説明

シリコンウェーハ及びその製造方法

【課題】板状酸素析出物を含むシリコンウェーハであってデバイスプロセスにてLSA処理を行った場合であっても転位の発生を防止することが可能なシリコンウェーハを提供する。
【解決手段】本発明によるシリコンウェーハは、LSA処理を含むデバイスプロセスに供せられるシリコンウェーハであって、LSA処理時においてシリコンウェーハに含まれる板状酸素析出物の対角線長をS(nm)、前記LSA処理における最高到達温度をT(℃)とした場合、T×S≦9×10を満たす。本発明によれば、上記の条件でLSA処理を行うことにより、シリコンウェーハに含まれる板状酸素析出物を起点とした転位の発生を防止することが可能となる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明はシリコンウェーハ及びその製造方法に関し、特に、LSA(Laser Spike Anneal)処理を含むデバイスプロセスに供せられるシリコンウェーハ及びその製造方法に関する。
【背景技術】
【0002】
半導体デバイスの製造プロセス(いわゆるデバイスプロセス)においては、シリコンウェーハに対して種々の熱処理が行われる。例えば、MOSトランジスタのソース/ドレイン領域を形成する場合、シリコンウェーハにドーパントをイオン注入した後、ドーパントを活性化させるためのアニールが行われる。ドーパントを活性化させるためのアニールとしては、ランプ炉などを用いてウェーハの全面を加熱する方法が一般的に用いられている。
【0003】
しかしながら、近年においては、MOSトランジスタのチャネル長が非常に短く設計されることから、短チャネル効果によるサブスレッショールド電流の増大が問題となっている。短チャネル効果を抑制するためには、急峻な不純物プロファイルを有する極浅接合によってソース/ドレイン領域を形成することが有効であり、このような極浅接合を得るためのアニール方法としてLSA(Laser Spike Anneal)処理が注目されている。
【0004】
LSA処理は、ランプ炉などを用いてウェーハの全面を加熱する方法とは異なり、数mm程度のビーム径を有するレーザ光によってウェーハをスキャンすることにより行われる。これにより、レーザ光が照射された領域はミリ秒又はそれ以下のオーダーで1000℃以上、融点(1414℃)以下の温度に達するため、急峻な不純物プロファイルを得ることが可能となる。しかしながら、LSA処理においては、ウェーハの厚み方向のみならず、面内方向においても急峻な温度勾配が形成されることから、ウェーハの内部に強い熱応力が生じる。ウェーハの内部に強い熱応力が生じると、酸素析出物を起点として転位が生じることがある。デバイスプロセスにて転位が発生すると、転位発生の前後においてアライメントのズレが生じるため、フォトリソグラフィ工程においていわゆるオーバーレイエラー(Overlay Error)が生じてしまう。
【0005】
酸素析出物を起点とした転位の発生は、特許文献1に記載されているように、酸素析出物が多面体である場合よりも板状である場合の方が生じやすい。このような観点から、特許文献1には、シリコンウェーハに炭素を含有させることによって酸素析出物の形状を板状ではなく多面体とし、これによって熱応力による転位の発生を防止する方法が開示されている。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開平10−150048号公報
【特許文献2】特開2008−205024号公報
【特許文献3】再表2006−3812号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
しかしながら、特許文献1は、[0004]段落の記載から明らかなように、バッチ炉などを用いて熱処理を行うことを想定しており、LSA処理のようにウェーハの厚み方向及び面内方向に強い熱応力が生じるケースについては想定していない。このため、特許文献1に記載のシリコンウェーハに対してLSA処理を行った場合に、転位の発生を防止できるか否かは不明である。また、特許文献1は板状酸素析出物を排除する発明であることから、実際に板状酸素析出物が含まれるシリコンウェーハに対してどのような条件でLSA処理を行うべきか、特許文献1からは不明である。
【0008】
