至第4反射器910乃至916のうち少なくとも1つの反射面が他の反射器の反射面に対して傾斜され、「非重複」の連続ループを形成するようになっていてもよい。後述するように、この傾斜により反射ループシステムRL9の出口近傍(なお図9では出口は明示されていないが図10乃至図12を参照)でビーム経路をループごとに「ウォーキング」させることができる。この「ウォーキング」により、ループごとに反射ループシステムRL9からビームの一部分を出すとともに、ビームの一部分を再度ループへと反射するようにすることができる。ビームのループ数を増加させることによりインコヒーレントビーム504(図9には具体的に図示されていないが図5乃至図8を参照)のインコヒーレンスを高めることができる。
【0095】
図10は、本発明の一実施形態に係る反射ループシステムRL10の入口位置1018を矢印Aで示し、出口位置1020を矢印Bで示す。一実施例では、開口またはピンホール1022が第3反射器914に形成され、開口1022が出口1020として機能する。変形例としてピンホールはいかなる形状の孔であってもよい。孔の形状は例えば円形、正方形、楕円形、長方形であってもよく、さらにこれらに限られずいかなる開口形状であってもよい。反射ループ経路システムは(図示される平面内の)1つの主方向に沿って動作するから、長方形の開口が最も論理的な選択である。繰り返しになるが、第1乃至第4反射器910乃至916の反射面のうち少なくとも1つを他の反射面に対して傾斜または変位させて、後述のように、各周回経路またはループごとに周回ビームの異なる部分がピンホール1022を通じて伝達されるようにする。
【0096】
動作時には、少なくとも部分コヒーレントなビーム502が入口部1018から反射ループシステムに進入する。次いでビーム502は、第2反射器912、第1反射器910、第3反射器914、第1反射器910、第4反射器916、第2反射器912、第1反射器910と順次反射する。この最後の反射後に周回ビームの一部分は第3反射器914で反射されて上述のシークエンスを繰り返し、周回ビームの一部分は第3反射器914のピンホール1020の出口1022から反射ループシステムRL10を出てインコヒーレントビーム504を形成する。このようにして、複数回のループが実現される場合にはループごとに周回ビームの一部分が出口1020から発せられインコヒーレントビーム504が形成される。
【0097】
図11は、本発明の一実施形態に係る反射ループシステムRL11の入口位置1118を矢印Aで示し、出口位置1120を矢印Bで示す。一実施例では、開口またはピンホール1122が第3反射器914に形成され、開口1122が入口位置1118として機能する。また、この実施例では、ビームを出口位置1120を通じて外部に接続するのに反射デバイス1124例えばフォールドミラーが用いられる。それ以外については上述の反射ループシステムRL10と同様の原理が適用される。
【0098】
動作時には、少なくとも部分コヒーレントなビーム502が第3反射器914のピンホール1122から反射ループシステムRL11に進入する。次いでビーム502は、第1反射器910、第2反射器912、第4反射器916、第1反射器910、第3反射器914、第1反射器910、第2反射器912と順次反射する。第2反射器912からの最後の反射後に周回ビームの一部分は反射器1124から反射され出口1120から外部に結合されインコヒーレントビーム504(図示せず)を形成し、周回ビームの一部分はビーム経路に留まって第4反射器916で反射されて上述のシークエンスを繰り返す。このようにして、複数回のループが実現される場合にはループごとに周回ビームの一部分が出口1120から発せられインコヒーレントビーム504(図示せず)が形成される。
【0099】
図12は、本発明の一実施形態に係る反射ループシステムRL12の入口位置1218を矢印Aで示し、出口位置1220を矢印Bで示す。反射ループシステムRL12は図9に示される反射ループシステムRL9に類似する。一実施例では、開口またはピンホール1222が第3反射器914に形成され、開口1222が入口位置1218として機能する。また、開口またはピンホール1226が第1反射器910に形成され、出口位置1220として機能する。それ以外については上述の反射ループシステムRL10及びRL11と同様の原理が適用される。
【0100】
