説明

フィン一体型基板およびフィン一体型基板の製造方法

【課題】金属ベース板の反りや放熱フィンの変形(ビレ等の発生)が抑えられた加工方法でもって微細なピッチの放熱フィンを備えるフィン一体型基板を簡単な工程で作製することが可能なフィン一体型基板およびフィン一体型基板の製造方法を提供する。
【解決手段】金属回路板15のセラミックス基板10との接合が溶湯接合法によって行われ、金属ベース板20の一部である被切削部への複数の放熱フィン20aの形成は、前記被切削部の放熱フィン20aを形成する面に引張応力を負荷させるように治具による固定を行い、引張応力が負荷された面上に複数枚の円盤型カッターを積層したマルチカッターを回転させながら移動させて複数の溝を形成する溝入れ加工により行なわれる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、金属−セラミックス接合基板に関し、特にセラミックス基板の両面にそれぞれアルミニウムまたはアルミニウム合金からなる金属回路板および金属ベース板が接合され、金属ベース板のセラミックス基板の接合されていない面から突出して互いに所定の間隔で延びる板状の放熱フィンが金属ベース板と一体的に形成されるフィン一体型基板およびその製造方法に関する。
【背景技術】
【0002】
例えば電気自動車、電車、工作機械等の大電流を制御するために使用されている従来のパワーモジュールでは、ベース板と呼ばれている金属板または複合材の一方の面に金属−セラミックス絶縁基板が半田付けにより固定され、この金属−セラミックス絶縁基板上に半導体チップ等の電子部品が半田付けにより固定されている。また、ベース板の他方の面(裏面)には、ネジ止め等により熱伝導グリースを介して金属製の放熱フィンや冷却ジャケットが取り付けられている。
【0003】
この金属−セラミックス絶縁基板へのベース板や電子部品等の半田付けは加熱により行われるため、半田付けの際に接合部材間の熱膨張係数の差によりベース板の反りが生じやすい。また、電子部品等から発生した熱は、金属−セラミックス絶縁基板と半田とベース板を介して放熱フィンや冷却ジャケットにより空気や冷却水等に逃がされるため、上述したようなベース板の反りが発生すると放熱フィンや冷却ジャケットをベース板に取り付けた際のクリアランスが大きくなり、放熱性が極端に低下してしまう。
【0004】
そこで、例えば特許文献1には、上記問題点であるベース板の反りを非常に小さくすることができる放熱フィン(補強部)と金属ベース板とが一体的に形成された金属−セラミックス接合基板が開示されている。また、例えば特許文献2および特許文献3には、金属ベース板や放熱フィン等に取り付け、熱発生体を効率的に冷却する冷却ジャケットが開示されている。
【0005】
従って、特許文献1に記載の金属−セラミックス接合基板に、特許文献2、3に記載の冷却ジャケットを取り付けることで、金属ベース板の反りが抑えられ、冷却効率が非常に高い金属−セラミックス接合基板が得られることとなる。
【0006】
一方、特許文献4には、半導体デバイス等の冷却のためのヒートシンク等におけるベース部材(金属ベース板)上に配置された被削材ブロックに溝加工を行う溝入れ加工方法が開示されている。この溝入れ加工方法によれば、被削材ブロックにバリを発生させることなく溝入れを行うことが可能となる。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開2008−218938号公報
【特許文献2】特開2006−324647号公報
【特許文献3】特開2008−135757号公報
【特許文献4】特開2009−56520号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
しかしながら、上記特許文献1に記載の金属−セラミックス接合基板においては、金属ベース板に放熱フィンを一体的に形成させるための方法として、鋳型を用いて形成を行うこととしているが、特に微細な形状の放熱フィンを形成する場合については、微細なピッチの型が必要となり、フィンの鋳型からの離型の困難さのために事実上鋳型を用いることは不可能であった。また、従来より一般的である溝を1つずつ機械加工により形成することで放熱フィンを形成していく方法も考えられるが、加工時の熱の発生による反りや加工時の切り屑の排出が十分にできないなどの問題により、微細なピッチの放熱フィンを寸法精度良く且つ効率的に作製することは困難であった。
【0009】
一方で、上記特許文献4に記載の溝入れ加工方法を用いて放熱フィンを形成させる方法も考えられるが、特許文献4では被削材ブロックとして強度・硬度の高い金属を想定しており、例えばアルミニウム等の軟らかい(硬度の低い)金属、さらにはその鋳造材など特に軟らかい金属を加工しようとする場合には、加工対象の被切削材(被削材ブロック)やその被切削材を配置した金属ベース板を治具によって固定する際に、金属ベース板が曲がってしまうといった問題や、切削加工後の放熱フィンにビレ(波打ち形状)が発生してしまうことが発明者らの調査により判明した。さらには、マルチカッターでの切削時に被切削材(被切削ブロック)や金属ベース板への応力が発生し、反りが発生する恐れがあった。
【0010】
従って、上記特許文献1に記載された金属−セラミックス接合基板や特許文献4に記載の溝入れ加工方法によって作製された被切削材に上記特許文献2および3に記載の冷却ジャケットを取り付けたとしても、微細なピッチの放熱フィンを備える液冷式のフィン一体型基板を得ることは困難であった。
【0011】