一方、特許文献2には、シリコンウェーハの表層から深さ25μm〜100μmの領域については光散乱欠陥をゼロとし、深さ100μmの領域については光散乱欠陥を多量に含ませる方法が開示されている。さらに、特許文献3には、熱処理時における酸素析出物のサイズ及び密度と、熱処理によって加えられる熱応力とを所定の範囲に設定する方法が開示されている。
【0009】
しかしながら、特許文献2は、急速昇降温熱処理装置としてフラッシュランプアニール装置を想定しているため、ウェーハの面内方向における温度勾配はほとんど生じない。このため、特許文献2に記載の発明では、面内方向における急峻な温度勾配が生じるLSA処理を行った場合において有効であるか否かは不明である。仮にLSA処理に対しても有効であったとしても、板状酸素析出物を含むシリコンウェーハに対して、LSA処理をどのような条件に設定すれば転位の発生を防止できるのか、特許文献2からは不明である。
【0010】
特許文献3には、フラッシュランプアニールやスパイクランプアニールを行う際の条件が記載されているが、特許文献2と同様、LSA処理を行った場合において有効であるか否かは不明であるし、仮に有効であったとしても、板状酸素析出物を含むシリコンウェーハに対して、LSA処理の条件をどのように設定すれば転位の発生を防止できるのか、特許文献3からは不明である。
【0011】
他方、シリコンウェーハの中には、表面にエピタキシャル層が形成されたエピタキシャルウェーハがある。エピタキシャルウェーハのゲッタリング能力を高めるためには、ウェーハ本体に窒素やボロンを高濃度に含有させることが有効である。
【0012】
しかしながら、窒素やボロンが高濃度にドープされたウェーハは、通常のウェーハと比べると、デバイスプロセスにおいて酸素析出物が非常に形成されやすい。これは、窒素やボロンが析出核の安定性を増大させる効果があるためである。したがって、このようなエピタキシャルウェーハをデバイスプロセスに投入すると、デバイスプロセスに含まれる750℃程度の低温処理によって板状の微細析出物が容易に形成され、これに続いて1000℃程度の熱処理が行われると、微細析出物が成長して大きな板状酸素析出物となる。このようにして板状酸素析出物が成長した状態でLSA処理を行うと、酸素析出物を起点として容易に転位が発生し、これがエピタキシャル層にまで達するという問題があった。LSA処理時に転位が容易に発生するのは、他の熱処理と比べてLSA処理においては非常に強い熱応力が局所的に加えられるからである。このため、窒素やボロンが高濃度にドープされたエピタキシャルウェーハのように、板状酸素析出物が成長しやすいシリコンウェーハにおいては、LSA処理による転位の発生を防止することが特に重要となる。
【0013】
このように、板状酸素析出物を含むシリコンウェーハに対して、LSA処理をどのような条件で行えば転位の発生を防止することができるのか、従来は不明であった。また、窒素やボロンが高濃度にドープされたエピタキシャルウェーハの酸素濃度がどの程度であれば、LSA処理において転位の発生を防止することができるのか、従来は不明であった。
【0014】
したがって、本発明の目的は、板状酸素析出物を含むシリコンウェーハ及びその製造方法であって、デバイスプロセスにてLSA処理を行った場合であっても転位の発生を防止することが可能なシリコンウェーハ及びその製造方法を提供することにある。
【課題を解決するための手段】
【0015】
本発明者らは、板状酸素析出物を含むシリコンウェーハに対してLSA処理を行った場合、どのような条件を満たせば酸素析出物を起点とした転位が発生するのか鋭意研究を重ねた。その結果、酸素析出物を起点とした転位が発生するか否かは、LSA処理における最高到達温度と板状酸素析出物のサイズとの関係に強く依存することが判明した。本発明は、このような技術的知見に基づきなされたものである。
【0016】
すなわち、本発明の一側面によるシリコンウェーハは、LSA(Laser Spike Anneal)処理を含むデバイスプロセスに供せられるシリコンウェーハであって、前記LSA処理時において前記シリコンウェーハに含まれる板状酸素析出物の対角線長をS(nm)、前記LSA処理における最高到達温度をT(℃)とした場合、
T×S≦9×10
を満たすことを特徴とする。
【0017】
また、本発明の一側面によるシリコンウェーハの製造方法は、LSA(Laser Spike Anneal)処理を含むデバイスプロセスに供せられるシリコンウェーハの製造方法であって、前記LSA処理時において前記シリコンウェーハに含まれる板状酸素析出物の対角線長をS(nm)、前記LSA処理における最高到達温度をT(℃)とした場合、