動作時には、少なくとも部分コヒーレントなビーム502が第3反射器914のピンホール1222から反射ループシステムRL12に進入する。次いでビーム502は、第1反射器910、第2反射器912、第4反射器916、第1反射器910、第3反射器914と順次反射する。第3反射器914からの最後の反射後に周回ビームの一部分は出口1220として作用する第1反射器910のピンホール1226を通じて発せられインコヒーレントビーム504(図示せず)を形成し、周回ビームの一部分はビーム経路に留まって第1反射器910で反射されて上述のシークエンスを繰り返す。このようにして、複数回のループが実現される場合にはループごとに周回ビームの一部分が出口1220から発せられインコヒーレントビーム504(図示せず)が形成される。
【0101】
図10、図11、及び図12のそれぞれに示される反射ループシステムRL10、RL11、及びRL12の入口位置及び出口位置は、図9に示される反射ループシステムRL9における入口位置及び出口位置の代表例を示すものにすぎずこれらに限られない。また、放射の入射及び出射のために、いずれの反射ループシステムの実施例の入口及び出口に隣接して光学素子を設けてもよい。
【0102】
[反射ループシステムの第2の代表例]
図13乃至図17は、本発明の実施形態に係り、反射ループシステムRL13乃至RL17により第2の構成例を示す。反射ループシステムRL13乃至RL17は、それぞれ異なる入口位置及び出口位置を有する。この第2の構成例は反射ループシステムRL13に図示されるように、第1反射器1330及び第2反射器1332(例えば湾曲ミラー)を備える。後述するが、第1反射器1330及び第2反射器1332はそれぞれ2つのミラー片からなるものであってもよい。この第2の構成例においては、反射ループシステムは1つの周回経路に2つのフィールド及び2つの瞳を有する。一実施例では、これらの瞳及びフィールドは、第1反射器1330及び第2反射器1332間の領域に位置する。あるいは、これらの瞳及びフィールドは第1反射器1330及び第2反射器1332の表面上に位置してもよい。いずれの場合でも2つのフィールド及び2つの瞳が存在するから、入口位置及び出口位置をこれら2つの位置から選択することができる。第1反射器1330及び第2反射器1332はそれぞれ曲率半径Rを有する。反射ループシステムRL13の焦点距離Fは曲率半径Rに等しい。
【0103】
なお、第1反射器1330及び第2反射器1332の一方または双方は、他方に対して移動可能である第1及び第2の半分体または部片を有していてもよい。この移動に基づいて、瞳及びフィールドは、第1及び第2反射器1330及び1332の間ではなく両反射器1330及び1332上に位置するようにする。
【0104】
また、第1及び第2反射器1330及び1332はそれぞれ、反射ループシステムRL13内の1つのループ経路が少なくとも部分コヒーレントな放射ビーム502(図13には具体的に図示されていないが図5乃至図8を参照)の時間的コヒーレンス長よりも大きくなるように構成されていてもよい。
【0105】
また、第1及び第2反射器1330及び1332のうち少なくとも一方の反射面またはその一部分が、他の反射器1330または1332の反射面またはその少なくとも一部分に対して傾斜され、「非重複」の連続ループを形成するようになっていてもよい。例えば、複数回のループが実現される実施例ではこの傾斜によりループごとに異なる経路となるようにすることができる。これにより連続するビーム経路を非同一または非重複にすることができ、周回ビーム間で干渉が生じる可能性を低減することができる。その結果、例えばスペックルを除去することができる。この傾斜により反射ループシステムRL13の出口近傍(なお図13では出口は明示されていないが図14乃至図17を参照)でビーム経路をループごとに「ウォーキング」させることもできる。この「ウォーキング」により、ループごとに反射ループシステムRL13からビームの一部分を出すとともに、ビームの一部分を再度ループへと反射するようにすることができる。ビームのループ数を増加させることによりインコヒーレントビーム504(図13には具体的に図示されていないが図5乃至図8を参照)のインコヒーレンスを高めることができる。
【0106】
図14及び図15は、本発明の一実施形態に係り、反射ループシステムRL14内部の第1ループ経路及び第2ループ経路をそれぞれ示す。少なくとも部分コヒーレントなビーム502が第2反射器1332のピンホールまたは開口1434を通じて反射ループシステムRL14に進入する。開口1434は、反射ループシステムRL14の入口としても出口としても機能する。この実施例において第1反射器1330は、第1半分体または第1部片1330Aと、第2半分体または第2部片1330Bとを含む。第1部片1330Aは第2部片1330Bに対して移動可能であり、その反射面が第2反射器1332の反射面に対して変位または傾斜させることができる。これにより、上述の「ウォーキング」が可能となる。
【0107】