そこで、上記問題点に鑑み、本発明の目的は、金属ベース板の反りや放熱フィンの変形(ビレ等の発生)が抑えられた加工方法でもって微細なピッチの放熱フィンを備えるフィン一体型基板を簡単な工程で作製することが可能なフィン一体型基板の製造方法を提供することにある。さらにはこの製造方法によって微細なピッチの放熱フィンを備える強度、冷却効率、放熱性、電子部品のアセンブリ性、耐熱衝撃性および耐食性に優れた空冷(ガス冷)式または液冷式のフィン一体型基板を提供することにある。
【課題を解決するための手段】
【0012】
上記の目的を達成するため、本発明によれば、セラミックス基板の一方の面にアルミニウムまたはアルミニウム合金からなる金属回路板が接合されると共に、他方の面にアルミニウムまたはアルミニウム合金からなる平板状の金属ベース板の一方の面が接合され、前記金属ベース板の他方の面から突出して互いに所定の間隔で配置するように複数の放熱フィンが前記金属ベース板と一体的に形成されたフィン一体型基板において、前記金属ベース板の熱伝導率が170W/(m・K)以上であり、前記金属ベース板の硬度がビッカース硬度で20〜40(Hv)であり、前記放熱フィンの幅が0.2〜2.0mmであり、複数の前記放熱フィン同士の間に形成される溝部の幅が0.2〜2.0mmであり、前記溝部の深さが2〜20mmである、フィン一体型基板が提供される。
【0013】
ここで、前記金属ベース板の前記放熱フィンが形成されていない部分の厚さが0.5〜5mmであってもよい。複数の前記放熱フィンは前記金属ベース板に対して略垂直方向に突出するように形成され、かつ、互いに略平行であってもよい。前記金属ベース板はSi、Mg、Zn、Bi、Snから選ばれる少なくとも1つの元素を含有するアルミニウム合金であってもよい。前記金属ベース板の結晶粒径は5mm以下であってもよい。複数の前記放熱フィンの配置は、千鳥状であってもよい。
【0014】
また、複数の前記放熱フィンが収納される箱型形状の液冷式のジャケットを備え、前記ジャケットは前記金属ベース板に接合されていてもよい。前記ジャケットと少なくとも一部の前記放熱フィンの先端部が接合されていてもよい。
【0015】
また、別な観点からの本発明によれば、セラミックス基板の一方の面にアルミニウムまたはアルミニウム合金からなる金属回路板が接合されると共に、他方の面にアルミニウムまたはアルミニウム合金からなる平板状の金属ベース板の一方の面が接合され、前記金属ベース板の他方の面から突出して互いに所定の間隔で配置するように複数の放熱フィンが前記金属ベース板と一体的に形成されたフィン一体型基板を製造するフィン一体型基板の製造方法であって、前記金属回路板の前記セラミックス基板との接合は溶湯接合法によって行われ、前記金属ベース板への複数の放熱フィンは、放熱フィンを形成させる面に引張応力を負荷させるように治具による固定を行い、引張応力が負荷された面上に複数枚の円盤型カッターを積層したマルチカッターを回転させながら移動させて複数の溝を形成させる溝入れ加工を行うことで形成される、フィン一体型基板の製造方法が提供される。
【0016】
前記金属回路板は、板部およびその板部中央近傍において突出するブロック部によって一体的に構成され、前記放熱フィンを形成させる前記ブロック部上の面は凸形状であってもよい。前記ブロック部の中央部は、前記ブロック部の周縁部より厚くてもよい。前記マルチカッターの回転刃は交互刃であり、かつすくい角が10°以上であってもよい。前記マルチカッターの切削スピードは 700mm/min以上であってもよい。前記治具は前記セラミックス基板に非接触な形状であり、かつ、前記溝入れ加工における金属ベース板の変形に非干渉な位置に配置されてもよい。前記治具は真空吸引方式であり、その吸引力は制御可能であってもよい。前記溝入れ加工後に、放熱フィンが形成された前記金属ベース板の面上に、前記放熱フィンを収納する箱型形状の液冷式のジャケットを接合してもよい。前記金属ベース板と前記ジャケットの接合がろう接であってもよい。前記放熱フィンの少なくとも一部の先端部と前記ジャケットを接合してもよい。前記ジャケットにおいて、前記放熱フィン先端部と前記ジャケットの接合が行われる部分は、他の部分に比べ薄肉化されていてもよい。
【発明の効果】
【0017】
本発明によれば、金属ベース板の反りや放熱フィンの変形(ビレ等の発生)が抑えられた加工方法でもって微細なピッチの放熱フィンを備えるフィン一体型基板を簡単な工程で作製することが可能なフィン一体型基板の製造方法が提供される。さらにはこの製造方法によって、微細なピッチの放熱フィンを備える強度、冷却効率、放熱性、電子部品のアセンブリ性、耐熱衝撃性および耐食性に優れた空冷式(ガス冷式)または液冷式のフィン一体型基板を提供することができる。
【図面の簡単な説明】
【0018】
【図1】(a)フィン一体型基板1の平面図である。(b)フィン一体型基板1の側面断面図である。
【図2】被切削材40の斜視図である。
【図3】溝入れ加工についての説明図である。
【図4】被切削部40bの形状を、その中央部が端部より厚い形状とした場合の被切削材40の側面断面図である。
【図5】被切削材40全体を反った形状とした場合の被切削材40の側面断面図である。
【図6】(a)フィン一体型基板1’の平面図である。(b)フィン一体型基板1’を図6(a)中のX方向から見た側面断面図である。(c)フィン一体型基板1’を図6(a)中のY方向から見た側面断面図である。
【図7】(a)フィン一体型基板1’’の平面図である。(b)フィン一体型基板1’’を図7(a)中のX方向から見た側面断面図である。(c)フィン一体型基板1’’を図7(a)中のY方向から見た側面断面図である。