T×S≦9×10
を満たすことを特徴とする。
【0018】
本発明によれば、上記の条件でLSA処理を行うことにより、板状酸素析出物を起点とした転位の発生を防止することが可能となる。ここで、板状酸素析出物の対角線長とは、シリコンウェーハに含まれる多数の板状酸素析出物の対角線長の平均値を指す。
【0019】
本発明によるシリコンウェーハは、窒素濃度が1×1012atoms/cm以上、又は、ボロンドープによって比抵抗が20mΩ・cm以下に設定されたウェーハ本体と、前記ウェーハ本体の表面に設けられたエピタキシャル層とを備えることが好ましい。また、本発明によるシリコンウェーハの製造方法及び半導体デバイスの製造方法は、窒素濃度が1×1012atoms/cm以上、又は、ボロンドープによって比抵抗が20mΩ・cm以下に設定されたウェーハ本体の表面にエピタキシャル層を形成する工程を含むことが好ましい。上述の通り、窒素やボロンが高濃度にドープされたウェーハは、通常のウェーハと比べると、デバイスプロセスにおいて酸素析出物が非常に形成されやすいが、本発明のように上記の条件でLSA処理を行うことにより、板状酸素析出物を起点とした転位の発生を防止することが可能となる。
【0020】
また、本発明の他の側面によるシリコンウェーハは、LSA処理を含むデバイスプロセスに供せられるシリコンウェーハであって、窒素濃度が1×1012atoms/cm以上、又は、ボロンドープによって比抵抗が20mΩ・cm以下に設定されたウェーハ本体と、前記ウェーハ本体の表面に設けられたエピタキシャル層とを備え、前記ウェーハ本体の初期酸素濃度が14×1017atoms/cm以下であることを特徴とする。
【0021】
さらに、本発明の他の側面によるシリコンウェーハの製造方法は、LSA処理を含むデバイスプロセスに供せられるシリコンウェーハの製造方法であって、チョクラルスキー法によって、窒素濃度が1×1012atoms/cm以上、又は、ボロンドープによって比抵抗が20mΩ・cm以下に設定され、初期酸素濃度が14×1017atoms/cm以下に設定されたシリコン単結晶を育成する工程と、前記シリコン単結晶から切り出されたウェーハ本体の表面にエピタキシャル層を形成する工程と、を含むことを特徴とする。
【0022】
本発明によれば、LSA処理の前に行われる一般的な熱処理によって、LSA処理の前に板状酸素析出物が成長した場合であっても、最高到達温度が1250℃程度の一般的なLSA処理による転位の発生を防止することが可能となる。LSA処理の前に行われる一般的な熱処理としては、例えば、750℃以上の温度で3時間以上保持される熱処理であって、1000℃から1050℃の温度範囲で1時間以上保持される処理を含む熱処理が挙げられる。
【0023】
本発明において、ウェーハ本体の初期酸素濃度が12×1017atoms/cm以下であることが好ましい。これによれば、LSA処理の前に、より長時間の熱処理が行われる場合であっても、最高到達温度が1250℃程度の一般的なLSA処理による転位の発生を防止することが可能となる。より長時間の熱処理としては、例えば、750℃以上の温度で4時間以上の熱処理であって、1000℃から1050℃の温度範囲で2時間以上保持される処理を含む熱処理が挙げられる。
【発明の効果】
【0024】
このように、本発明によれば、板状酸素析出物を含むシリコンウェーハであって、デバイスプロセスにてLSA処理を行った場合であっても転位の発生を防止することが可能なシリコンウェーハを提供することが可能となる。また、窒素やボロンが高濃度にドープされたウェーハ本体を有するエピタキシャルウェーハであって、デバイスプロセスにて所定の熱処理の後にLSA処理を行った場合であっても転位の発生を防止することが可能なシリコンウェーハを提供することが可能となる。
【0025】
また、本発明によれば、板状酸素析出物を含むシリコンウェーハの製造方法であって、デバイスプロセスにてLSA処理を行った場合であっても転位の発生を防止することが可能なシリコンウェーハの製造方法を提供することが可能となる。また、窒素やボロンが高濃度にドープされたウェーハ本体を有するエピタキシャルウェーハの製造方法であって、所定の熱処理の後にデバイスプロセスにてLSA処理を行った場合であっても転位の発生を防止することが可能なシリコンウェーハの製造方法を提供することが可能となる。