一実施例では図14に示されるように、少なくとも部分コヒーレントなビーム502は、入口1434の通過後に、第1反射器1330の第1半分体1330A、第2反射器1332、第1反射器1330の第2半分体1330B、そして再度第2反射器1332へと順次反射する。矢印Cは、第1反射器1330の第2反射器1332に対する部分的変位または傾斜に基づいて第1回目のループ後に生じるビームの「ウォーキング」を示す。さらに、図15に示されるように、2回目のループは、第2反射器1332、第1反射器1330の第1半分体1330A、第2反射器1332、第1反射器1330の第2半分体1330Bへと順次反射して形成される。なお図15では図14の1回目のループを破線で示し、2回目のループを実線で示している。矢印Dは第2回目のループ後に生じるビームの「ウォーキング」を示す。図示されるように、図15上ではビームのウォーキングは右から左へと生じる。
【0108】
さらにループが追加された場合には、連続する各ループ後に周回ビームの一部分が出口1434から発せられてインコヒーレントビーム504(図示せず)を形成する。例えば、反射ループシステムRL14でのループ後に、周回ビームの一部分は出口1434を通じて出射され、周回ビームの残りの部分は第2反射器1332で反射されて再度ループ経路を進む。
【0109】
図16及び図17は、本発明の一実施形態に係り、反射ループシステムRL16内部の第1ループ経路及び第2ループ経路をそれぞれ示す。この実施例では、第1反射器1330の開口またはピンホール1636が入口及び出口として使用される。少なくとも部分コヒーレントなビーム502が第1反射器1330のピンホール1636を通じて反射ループシステムRL16に進入する。この実施例において第2反射器1332は、第1半分体または第1部片1332Aと、第2半分体または第2部片1332Bとを含む。第1部片1332Aは第2部片1332Bに対して移動可能である。第1部片1332Aの反射面は第1反射器1330の反射面に対して変位または傾斜される。これにより、上述の「ウォーキング」が可能となる。
【0110】
一実施例では図16に示されるように、少なくとも部分コヒーレントなビーム502は、入口1636の通過後に、第2反射器1332の第1半分体1332A、第1反射器1330、第2反射器1332の第2半分体1332B、そして再度第1反射器1330へと順次反射する。矢印Eは、第2反射器1332の反射面に対する第1反射器1330の反射面の部分的変位または傾斜に基づいて第1回目のループ後に生じるビームの「ウォーキング」を示す。さらに、図17に示されるように、2回目のループは、第1反射器1330、第2反射器1332の第1半分体1332A、第1反射器1330、第2反射器1332の第2半分体1332Bへと順次反射して形成される。矢印Fは第2回目のループ後に生じるビームの「ウォーキング」を示す。図示されるように、図17上ではビームのウォーキングは左から右へと生じる。
【0111】
さらにループが追加された場合には、連続する各ループ後に周回ビームの一部分が出口1636から発せられてインコヒーレントビーム504(図示せず)を形成する。例えば、ループ後に、周回ビームの一部分は出口1636を通じて出射され、周回ビームの残りの部分は第1反射器1330で反射されて再度ループ経路を進む。
【0112】
[反射ループシステムの代表的構成]
一実施例においては、反射ループシステムRLは次式の関係に基づいて構成される。
【数6】

【0113】
ここで、
=入口でのビームサイズ(mm)
=入口でのビーム発散度(mrad)
=出口でのビームサイズ(mm)
=出口でのビーム発散度(mrad)
N=周回数
F=使用されるレンズの焦点距離(m)
D=瞳面でのビームサイズ(m)
=フィールド開口(m)
X=フィールド面でのビームサイズ(m)
=フィールド面でのビーム回転角(rad)
=瞳面でのビーム回転角(rad)
である。
【0114】
次の表1は、反射ループシステムRLに用いられる代表的なパラメタを示す。
【表1】

【0115】
図18は、本発明の一実施形態に係り、反射ループシステムRL(図示せず)に入射する照明強度分布及び同システムから出射する照明強度分布を模式的に示す図である。例えば上述のいずれの反射ループシステムであっても、この実施例における反射ループシステムRLとして用いることができる。一実施例においては、反射ループシステムRLの入口部は強度分布1800を受ける。反射ループシステムRLの各ループまたは各周回の出口部は、反射ループシステムRLから出射する光1804の分布のうち異なる複数の部分1802を選択するよう構成されている。この出口部における出力は、基本的にはすべての出口強度分布1806の和となり、その結果、出力は均一強度プロファイル1808となる。一実施例においては、グラフ1806はフィールドを示し、グラフ1808は瞳を示す。動作中においてグラフ1806は、1回目の周回後の出口部での光強度分布を示す。周回ごとに像が1つずつ左のセグメントへとシフトして、光分布1804のうちの次の部分1802が反射ループシステムRLから出射する。各周回の強度プロファイル1806を結合した和1808は、各周回後または全周回後に決定される。和1808は望ましくは均一である。