【図8】4種類の厚さの金属ベース板において、同条件(同一の入熱量)で発熱素子を発熱させた場合の非定常状態における発熱素子温度の違いをグラフとして表したものである。
【図9】実施例2〜4で用いた装置の構成説明図(断面図)である。
【図10】図9中の金属ベース板、セラミック基板および金属回路板を拡大した図である。
【図11】実施例6のクランプ方法を説明する断面図である。
【発明を実施するための形態】
【0019】
以下、本発明の実施の形態について図面を参照して説明する。なお、本明細書および図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
【0020】
図1(a)は本発明の実施の形態にかかるフィン一体型基板1の平面図であり、図1(b)は本発明の実施の形態にかかるフィン一体型基板1の側面断面図である。図1に示すように、フィン一体型基板1においては、セラミックス基板10の上面(図1(b)中上方)にアルミニウムまたはアルミニウム合金からなる金属回路板15が接合されており、また、セラミックス基板10の下面(図1(b)中下方)にはアルミニウムまたはアルミニウム合金からなる金属ベース板20が接合されている。金属ベース板20には、その下面から略垂直に突出して互いに略平行に所定の間隔で配置するように複数の放熱フィン20aが金属ベース板20と一体的に形成されている。即ち、複数の放熱フィン20aの各フィン同士の間隙部には溝部25が形成される構成となっている。ここで、放熱フィン20aは、金属ベース板20の下面の中央部近傍に形成されており、金属ベース板20の下面周縁部27は平面形状である。
【0021】
また、図1に示すフィン一体型基板1は液冷式であり、底部(図1(b)中下方側)には、上記放熱フィン20aを収納することができるように成型された例えば箱型の液冷式のジャケット30が接合(例えばろう接)により取り付けられている。即ち、ジャケット30の内部(放熱フィン20aの収納されている部分)には図示しない冷却液供給部から供給された冷却液Aが流れる構成となっており、放熱フィン20aは冷却液Aによって冷却される。
【0022】
図1に示すように構成されるフィン一体型基板1においては、金属ベース板20の熱伝導率は170W/(m・K)以上であり、硬さはビッカース硬度Hvで20〜40であり、反りは100μm以下であることが好ましい。また、上記周縁部27の厚さは0.5〜5mmであることが好ましい。なお、ここで「反り」とは金属ベース板20のセラミックス基板接合側の平面部における中心部と縁部の高さの差をいい、金属ベース板20が凹状に反っている場合の反りを正(+)とし、凸状に反っている場合の反りを負(−)とする。
【0023】
金属ベース板は回路上で発熱した素子の熱をフィンに伝える役割があり、金属ベース板の材料として熱伝導率が170W/(m・K)以上であることが好ましい。特に発熱量の大きい半導体素子を搭載する場合、170W/(m・K)未満であると充分な放熱ができないおそれがある。さらに好ましくは180W/(m・K)以上である。
【0024】
金属ベース板の材料であるAlまたはAl合金のビッカース硬度として40(Hv)を超えるとヒートサイクル耐量(後述)が大幅に低下する。また、ビッカース硬度が20(Hv)未満であると後述のフィンの機械加工が困難になり、フィンに必要な形状、寸法精度を保つことが困難である。よって、金属ベース板のビッカース硬度は20〜40(Hv)の範囲が好ましい。ビッカース硬度が20〜40(Hv)の範囲では、[−40℃で30分保持→25℃で10分保持→125℃で30分保持→25℃で10分保持→]を1回とするヒートサイクル試験(熱衝撃繰り返し試験)を3,000回繰り返してもセラミックと金属との線膨張係数差起因による疲労破壊が起こりにくい。
【0025】
周縁部厚さは5mmを超えるとレーザー溶接のような局所加熱による溶解接合が困難となる。0.5mm未満では機械的強度不足により、加熱・冷却が繰り返されたときの膨張・収縮による疲労で破断する可能性がある。
【0026】
金属ベース板20の材質は上述したようにアルミニウムおよびアルミニウム合金であることが好ましいが、さらには、Si、Mg、Zn、Bi、Snから選ばれる少なくとも1つの元素を含有するアルミニウム合金であることが好ましく、その結晶粒径は5mm以下であることが好ましい。結晶粒径が5mmを超えると、ヒートサイクルがかかったときの結晶粒界の段差や変形が大きくなる。
【0027】
また、フィン一体型基板1においては、放熱フィン20aの幅は0.2〜2.0mm、さらに好ましくは0.3〜1.5mmであり、各放熱フィン20a同士の間に形成される溝部25の幅は0.2〜2.0mm、さらに好ましくは0.5〜2.0mmであり、溝部25の深さは2〜20mm、さらに好ましくは3〜15mmであることが好ましい。
【0028】
放熱フィン20aの幅が0.2mm未満であると熱移動量(フィン効率)が減少し、2.0mmを超えるとフィン数が少なくなり過ぎる。また、フィンの幅が0.2mm以下では本発明の金属ベース板の材料特性の場合、フィンの加工方法においても変形し易くなるおそれがあり、フィンの幅が2mmを超えると鋳型の寸法設定により鋳造でも出来る寸法領域である。
【0029】
溝部25の幅が0.2mm未満であると圧損が著しく大きくなり冷却能が低下して、2.0mmを超えると流速の低下が著しくなり、冷却能が低下する。溝部25の深さが2mm未満では圧損が大きくなり、20mmを超えることはフィン一体型基板1が厚くなる。溝部の幅(フィン間隔)が2mmを超えると鋳型の寸法設定により鋳造でも出来る領域であり、溝部の幅を0.2mmより細くすると、加工時の切削くずがつまり易くなる等の不具合が発生するおそれがある。