【図面の簡単な説明】
【0026】
【図1】本発明の好ましい実施形態によるシリコンウェーハの構造を示す略断面図である。
【図2】板状酸素析出物の構造を説明するための略斜視図である。
【図3】多面体酸素析出物の構造を説明するための略斜視図である。
【図4】シリコンウェーハの製造方法(ウェーハプロセス)を説明するためのフローチャートである。
【図5】デバイスプロセスの一部を示すフローチャートである。
【発明を実施するための形態】
【0027】
以下、添付図面を参照しながら、本発明の好ましい実施の形態について詳細に説明する。
【0028】
図1は、本発明の好ましい実施形態によるシリコンウェーハ10の構造を示す略断面図である。
【0029】
図1に示すように、本実施形態によるシリコンウェーハ10は、ウェーハ本体11とその表面に形成されたエピタキシャル層12によって構成されている。ウェーハ本体11は、チョクラルスキー法によって育成された単結晶シリコンであり、シリコンウェーハ10の機械的強度を確保する役割を果たすとともに、重金属のゲッタリング源としての役割を果たす。ウェーハ本体11の厚さについては、機械的強度が確保される限り特に限定されないが、例えば725μm程度である。
【0030】
特に限定されるものではないがウェーハ本体11には窒素又はボロンがドープされている。ウェーハ本体11にドープされているのが窒素である場合、その濃度は1×1012atoms/cm以上であることが好ましい。一方、ウェーハ本体11にドープされているのがボロンである場合、ボロンドープによってウェーハ本体11の比抵抗が20mΩ・cm以下に設定されていることが好ましい。これは、窒素又はボロンを上記の濃度でドープすれば、ウェーハ本体11に十分なゲッタリング能力が与えられるからである。窒素又はボロンの濃度の上限については特に限定されないが、窒素については5×1014atoms/cm以下、ボロンについては比抵抗に換算して3mΩ・cm以上に設定することが好ましい。これは、窒素の濃度が5×1014atoms/cmを超えると、単結晶育成時に有転位化しやすいからである。また、ボロンによる比抵抗が3mΩ・cm未満であると、成長するエピタキシャル膜との格子不整によりミスフィット転位が発生しやすいからである。
【0031】
また、ウェーハ本体11の初期酸素濃度は、7×1017atoms/cm以上2.4×1018atoms/cm以下であることが好ましい。これは、酸素濃度が7×1017atoms/cm未満であるとNiなどの重金属のゲッタリングに必要な酸素析出物の形成密度が不十分となるおそれがあるからであり、酸素濃度が2.4×1018atoms/cm超であると欠陥のないエピタキシャル層12を形成することが困難となるからである。但し、窒素ドープ又はボロンドープされている場合、窒素ドープ又はボロンドープによって酸素析出物の形成が促進されることから、熱処理によって酸素析出物が形成される限り、ウェーハ本体11の初期酸素濃度は7×1017atoms/cm未満であっても構わない。尚、本明細書で記載する酸素濃度は全てASTM F−121(1979)に規格されたフーリエ変換赤外分光光度法(FT−IR)による測定値である。
【0032】
また、デバイスプロセスにおいて、LSA処理の前に析出核が成長しうる熱処理、例えば、750℃以上の温度で3時間以上保持される熱処理であって、1000℃から1050℃の温度範囲で1時間以上保持される処理を含む熱処理が行われる場合には、ウェーハ本体11の初期酸素濃度を14×1017atoms/cm以下とする必要がある。また、LSA処理の前により長時間の熱処理、例えば、750℃以上の温度で4時間以上の熱処理であって、1000℃から1050℃の温度範囲で2時間以上保持される処理を含む熱処理が行われる場合には、ウェーハ本体11の初期酸素濃度を12×1017atoms/cm以下とする必要がある。これは、熱処理によって形成される板状酸素析出物のサイズは、熱処理条件(温度及び時間)とウェーハ本体11の初期酸素濃度によって決まるからである。上記の一般的な熱処理を想定した場合には、ウェーハ本体11の初期酸素濃度を14×1017atoms/cm以下に設定すれば、LSA処理の直前における板状酸素析出物のサイズを所定値以下に抑えることができる。また、上述したより長時間の熱処理を想定した場合には、ウェーハ本体11の初期酸素濃度を12×1017atoms/cm以下に設定すれば、LSA処理の直前における板状酸素析出物のサイズを所定値以下に抑えることができる。初期酸素濃度については、チョクラルスキー法によるシリコン単結晶の育成時において、シリコン融液の対流制御などによって調整することが可能である。板状酸素析出物のサイズと転位発生の有無との関係については後述する。