【0116】
また、反射ループシステムRLはビームエキスパンダとして機能してもよい。ビームサイズよりも大きい入射窓部を形成することにより、ビームのエテンデューは増大する。ビームのエテンデューは、フィールド分布と光の角度分布との積で定義される。エテンデューの増加分は、入射ビームサイズで入射窓部のサイズを除した値に等しい。
【0117】
また、反射ループシステムRLは、露光照明システム内のフィールド画定素子として機能してもよい。フィールド画定素子として用いられる場合には、反射ループシステムRLの瞳内部の各点は完全にインコヒーレントとなりうる。この場合スペックルは生じない。よって、スペックルが生成されないのでスペックル低減も不要である。例えば、フィールド画定素子として用いられる場合には、出射ビームは、各周回から出射されるすべての光のインコヒーレントな和となり得る(図18を参照)。
【0118】
また、反射ループシステムは、パルスストレッチャとして用いられてもよい。例えば、出射パルス長を伸張させて、出射パルス長を入射パルス長とシステムの総遅延時間(周回数と1回の周回時間との積)との和に等しくすることができる。
【0119】
[動作例]
図19は、本発明の一実施形態に係る方法1900を示すフローチャートである。例えば、方法1900は、上述の反射ループシステムRL及びRL9乃至RL19のいずれかを用いるシステム500、600、700、または800のいずれかを用いて実行されてもよい。
【0120】
ステップ1902においては、コヒーレントビームまたは部分コヒーレントビームがループ内で反射されてインコヒーレントなビームが生成される。ステップ1904においては、そのインコヒーレントなビームから照明ビームが生成される。ステップ1906においては、照明ビームにパターンが付与される。ステップ1908においては、パターンが付与された照明ビームが基板の目標部分に投影される。
【0121】
本説明においてはリソグラフィ装置の用途を特定の装置(例えば集積回路やフラットパネルディスプレイ)の製造としているが、ここでのリソグラフィ装置は他の用途にも適用することが可能であるものと理解されたい。他の用途としては、集積回路や光集積回路システム、磁区メモリ用ガイダンスおよび検出パターン、フラットパネルディスプレイ、液晶ディスプレイ(LCD)、薄膜磁気ヘッド、微小電気機械素子(MEMS)、LEDなどの製造に用いることが可能であり、これらに限られない。また、例えばフラットパネルディスプレイに関しては、本発明に係る装置は、例えば薄膜トランジスタ層及び/またはカラーフィルター層などのさまざまな層の製造に用いることができる。
【0122】
ここでは特に光学的なリソグラフィを本発明に係る実施形態に適用したものを例として説明しているが、本発明は例えばインプリントリソグラフィなど文脈が許す限り他にも適用可能であり、光学的なリソグラフィに限られるものではない。インプリントリソグラフィでは、パターニング用デバイスのトポグラフィーが基板に生成されるパターンを決める。パターニング用デバイスのトポグラフィーが基板に塗布されているレジスト層に押し付けられ、電磁放射や熱、圧力、あるいはこれらの組み合わせによってレジストが硬化される。レジストが硬化されてから、パターニング用デバイスは、パターンが生成されたレジストから外されて外部に移動される。
【0123】
[結語]
本発明の種々の実施例を上に記載したが、それらはあくまでも例示であって、それらに限定されるものではない。本発明の精神と範囲に反することなく種々に変更することができるということは、関連技術の当業者には明らかなことである。本発明の範囲と精神は上記で述べた例示に限定されるものではなく、請求項とその均等物によってのみ定義されるものである。
【0124】
「課題を解決する手段」及び「要約書」の項ではなく「発明の詳細な説明」の項が請求項を解釈するのに使用されるように意図されている。「課題を解決する手段」及び「要約書」の欄は本発明者が考えた本発明の実施例の1つ以上を示すものであるが、すべてを説明するものではない。よって、本発明及び請求項をいかなる形にも限定するものではない。
【符号の説明】
【0125】
B 放射ビーム、 C 目標部分、 IL 照明光学系、 PD パターニング用デバイス、 PS 投影光学系、 SO 放射源、 W 基板、 WT 基板テーブル。

【特許請求の範囲】
【請求項1】