【0030】
溝部の深さが2mm未満では圧力損失が大きくなりすぎて、熱交換率が下がる。20mmより深くなると、流速が小さくなりすぎて熱交換率が下がる、加工時の切削くずがつまり易くなる、等の不具合が発生するおそれがある。
【0031】
以上説明したように構成されるフィン一体型基板1においては、金属ベース板20の厚さおよび材質・組成や、放熱フィン20aの幅およびピッチ等を上記のように規定したことや、液冷式のジャケット30を放熱フィン20aを収納するように取り付けたことにより、強度、冷却効率、放熱性に優れたフィン一体型基板1が得られる。
【0032】
次に、フィン一体型基板1において金属ベース板20に複数の放熱フィン20aを形成させる加工方法について説明する。まず溶湯接合法によってセラミックス基板の一方の面にAlまたはAl合金からなる金属回路板及び前記セラミックス基板の他方の面にAlまたはAl合金からなる放熱フィンが形成される前段階の金属ベース板(被切削材40)を接合する。図2は放熱フィン20aが形成される前段階の金属ベース板20であり、ベース部40aおよび被切削部40bから構成される被切削材40の斜視図である。ここで、被切削部40bが加工されて放熱フィン20aとなる部分である。また、図3は被切削材40を加工し、放熱フィン20aを形成させる溝入れ加工を行う場合の説明図である。なお、上記図1では、図中下方(金属ベース板20の下面)に放熱フィン20aが形成されるとして図示したが、図2および図3においては、説明のため被切削部40b(後の放熱フィン20a)が図中上方に向いているように図示し、以下ではこの図面の配置に沿って説明する。
【0033】
図2に示すように、被切削材40は略矩形状のベース部40aとベース部40aの中央部にベース部40aと一体的に構成されている略矩形状の被切削部40bからなる。なお、図2中に図示はしないが、ベース部40aの下面(図2中下方の面)にはセラミックス基板10と金属回路板15が接合されている。なお、被切削材40は単なる1個の略矩形状でもかまわない。その場合、周縁部の形成は、フィン加工の前あるいは後に、切削加工等で実施すればよい。
【0034】
被切削部40bに溝入れ加工を施工することによって放熱フィン20aを形成させる際には、先ず、図3(a)に示すように被切削材40を治具50によって固定し、その後、図3(b)に示すようにマルチカッター55によって被切削部40に切り込みを入れていくこととなる。
【0035】
ここで、図3(a)に示すように、治具50の形状はベース部40aを挿入できる形状となっており、治具50は被切削材40の下面に接合されたセラミックス基板10に接触しないように構成され、また、被切削部40bが溝入れ加工によって変形した場合にも、その変形した被切削部40bと治具50は接触しない構成となっている。治具50による被切削材40の固定は、被切削部40bの上面(図3中上方の面)に引張応力が負荷されるように行われる。即ち、図3(a)に示すように、ベース部40aを治具50に挿入し、例えばベース部40aの側面下方に圧力を加えるようにネジ50’の先端を押し当てて被切削材40を固定することで被切削部40bの上面に引張応力が負荷された状態で固定が行われる。
【0036】
そして、上述したように固定された被切削材40において、図3(b)に示すようにマルチカッター55を回転させながら被切削部40bの上面に押し当て、溝入れ加工を行う。ここで、マルチカッター55は複数枚の円盤型カッター55’を互いに平行になるように積層した構成となっており、これら円盤型カッター55’が高速で回転することで、対象物を切削するものである。溝入れ加工では、円盤型カッター55’の回転方向と被切削部40bの長手方向が平行となるようにマルチカッター55が被切削部40bに押し当てられ、その押し当てられた状態でもってマルチカッター55が被切削部40bの長手方向に移動することで加工が行われる。なお、本実施の形態では、上述したように、放熱フィン20a同士の間に形成される溝部25の深さは2〜20mmであることが好ましいため、マルチカッター55の被切削部40bに対する切込み深さも同様の2〜20mmであることが好ましい。
【0037】
また、ここでマルチカッター55の回転刃は交互刃であり、そのすくい角を10°以上とすることが好ましく、マルチカッター55の切削スピード(切削時の移動速度)は700mm/min以上であることが好ましい。このようにマルチカッター55による被切削部40bへの溝入れ加工時の条件を規定することにより、切り屑の排出効率が良好となり、溝入れ加工後に形成される放熱フィン20aにおけるビレ(波打ち形状)の発生を抑制することが可能となる。マルチカッター55の切削スピードは、さらに好ましくは1000mm/min以上である。
【0038】
以上、図3を参照して説明したような工程・条件でもって溝入れ加工を行うことにより、溝入れ加工後に形成される放熱フィン20aの変形が抑制されるとともに、治具50を用いて被切削部40bの上面に引張応力が負荷された状態で溝入れ加工を行うことで、マルチカッター55の切削によって生じる残留応力による切削後の被切削材40全体(金属ベース板20)の反りの発生を抑制することが可能となる。即ち、所望の形状である金属ベース板20(フィン一体型基板1)が精度よく製造されることとなる。
【0039】