【0033】
このように、ウェーハ本体11には高濃度の窒素又はボロンがドープされている場合、ウェーハ本体11にはMOSトランジスタなどの半導体デバイスを直接形成することはできない。MOSトランジスタなどの半導体デバイスは、ウェーハ本体11上のエピタキシャル層12に形成される。エピタキシャル層12の比抵抗は、通常、ウェーハ本体11の比抵抗よりも高く設定される。エピタキシャル層12の膜厚については特に限定されず、1μm以上、10μm以下程度に設定すればよい。
【0034】
このような構成を有するシリコンウェーハ10は、750℃で4時間の熱処理を行った後、さらに1000℃で4時間の熱処理を行った場合に、ウェーハ本体11に多面体酸素析出物よりも板状酸素析出物が優勢に成長する。板状酸素析出物とは、主に図2に示す構造を有する酸素析出物であり、その主面21は[100]面、[010]面又は[001]面に沿っている。板状酸素析出物のサイズは対角線長Sによって定義される。一方、多面体酸素析出物とは、主に図3に示す構造を有する正八面体の酸素析出物であり、その各表面22は[111]面に沿っている。多面体酸素析出物のサイズは一辺の長さSによって定義される。
【0035】
図4は、本実施形態によるシリコンウェーハ10の製造方法(ウェーハプロセス)を説明するためのフローチャートである。
【0036】
図4に示すように、まずシリコン単結晶インゴットから切り出されたウェーハ本体11を用意し(ステップS11)、その表面を鏡面研磨する(ステップS12)。シリコン単結晶インゴットはチョクラルスキー法によって育成され、これによりウェーハ本体11には石英ルツボより溶出した酸素が過飽和に含まれる。ウェーハ本体11に含まれる初期酸素濃度は、上述の通り、14×1017atoms/cm以下に設定することが好ましく、12×1017atoms/cm以下に設定することがより好ましい。次に、鏡面研磨されたウェーハ本体11の表面に、エピタキシャル層12を形成する(ステップS13)。
【0037】
以上により、本実施形態によるシリコンウェーハ10が完成する。このようなウェーハプロセスによって作製されたシリコンウェーハ10は、エピタキシャル層12に半導体デバイスを形成するデバイスプロセスに投入される。
【0038】
図5は、デバイスプロセスの一部を示すフローチャートである。
【0039】
デバイスプロセスには、製造すべき半導体デバイスの種類(ロジック系デバイス、メモリ系デバイスなど)に応じて様々な工程が含まれるが、図5に示すように、析出核が成長しうる温度に昇温される熱処理工程(ステップS21)と、LSA処理工程(ステップS22)が含まれることがある。ステップS21に示す熱処理工程としては、例えば850℃で30分、900℃で30分、1000℃で100分、950℃で30分の熱処理をこの順に行う例が挙げられる。また、析出核がより成長しやすい熱処理工程としては、例えば750℃で45分、900℃で30分、1050℃で120分、950℃で45分の熱処理をこの順に行う例が挙げられる。これらの場合、ステップS21に示す熱処理工程によってウェーハ本体11に含まれる析出核が酸素析出物に成長する。形成される酸素析出物としては、板状酸素析出物及び多面体酸素析出物が含まれる。このうち、同じ体積で比較した場合、多面体酸素析出物は板状酸素析出物よりも応力が小さいため、転位発生の起点とはなりにくいが、特別な熱処理(後述)を施していない通常のシリコンウェーハでは板状酸素析出物が優勢に成長するため、これが転位発生の起点となる。
【0040】
このような熱処理工程(ステップS21)によって板状酸素析出物が形成された後、LSA処理(ステップS22)を行うと、ウェーハ本体11には強い熱応力が加わるため、酸素析出物を起点として転位を発生することがある。LSA処理は、シリコンウェーハ10を400℃〜600℃程度の温度に初期過熱した状態で、数mm程度のビーム径を有するレーザ光によってシリコンウェーハ10のエピタキシャル層12をスキャンすることにより行う。これにより、レーザ光が照射された領域はミリ秒又はそれ以下のオーダーで1000℃以上、融点以下の温度に達するため、急峻な不純物プロファイルを得ることが可能となる。