コヒーレントビームまたは部分コヒーレントビームを生成する放射源と、
湾曲する反射デバイスを備え、よりインコヒーレントなビームを形成するようにループ内で前記コヒーレントビームまたは部分コヒーレントビームを反射させるよう構成されている反射ループシステムと、を備え、
前記反射ループシステムは、各ループ後にインコヒーレントビームの一部分が前記反射ループシステムから発せられ、残りの部分が次のループへと向けられるよう非重複ループを形成することを特徴とするシステム。
【請求項2】
前記反射ループシステムは第2乃至第4の反射デバイスを備えることを特徴とする請求項1に記載のシステム。
【請求項3】
4つの反射デバイスは3つの平面反射デバイスと1つの湾曲反射デバイスとを備えることを特徴とする請求項2に記載のシステム。
【請求項4】
前記反射ループシステムは2つのフィールド面及び2つの瞳面を含むことを特徴とする請求項1に記載のシステム。
【請求項5】
前記反射ループシステムは、
前記反射ループシステムのフィールドに関連する第2の反射デバイスと、
前記反射ループシステムの瞳に関連する第3の反射デバイスと、をさらに備え、
前記フィールドまたは前記瞳の位置が第2及び第3の反射デバイスそれぞれの反射面間の変位に基づいて変更されることを特徴とする請求項1に記載のシステム。
【請求項6】
照明放射ビームを生成する照明系であって、
コヒーレントビームまたは部分コヒーレントビームを生成する放射源と、
湾曲反射デバイスを備え、前記コヒーレントビームまたは部分コヒーレントビームを受けループ内で反射させてよりインコヒーレントなビームを形成する反射ループシステムと、を備える照明系と、
照明放射ビームにパターンを付与するパターニング用デバイスと、
パターンが付与されたビームを基板の目標部分に投影する投影系と、を備え、
前記反射ループシステムは、各ループ後にインコヒーレントビームの一部分が前記反射ループシステムから発せられ、残りの部分が次のループへと向けられるよう非重複ループを形成することを特徴とするリソグラフィシステム。
【請求項7】
(a)コヒーレントビームまたは部分コヒーレントビームをループ内で反射させてよりインコヒーレントなビームを形成するように湾曲反射デバイスを備える反射ループシステムを使用することと、
(b)前記インコヒーレントビームから照明ビームを形成することと、
(c)前記照明ビームにパターンを付与することと、
(d)パターンが付与された照明ビームを基板の目標部分に投影することと、を備え、
前記反射ループシステムは、各ループ後にインコヒーレントビームの一部分がステップ(b)で用いられる照明ビームへと形成され、残りの部分が次のループへと向けられるよう非重複ループを形成することを特徴とするデバイス製造方法。
【請求項8】
インコヒーレントな出力ビームを出力するレーザであって、
コヒーレントビームまたは部分コヒーレントビームを生成する放射源と、
湾曲反射デバイスを備え、前記コヒーレントビームまたは部分コヒーレントビームを受けループ内で反射させてインコヒーレントな出力ビームを形成するように構成されている反射ループシステムと、を備え、
前記反射ループシステムは、各ループ後にインコヒーレントビームの一部分が前記反射ループシステムから発せられ、残りの部分が次のループへと向けられるよう非重複ループを形成することを特徴とするレーザ。
【請求項9】
インコヒーレントな照明ビームを出力する照明器であって、
コヒーレントビームまたは部分コヒーレントビームを生成する放射源と、
湾曲反射デバイスを備え、前記コヒーレントビームまたは部分コヒーレントビームを受けループ内で反射させてインコヒーレントな照明ビームを形成するように構成されている反射ループシステムと、を備え、
前記反射ループシステムは、各ループ後にインコヒーレントビームの一部分が前記反射ループシステムから発せられ、残りの部分が次のループへと向けられるよう非重複ループを形成することを特徴とする照明器。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate


【公開番号】特開2010−187027(P2010−187027A)
【公開日】平成22年8月26日(2010.8.26)
【国際特許分類】
【外国語出願】
【出願番号】特願2010−118202(P2010−118202)
【出願日】平成22年5月24日(2010.5.24)
【分割の表示】特願2007−150014(P2007−150014)の分割
【原出願日】平成19年6月6日(2007.6.6)
【出願人】(504151804)エーエスエムエル ネザーランズ ビー.ブイ. (1,856)
【出願人】(000207551)大日本スクリーン製造株式会社 (2,640)
【Fターム(参考)】