以上、本発明の実施の形態の一例を説明したが、本発明は図示の形態に限定されない。当業者であれば、特許請求の範囲に記載された思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
【0040】
例えば、上記実施の形態では、治具50を用いて被切削部40bの上面に引張応力が負荷された状態で溝入れ加工を行うとしたが、マルチカッター55の切削によって生じる残留応力による切削後の被切削材40全体(金属ベース板20)の反りの発生を抑制することができれば良いため、非切削部40bの形状を、その中央部が端部より厚い形状としても良い。
【0041】
図4は被切削部40bの形状を、その中央部が端部より厚い形状(図4中、上に凸である形状)とした場合の被切削材40の側面断面図である。なお、非切削材40には溝入れ加工時にベース部40aの下面(図4中下方の面)にセラミックス基板10と金属回路板15が接合されていてもよい。
【0042】
図4に示すように被切削部40bの形状をその中央部が端部より厚い形状とすることにより、マルチカッター55による溝入れ加工(切削)が行われた後にその切削によって生じる残留応力によって、被切削部40bの溝入れ加工後の形状は平坦となり、所望の形状である金属ベース板20(フィン一体型基板1)が製造されることとなる。なお、被切削部40bを予めその中央部が端部より厚い形状にする際の中央部と端部の厚みの差については、適宜溝入れ加工を実験的に行うことで好ましい数値を得ることとすればよい。なお、このような被切削材をフィン加工すると中央部の溝の深さが深くなる。すなわちフィンの高さが高くなるが、この部分のフィンの先端を後工程でジャケットと接合しても良い。
【0043】
また、マルチカッター55の切削によって生じる残留応力による切削後の被切削材40全体(金属ベース板20)の反りの発生を抑制するため、溝入れ加工前に予め被切削材40全体の形状を反った形状としても良い。図5は被切削材40全体を反った形状(図5中、上に凸形状)とした場合の被切削材40の側面断面図である。
【0044】
図5に示すように予め被切削材40全体の形状を反った形状としておくことにより、マルチカッター55による溝入れ加工(切削)が行われた後にその切削によって生じる残留応力及びその変化によって、被切削部40bを含む被切削材40全体の溝入れ加工後の形状が平坦となり、所望の形状である金属ベース板20(フィン一体型基板1)が製造されることとなる。
【0045】
また、上記実施の形態では、図1に示すように金属ベース板20の下方(図1中に示す下方の面)の中央部一箇所に複数の放熱フィン20aが一体的に形成される構成について説明したが、本発明は必ずしもこの構成に限られるものではなく、例えば、図6に示すように金属ベース板20の下方の複数箇所にそれぞれ複数の放熱フィン20aが形成される構成としてもよい。さらには、図7に示すように複数の放熱フィン20aを金属ベース板20の下方から見て千鳥状の複数箇所に一体的に形成することも考えられる。
【0046】
図6、7は金属ベース板20の下方の複数箇所にそれぞれ複数の放熱フィン20aが複数箇所に一体的に形成される構成であるフィン一体型基板1’、および千鳥状の複数箇所に一体的に形成される構成であるフィン一体型基板1’’の説明図である。ここで、図6(a)、図7(a)はフィン一体型基板1’、1’’の平面図であり、図6(b)、図7(b)は図6(a)、図7(a)中のX方向(図6(a)、図7(a)下方向)から見た側面断面図であり、図6(c)、図7(c)は図6(a)、図7(a)中のY方向(図6(a)、図7(a)右方向)から見た側面断面図である。また、図6(a)、図7(a)には説明のため金属ベース板20の下面に形成される放熱フィン20aを破線で図示している。なお、フィン一体型基板1’、1’’においては、放熱フィン20aは図6(a)、図7(a)中のX方向から見て3列形成されているものとし、X方向から見て手前側(図6、図7の紙面下側)から第1列、第2列、第3列とする。
【0047】
図7(a)に示すように、フィン一体型基板1’’では、複数の放熱フィン20aが金属ベース板20の下方から見て千鳥状の複数箇所に形成される。即ち、フィン一体型基板1’をX方向(図7(a)下方向)から見た場合に、第1列の放熱フィン20a同士の間から第2列の放熱フィン20aが見えるような配置となっている。また、X方向から見て第1列の放熱フィン20aと第3列の放熱フィン20aは重なって見えるような配置となっていても良い。
【0048】
また、複数の放熱フィンを金属ベース板に非連続的に形成してもよく、例えば金属回路板に対応する金属ベース板の反対の面の位置にそれぞれ形成しても良い。なお、複数箇所に放熱フィン20aを形成した場合には、ジャケット30は各々に取り付けても良い。このように、複数の放熱フィン20aを金属ベース板20の下方の複数箇所に一体的に形成することにより、より冷却効率・放熱性の優れたフィン一体型基板1が製造されることとなる。
【0049】
また、上記実施の形態では、図1に示すように、放熱フィン20aを収納するように液冷式のジャケット30を取り付ける旨の説明をしたが、この時、放熱フィン20aの先端部(図1中の放熱フィン20a下端部)の少なくとも一部をジャケット30に接合することも考えられる。これにより、フィン一体型基板1における過渡熱抵抗の低減が実現され、放熱性の安定が図られることとなる。また冷却液の圧力でジャケットの底面がふくれるなどの形状変化を抑制することができる。なお、液冷式のシャケットを接合せずに、そのまま空冷(ガス冷)で使用しても良い。
【実施例】
【0050】
<実施例1>