【0041】
LSA処理においては、ウェーハ本体11の表層から50μm以下の深さ領域に含まれる板状酸素析出物の対角線長をS(nm)、最高到達温度をT(℃)とした場合、
T×S≦9×10
を満たす条件でLSA処理を行えば、板状酸素析出物を起点とした転位の発生はほとんど起こらない。上記の式が示す値(=9×10)がしきい値となる理由については明らかではないが、追って説明する多くの実験データによって裏付けられている。
【0042】
尚、ウェーハプロセスにて特別な熱処理を施しておけば、750℃で4時間の熱処理を行った後、さらに1000℃で4時間の熱処理を行った場合に、ウェーハ本体11に板状酸素析出物よりも多面体酸素析出物が優勢に成長する。具体的には、エピタキシャル層12の形成を行った後(ステップS13)、少なくとも800℃以上の温度領域において5℃/min以上のレートで昇温し、1050℃以上融点以下の温度で5分以上保持する。これにより、ウェーハ本体11に含まれる酸素が析出核を形成するのであるが、析出核の形成時における温度が1050℃未満であると板状酸素析出物に成長するタイプの析出核が優勢に形成されるのに対し、上記の温度範囲で析出核の形成を行えば、多面体酸素析出物に成長するタイプの析出核が優勢に形成される。但し、いずれのタイプの析出核であるのかは、実際に析出核を成長させない限り、現在の技術では判別不可能である。
【0043】
ここで、1050℃以上融点以下に保持する時間を5分以上としているのは、保持時間が5分未満であると多面体酸素析出物に成長するタイプの析出核が十分に形成されないからである。また、保持時間は、2時間以下とすることが好ましい。これは2時間を超えて熱処理を行ってもその以上効果が向上しないため、保持時間が2時間超であるとウェーハの製造コストが大幅に増大するからである。
【0044】
また、800℃以上の温度領域における昇温レートを5℃/min以上としているのは、板状酸素析出物に成長するタイプの析出核が優勢に形成される温度領域である800℃以上1050℃未満の温度領域の通過時間を短くする必要があるからである。つまり、800℃以上の温度領域における昇温レートが5℃/min未満であると、保持温度(1050℃以上融点以下)に達した際には既に板状酸素析出物に成長するタイプの析出核が多量に形成されてしまい、その後1050℃以上融点以下に保持しても、多面体酸素析出物に成長するタイプの析出核が優勢とはならないからである。昇温レートの上限については特に限定されないが、10℃/min以下とすることが好ましい。これは、10℃/minを超えるレートで昇温すると、ウェーハの面内温度差に起因する熱応力の増大によって、スリップ転位の発生が顕著になるおそれがあるからである。昇温レートを5℃/min以上に設定する温度領域は、少なくとも800℃であれば特に限定されないが、700℃以上の温度領域で昇温レートを5℃/min以上に設定することが好ましい。これによれば、板状酸素析出物に成長するタイプの析出核の形成をより効果的に防止することが可能となる。
【0045】
このように、以上の熱処理を行えば、多面体酸素析出物に成長するタイプの析出核が優勢に形成されるため、デバイスプロセスにおける熱処理工程(ステップS21)を経ると、ウェーハ本体11に板状酸素析出物よりも多面体酸素析出物が優勢に成長する。このため、その後LSA処理を行っても転位は発生ににくくなる。
【0046】
しかしながら、この場合であってもウェーハ本体11に板状酸素析出物が含まれている可能性がある。このため、
T×S≦9×10
を満たす条件でLSA処理を行うことにより、板状酸素析出物を起点とした転位の発生を防止することができる。
【0047】
以上、本発明の好ましい実施形態について説明したが、本発明は、上記の実施形態に限定されることなく、本発明の主旨を逸脱しない範囲で種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることはいうまでもない。
【0048】
例えば、上記実施形態ではエピタキシャルウェーハを用いた例を説明したが、本発明の適用対象がエピタキシャルウェーハに限定されるものではない。
【実施例】
【0049】
[実施例1]