本発明の実施例として、ベース厚のみを変更した上面に発熱素子を同条件で設置した4種類の金属ベース板(厚さ1.0mm、3.0mm、5.0mm、10.0mm)について、ベース厚の違いによる発熱素子の温度変化の違いについてシミュレーションによる検証を行った。
【0051】
図8は上記4種類の厚さの金属ベース板において、同条件(同一の入熱量)で発熱素子を発熱させた場合の非定常状態における発熱素子温度の違いをグラフとして表したものである。
【0052】
図8に示されたように、厚さ1.0mm、3.0mmの金属ベース板における発熱素子の温度と、厚さ5.0mm、10.0mmの金属ベース板における発熱素子の温度には差異があり、厚さ5.0mm以上の金属ベース板を用いた場合の方が、冷却効率が良いことが分かった。図8、および放熱性、強度等の要求特性から、最適な金属ベース板の厚さは3.0〜5.0mmであることが解った。その時の最適な放熱フィン20aの幅は0.7mm、最適な溝部25の幅は1〜5mm、最適な溝部25の深さは3.5mmであることがシミュレーション結果より推定された。このとき、素子の推定温度は金属ベース板の厚さが5.0mmの場合、厚さ1.0mmに対し約9%の低下が見込まれた。
【0053】
<実施例2>
次にサンプル1〜5のフィン一体基板を前述の方法で作成し、熱特性を測定した。ここで、用いた装置を図9に示し、図9中の金属ベース板、セラミック基板および金属回路板を抜き出したものが図10である。長さ35mm×幅35mm×厚さ0.6mmのAlN基板の一方の面に長さ31mm×幅31mm×厚さ0.6mmの金属回路板を接合し、前記AlN基板の他方の面にフィンの高さを含まない金属ベース板の厚さ(トッププレートの厚さ)が1mmで長さ69.5mm×幅69.5mmのものを形成した。また、トッププレートと一体となっているフィンの形状は下記に示す。なお、溝深さとフィンの高さは同一寸法である。
金属ベース板の材質はAlでビッカース硬度は21(Hv)であった。
この時のサンプルのフィン形状は以下の通りであり、フィンのビレの発生はなく、金属ベース板の反り量も100μm以下であった。
これに箱型の水冷ジャケットを冷却液がもれないようにネジ止めにより接合し、15℃の冷却水を流した。
放熱性の評価は、前記回路板表面に長さ5mm×幅5mmのマイクロヒーターを厚み10μmのシルバーグリース(9W/(m・K))を介して接触させた。また、マイクロヒーターの中央部に熱電対を接触させて温度を測定できるようにした。なお、熱電対はおもりで固定した。この状態で、マイクロヒーターを300Wで発熱させその温度上昇を測定した。その結果は以下の通りで、充分な放熱性を有することがわかった。

(サンプル形状)
溝幅 フィン幅 溝深さ 溝の数 フィンの表面積
mm mm mm mm2
サンプル1: 0.8 0.8 6 19 7,980
サンプル2: 1 0.6 5 21 7,350
サンプル3: 1
0.6 6 21 8,820
サンプル4: 1 0.6 7 21 10,290
サンプル5: 1 0.4 7 24 11,760

(放熱性測定結果1)
飽和熱抵抗(℃) 過渡熱抵抗(℃/sec)
サンプル1: 58.2 58.0
サンプル2: 57.0 58.1
サンプル3: 56.9 58.0
サンプル4: 56.8 58.4
サンプル5: 57.6 57.7
飽和熱抵抗はマイクロヒーターに電力を加えて2分後の温度を測定したもの。
過渡熱抵抗は、マイクロヒーターに電力を加えて0.1〜0.4秒の間の温度上昇の傾きを求めたもの。
【0054】
<実施例3>
過渡熱抵抗の測定について、マイクロヒーターに電力を加えて0.05〜0.15秒の間の温度上昇の傾きを求めた以外は、実施例2と同様にサンプルを作成し、評価した。その結果は以下の通りで、充分な放熱性を有することがわかった。
この結果より熱抵抗は約4.5(K/W)であった。

(サンプル形状)
溝幅 フィン幅 溝深さ 溝の数 フィンの表面積
mm mm mm mm2
サンプル6: 0.8 0.8 6 19 7,980
サンプル7: 1 0.4 7 24 11,760

(放熱性測定結果1)
飽和熱抵抗(℃) 過渡熱抵抗(℃/sec)
サンプル6: 61.3 76.2
サンプル7: 62.3 80.1
【0055】
<実施例4>
実施例2と同様の方法で金属ベース板を接合し、マルチカッターによりフィンの加工を行った。このときの加工速度を400mm/min、700mm/min、1200mm/minとした。加工速度(カッターの送り速度)が400mm/minのとき、フィンのビレが発生して良好な形状を得ることができなかった。700mm/min、1200mm/minでは良好な形状を得ることができた。
【0056】
<実施例5>
90mm×155mmのカーボン型に、65mm×35mmの3枚のセラミックス基板をセットした。セラミックス基板は、(1)熱伝導率170W/(m・K)、厚さ0.635mmのAlN、(2)熱伝導率70W/(m・K)、厚さ0.32mmのSi、(3)熱伝導率が20W/(m・K)、厚さ0.38mmのAlの3種類について実施した。このカーボン型を、630℃の窒素雰囲気の炉に投入した。カーボン型には、予め、回路部、ベース板部、フィンブロック部(外周のテーパー2°)の空隙(空間)が設けられており、この空隙にAl又はAl合金の溶湯を流し込み、接合、凝固させた。Al又はAl合金溶湯の材質は、(4)Alとして熱伝導率210W/(m・K)、ビッカース硬度24の純アルミニウム(Al:99.9質量%以上)、(5)Al合金として熱伝導率190W/(m・K)、ビッカース硬度28のAl−0.5質量%Si−0.05質量%B合金の2種類とした。
【0057】
次に、放熱フィンの機械加工を行った。フィン幅1mm、溝部の幅0.9mm、加工ピッチ1.9mm、深さ6mmとした。0.9mm厚さの刃先ストレートの刃を38枚有するハイスメタルソーを用い、回転数5000rpm、切削スピード1200mm/minとした。ワンパスで加工し、加工後脱脂した。このとき、いずれのサンプルも、形成されたフィンにビレの発生はなかった。その後、(6)オフセットプレス加工無し、(7)オフセットプレス加工有り、の2通りについて実施し、(7)については、串状の金型を用いて、一列おきのフィンのみプレスによりフィンを曲げてオフセットさせて千鳥配置とした。
【0058】
また、回路部に回路パターン形状のUV硬化型レジストインクをスクリーン印刷し、UVキュア後、塩化鉄溶液で回路部における不要部分をエッチング除去し、レジストインクを剥離して回路パターンを形成した。そして、回路パターンアルミ部のみ接液するように、ダブルジンケート処理し、電気Niメッキを膜厚平均5μmになるように実施した。
【0059】
以上の方法で形成したところ、いずれの基板も、ベース板の平坦度は100μm以内、回路部の平坦度も100μm以内であった。
【0060】
さらに、冷却ケースの取り付けを、以下の2つの方法により行った。(8)Al−Si−Mg系ロウ材を使い、A1050製の冷却ケースを大気雰囲気600℃でロウ付けした。(9)一体基板とA1050製の冷却ケースにOリングを介してねじ止めした。
【0061】
以上により製造したフィン一体型基板について、放熱性、信頼性、耐食性の評価を行った。
【0062】
放熱性評価は、25℃の冷却水を10L/min流し、素子に見立てたヒータを回路パターン上に設置し、飽和熱抵抗を測定した。セラミックス基板が(1)、(2)のサンプルについて、Al溶湯の材質(4)または(5)、オフセットプレス加工の有無(6)または(7)、冷却ケースの取り付け方法(8)または(9)のいずれの組み合わせにおいても、約0.25K/Wであった。
【0063】
信頼性評価は、−40℃で5分間保持、125℃で5分間保持を1サイクルとする液槽(液相)ヒートサイクル試験を行った。セラミックス基板が(1)、(2)のサンプルについては、液槽ヒートサイクル試験3000回後にセラミックスにクラックは無く、表裏油中AC9kVの耐電圧試験をパスした。セラミックス基板が(3)のサンプルについては、液槽ヒートサイクル試験300回後にセラミックスにクラックは無く、表裏油中AC5kVの耐電圧試験をパスした。また、いずれのタイプも、液槽ヒートサイクル3000回後のセラミックス下のアルミの疲労破壊は沿面から2mm以下であった。
【0064】
耐食性評価は、5000h、50%LLC(75℃)を通水し、孔食を調査したが、全てのタイプで、孔食は確認されなかった。以上の結果を表1に示す。
【0065】
【表1】

【0066】
<実施例6>
セラミックス基板として、30mm×30mm×0.64mmの大きさのAlNセラミックス、金属ベース板(略矩形状のベース部とベース部の中央部にベース部と一体的に構成されている略矩形状の被切削部からなる被切削材)として、ベース部が70mm×70mm×7mm、被切削部が60mm×60mm×6mmの大きさのアルミとした試験体を鋳造法で作製した。また、金属ベース板がベース部のみである(被切削部がない)以外は前記試験体と同様の形状である試験体を、前記鋳造法と同様の方法で作製した。
【0067】
これらの試験体を、以下に示す本発明の実施例であるサンプル31、32と比較例1、2のそれぞれのクランプ方法でフィン加工した。フィン幅1mm、溝部の幅0.9mm、加工ピッチ1.9mm、深さ6mmとした。0.9mm厚さの刃先ストレートの刃を35枚有するハイスメタルソーを用い、回転数5000rpm、切削スピード1200mm/minで加工した。なお、サンプル31、32及び比較例2は被切削部とベース部からなる前記試験体、比較例1はベース部のみからなる前記試験体を前記フィン加工に用いた。
【0068】
図11(a)はサンプル31のクランプ方法を示す。下方にある押治具61で試験体を押すことで、弱い引張応力を付与して、切削加工し易くできる。また、下に凸の形状の場合には、押治具61で矯正しながら切削加工できる。図11(b)はサンプル32のクランプ方法であり、この場合には引張力で矯正しながら切削加工できるので、放熱フィンの平面度を改善できる。
【0069】
一方、図11(c)に示す比較例1のクランプ方法では、横押しの力が弱い場合、切削時の負荷によって試験体が飛散する場合がある。一方、横押しが強過ぎる場合には、切削中に変形することがあった。図11(d)は比較例2を示し、(c)のような横押しクランプではなく上方からのクランプ62に変えると、問題なく切削加工できる。しかし、この方法では、切削加工後の放熱フィンの平面度には鋳造時の平面度が影響するうえ、フィンのビレの発生のおそれがあり、注意が必要である。また、切削加工中に圧縮応力が試験体に発生した場合、切削抵抗が増加することがある。
【産業上の利用可能性】
【0070】
本発明は、金属−セラミックス接合基板に適用され、特にセラミックス基板の両面にそれぞれアルミニウムまたはアルミニウム合金からなる金属回路板および金属ベース板が接合され、金属ベース板のセラミックス基板の接合されていない面から突出して互いに所定の間隔で延びる板状の放熱フィンが金属ベース板と一体的に形成されるフィン一体型基板およびその製造方法に適用される。
【符号の説明】
【0071】