格子間酸素濃度が12.5×1017atoms/cmである直径300mmのポリッシュウェーハを複数枚準備した。これらウェーハに種々の熱処理を施し、サイズ及び形態の互いに異なる酸素析出物を形成した。析出物のサイズ及び形態は、同じ熱処理を施した別サンプルを透過電子顕微鏡(TEM)にて測定、観察することにより特定した。ウェーハの表層から50μm以下の深さ領域に存在する析出物のサイズ及び形態は、表1に示すとおりである。
【0050】
次に、析出物が形成された各ウェーハにLSA処理を実施した。サンプルごとのウェーハ表面における最高到達温度は、表1に示すとおりである。そして、LSA処理後、X線トポグラフィー装置を用いて、転位発生の有無を調べた。
【0051】
その結果、表1に示すように、酸素析出物の形態が板状であるサンプル1〜24については、T×Sで与えられる値が9×10以下であれば転位が発生しなかったが、T×Sで与えられる値が9×10を超えているサンプル6,12,17,18,23,24については転位が発生していた。これにより、
T×S≦9×10
を満たす条件でLSA処理を行えば、板状酸素析出物を起点とした転位の発生が生じないことが実証された。
【0052】
一方、酸素析出物の形態が多面体であるサンプル25〜33については、T×Sの値に関わらず、転位が発生することはなかった。
【0053】
【表1】

【0054】
[実施例2]
窒素濃度が3〜6×1013atoms/cmであるウェーハ本体の表面にエピタキシャル膜が形成されたエピタキシャルウェーハと、ボロンドープによる比抵抗が6〜8mΩ・cmであるウェーハ本体の表面にエピタキシャル膜が形成されたエピタキシャルウェーハをそれぞれ複数枚準備した。各ウェーハの初期酸素濃度は、表2に示す通りである。
【0055】
次に、これらサンプルの一部に対して850℃で30分、900℃で30分、1000℃で100分、950℃で30分の熱処理(熱処理A)を行うことにより板状酸素析出物の析出核を成長させた。また、残りのサンプルに対して750℃で45分、900℃で30分、1050℃で120分、950℃で45分の熱処理(熱処理B)を行うことにより板状酸素析出物の析出核を成長させた。これら熱処理A,Bは、先端ロジック系デバイスの製造プロセスにて印加される熱処理を模したものである。
【0056】
そして、各サンプルに対して、最高到達温度Tが1250℃である条件でLSA処理を行った。そして、LSA処理後、透過電子顕微鏡(TEM)を用いてウェーハ本体の表層から50μm以下の深さ領域に存在する板状酸素析出物のサイズを観察するとともに、X線トポグラフィー装置を用いて転位発生の有無を調べた。
【0057】
その結果、表2に示すように、T×Sで与えられる値が9×10以下であれば、ウェーハ本体の種類(窒素ドープ又はボロンドープ)や、事前に施した熱処理の種類(熱処理A又は熱処理B)に関わらず転位が発生しなかったが、T×Sで与えられる値が9×10を超えているサンプル34,39,44〜46,51,56については転位が発生していた。
【0058】
また、熱処理Aを施した窒素ドープのエピタキシャルウェーハのうち、初期酸素濃度が13.6×1017atoms/cmであるサンプル38では転位が発生しなかったのに対し、初期酸素濃度が14.5×1017atoms/cmであるサンプル39では転位が発生した。さらに、熱処理Bを施した窒素ドープのエピタキシャルウェーハのうち、初期酸素濃度が11.8×1017atoms/cmであるサンプル43では転位が発生しなかったのに対し、初期酸素濃度が12.5×1017atoms/cmであるサンプル44では転位が発生した。
【0059】
また、熱処理Aを施したボロンドープのエピタキシャルウェーハのうち、初期酸素濃度が13.0×1017atoms/cmであるサンプル50では転位が発生しなかったのに対し、初期酸素濃度が13.6×1017atoms/cmであるサンプル51では転位が発生した。さらに、熱処理Bを施したボロンドープのエピタキシャルウェーハのうち、初期酸素濃度が12.0×1017atoms/cmであるサンプル55では転位が発生しなかったのに対し、初期酸素濃度が12.6×1017atoms/cmであるサンプル56では転位が発生した。
【0060】