1、1’ 一体型フィン基板
10 セラミックス基板
15 金属回路板
20 金属ベース板
20a 放熱フィン
25 溝部
30 ジャケット
40 被切削材
40a ベース部
40b 被切削部
50 治具
50’ ネジ
55 マルチカッター
A 冷却液

【特許請求の範囲】
【請求項1】
セラミックス基板の一方の面にアルミニウムまたはアルミニウム合金からなる金属回路板が接合されると共に、他方の面にアルミニウムまたはアルミニウム合金からなる平板状の金属ベース板の一方の面が接合され、前記金属ベース板の他方の面から突出して互いに所定の間隔で配置するように複数の放熱フィンが前記金属ベース板と一体的に形成されたフィン一体型基板において、
前記金属ベース板の熱伝導率が170W/(m・K)以上であり、
前記金属ベース板の硬度がビッカース硬度で20〜40(Hv)であり、
前記放熱フィンの幅が0.2〜2.0mmであり、
複数の前記放熱フィン同士の間に形成される溝部の幅が0.2〜2.0mmであり、
前記溝部の深さが2〜20mmである、フィン一体型基板。
【請求項2】
前記金属ベース板の前記放熱フィンが形成されていない部分の厚さが0.5〜5mmである、請求項1に記載のフィン一体型基板。
【請求項3】
複数の前記放熱フィンは前記金属ベース板に対して略垂直方向に突出するように形成され、かつ、互いに略平行である、請求項1または2に記載のフィン一体型基板。
【請求項4】
前記金属ベース板はSi、Mg、Zn、Bi、Snから選ばれる少なくとも1つの元素を含有するアルミニウム合金である、請求項1〜3のいずれかに記載のフィン一体型基板。
【請求項5】
前記金属ベース板の結晶粒径は5mm以下である、請求項1〜4のいずれかに記載のフィン一体型基板。
【請求項6】
複数の前記放熱フィンの配置は千鳥状である、請求項1〜5のいずれかに記載のフィン一体型基板。
【請求項7】
複数の前記放熱フィンが収納される箱型形状の液冷式のジャケットを備え、前記ジャケットは前記金属ベース板に接合される、請求項1〜5のいずれかに記載のフィン一体型基板。
【請求項8】
前記ジャケットと少なくとも一部の前記放熱フィンの先端部が接合されている、請求項7に記載のフィン一体型基板。
【請求項9】
セラミックス基板の一方の面にアルミニウムまたはアルミニウム合金からなる金属回路板が接合されると共に、他方の面にアルミニウムまたはアルミニウム合金からなる平板状の金属ベース板の一方の面が接合され、前記金属ベース板の他方の面から突出して互いに所定の間隔で配置するように複数の放熱フィンが前記金属ベース板と一体的に形成されたフィン一体型基板を製造するフィン一体型基板の製造方法であって、
前記金属回路板の前記セラミックス基板との接合は溶湯接合法によって行われ、
前記金属ベース板の一部である被切削部への複数の放熱フィンの形成は、前記被切削部の放熱フィンを形成させる面に引張応力を負荷させるように治具による固定を行い、引張応力が負荷された面上に複数枚の円盤型カッターを積層したマルチカッターを回転させながら移動させて複数の溝を形成させる溝入れ加工を行うことで形成される、フィン一体型基板の製造方法。
【請求項10】
前記金属回路板は、板部およびその板部中央近傍において突出するブロック部によって一体的に構成され、前記放熱フィンを形成させる前記ブロック部上の面は凸形状である、請求項9に記載のフィン一体型基板の製造方法。
【請求項11】
前記ブロック部の中央部は、前記ブロック部の周縁部より厚い、請求項10に記載のフィン一体型基板の製造方法。
【請求項12】
前記マルチカッターの回転刃は交互刃であり、かつすくい角が10°以上である、請求項9〜11のいずれかに記載のフィン一体型基板の製造方法。
【請求項13】
前記マルチカッターの切削スピードは700mm/min以上である、請求項9〜12のいずれかに記載のフィン一体型基板の製造方法。
【請求項14】
前記治具は前記セラミックス基板に非接触な形状であり、かつ、前記溝入れ加工における金属ベース板の変形に非干渉な位置に配置される、請求項9〜12に記載のフィン一体型基板の製造方法。
【請求項15】
前記治具は真空吸引方式であり、その吸引力は制御可能である、請求項9〜14のいずれかに記載のフィン一体型基板の製造方法。
【請求項16】
前記溝入れ加工後に、放熱フィンが形成された前記金属ベース板の面上に、前記放熱フィンを収納する箱型形状の液冷式のジャケットを接合する、請求項9〜15のいずれかに記載のフィン一体型基板の製造方法。
【請求項17】
前記金属ベース板と前記ジャケットの接合がろう接である、請求項16に記載のフィン一体型基板の製造方法。
【請求項18】
前記放熱フィンの少なくとも一部の先端部と前記ジャケットを接合する、請求項16または17に記載のフィン一体型基板の製造方法。
【請求項19】
前記ジャケットにおいて、前記放熱フィン先端部と前記ジャケットの接合が行われる部分は、他の部分に比べ薄肉化されている、請求項16〜18のいずれかに記載のフィン一体型基板の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate


【公開番号】特開2011−166122(P2011−166122A)
【公開日】平成23年8月25日(2011.8.25)
【国際特許分類】
【出願番号】特願2011−386(P2011−386)
【出願日】平成23年1月5日(2011.1.5)
【出願人】(000004743)日本軽金属株式会社 (627)
【出願人】(506365131)DOWAメタルテック株式会社 (109)
【Fターム(参考)】