これらの結果から、LSA処理の前に熱処理Aと同等の熱処理が行われる場合、窒素ドープであるかボロンドープであるかにかかわらず、初期酸素濃度が14×1017atoms/cm以下であれば、最高到達温度が1250℃のLSA処理において転位が発生しないことが確認された。また、LSA処理の前に熱処理Bと同等の熱処理が行われる場合、窒素ドープであるかボロンドープであるかにかかわらず、初期酸素濃度が12×1017atoms/cm以下であれば、最高到達温度が1250℃のLSA処理において転位が発生しないことが確認された。
【0061】
【表2】

【符号の説明】
【0062】
10 シリコンウェーハ
11 ウェーハ本体
12 エピタキシャル層
21 板状酸素析出物の主面
22 多面体酸素析出物の表面

【特許請求の範囲】
【請求項1】
LSA(Laser Spike Anneal)処理を含むデバイスプロセスに供せられるシリコンウェーハであって、
前記LSA処理時において前記シリコンウェーハに含まれる板状酸素析出物の対角線長をS(nm)、前記LSA処理における最高到達温度をT(℃)とした場合、
T×S≦9×10
を満たすことを特徴とするシリコンウェーハ。
【請求項2】
窒素濃度が1×1012atoms/cm以上、又は、ボロンドープによって比抵抗が20mΩ・cm以下に設定されたウェーハ本体と、前記ウェーハ本体の表面に設けられたエピタキシャル層とを備えることを特徴とする請求項1に記載のシリコンウェーハ。
【請求項3】
LSA(Laser Spike Anneal)処理を含むデバイスプロセスに供せられるシリコンウェーハであって、
窒素濃度が1×1012atoms/cm以上、又は、ボロンドープによって比抵抗が20mΩ・cm以下に設定されたウェーハ本体と、前記ウェーハ本体の表面に設けられたエピタキシャル層とを備え、
前記ウェーハ本体の初期酸素濃度が14×1017atoms/cm以下であることを特徴とするシリコンウェーハ。
【請求項4】
前記ウェーハ本体の初期酸素濃度が12×1017atoms/cm以下であることを特徴とする請求項3に記載のシリコンウェーハ。
【請求項5】
前記デバイスプロセスにおいては、LSA処理の前に、750℃以上の温度で4時間以上保持される熱処理であって、1000℃から1050℃の温度範囲で2時間以上保持される処理を含む熱処理が行われることを特徴とする請求項4に記載のシリコンウェーハ。
【請求項6】
LSA(Laser Spike Anneal)処理を含むデバイスプロセスに供せられるシリコンウェーハの製造方法であって、
前記LSA処理時において前記シリコンウェーハに含まれる板状酸素析出物の対角線長をS(nm)、前記LSA処理における最高到達温度をT(℃)とした場合、
T×S≦9×10
を満たすことを特徴とするシリコンウェーハの製造方法。
【請求項7】
窒素濃度が1×1012atoms/cm以上、又は、ボロンドープによって比抵抗が20mΩ・cm以下に設定されたウェーハ本体の表面にエピタキシャル層を形成する工程を含むことを特徴とする請求項6に記載のシリコンウェーハの製造方法。
【請求項8】
LSA(Laser Spike Anneal)処理を含むデバイスプロセスに供せられるシリコンウェーハの製造方法であって、
チョクラルスキー法によって、窒素濃度が1×1012atoms/cm以上、又は、ボロンドープによって比抵抗が20mΩ・cm以下に設定され、初期酸素濃度が14×1017atoms/cm以下に設定されたシリコン単結晶を育成する工程と、
前記シリコン単結晶から切り出されたウェーハ本体の表面にエピタキシャル層を形成する工程と、を含むことを特徴とするシリコンウェーハの製造方法。
【請求項9】
前記シリコン単結晶を育成する工程においては、初期酸素濃度を12×1017atoms/cm以下に設定することを特徴とする請求項8に記載のシリコンウェーハの製造方法。
【請求項10】
前記デバイスプロセスにおいては、LSA処理の前に、750℃以上の温度で4時間以上保持される熱処理であって、1000℃から1050℃の温度範囲で2時間以上保持される処理を含む熱処理が行われることを特徴とする請求項9に記載のシリコンウェーハの製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2011−228459(P2011−228459A)
【公開日】平成23年11月10日(2011.11.10)
【国際特許分類】
【出願番号】特願2010−96505(P2010−96505)
【出願日】平成22年4月19日(2010.4.19)
【出願人】(302006854)株式会社SUMCO (1,197)
【Fターム(参考)】