説明

制御装置

【課題】変速比の小さい変速段への切り替えが行われる場合において、変速動作による変速ショックの発生の抑制と、エネルギー効率の向上とを両立させる。
【解決手段】エンジン及び回転電機に駆動連結される入力部材と、車輪に駆動連結される出力部材と、複数の摩擦係合要素を有し入力部材の回転速度を変速して出力部材に出力する変速機構と、を備えた変速装置を制御するための制御装置。入力部材に入力される入力トルクの変化に基づいて、判定基準時間後の入力トルクの予測値である予測入力トルクが負となる負トルク予測成立状態で、変速機構により変速比の小さい変速段への切り替えが行われるとき、解放側油圧を低下させて解放側要素をスリップさせ、変速過程の全体に亘って、解放側要素のスリップ状態を維持させる特別変速制御を実行する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、エンジン及び車両の減速要求に基づいて回生トルクを発生可能な回転電機に駆動連結される入力部材と、車輪に駆動連結される出力部材と、複数の摩擦係合要素を有し、複数の摩擦係合要素の係合及び解放が制御されることにより複数の変速段が切り替えられ、入力部材の回転速度を各変速段の変速比で変速して出力部材に出力する変速機構と、を備えた変速装置を制御するための制御装置に関する。
【背景技術】
【0002】
エンジンに駆動連結される入力部材と、車輪に駆動連結される出力部材と、複数の摩擦係合要素を有し、複数の摩擦係合要素の係合及び解放が制御されることにより複数の変速段が切り替えられ、入力部材の回転速度を各変速段の変速比で変速して出力部材に出力する変速機構と、を有する変速装置を備えた車両用駆動装置として、特許文献1に記載された装置が既に知られている。一般に、このような駆動装置では、変速装置において、隣り合う二つの変速段の間で変速段を切り替える際には、摩擦係合要素の係合及び解放が制御され、いわゆる掛け替え変速が行われる。この掛け替え変速では、通常、解放される側の摩擦係合要素は変速動作の初期段階で比較的速やかに完全解放されると共に、係合される側の摩擦係合要素は半係合状態でスリップしながら徐々に係合させられる。このことは、車両のアクセル開度が所定値以下の状態で変速比の小さい変速段への切り替え(アップシフト)が行われる場合にも、当然に当てはまる。
【0003】
これに対して、この特許文献1の変速装置は、制御装置により、車両のアクセル開度が所定値以下で行われるアップシフト時に、変速段の切り替えの際に解放される側の摩擦係合要素となる解放側要素に対する作動油の油圧を、当該解放側要素が係合開始直前とされる解放保証圧と僅かに係合する係合保証圧との間で切り替える解放側摩擦係合要素制御を実行するように構成されている。このような解放側摩擦係合要素制御を実行することにより、車両のアクセル開度が所定値以下の状態でアップシフトが行われるいわゆるオフアップ変速時に、ダウンシフト(変速比の大きい変速段への切り替え)の判断がなされると直ちにダウンシフト動作に移行することが可能となっている。なお、特許文献1の解放側摩擦係合要素制御では、解放側要素に対する作動油の油圧は、当該解放側要素のストロークエンド圧を挟んで所定の圧力幅(ΔP2)で上昇及び低下されることにより、解放保証圧と係合保証圧との間で切り替えられる。このような解放側摩擦係合要素制御では、変速段の切り替えの際には、解放側要素は半係合状態でスリップする状態と完全解放状態とを交互に繰り返すことになる。
【0004】
一方、駆動力源としてエンジンと回転電機とを併用するハイブリッド車両に用いる車両用駆動装置の一例として、例えば下記の特許文献2に記載された装置が知られている。
このようなハイブリッド車両用の駆動装置でも、変速装置において、オフアップ変速が行われる場合がある。この場合も、一般的には掛け替え変速が行われ、解放側要素は変速動作の初期段階で比較的速やかに完全に解放されると共に、係合される側の摩擦係合要素は半係合状態でスリップしながら徐々に係合させられる。なお、回転電機は、車両の減速要求に基づいて回生トルクを発生可能に構成されている。
【0005】
ここで、駆動力源としてエンジンのみを備えた通常の車両の場合や、ハイブリッド車両であっても回転電機が回生トルクを出力しない場合等には、オフアップ変速時には入力部材に作用する負トルクが小さく、一般的な掛け替え変速を伴う変速制御を行ったとしても入力部材の回転速度はエンジン内の各部の摩擦力等により減速するだけであり、その変化は緩やかである。そのため、係合される側となる係合側要素を係合させた際に変速ショックが生じることが問題になることはほとんどない。しかし、特許文献2のハイブリッド車両用の駆動装置に備えられる変速装置において、アクセル開度が所定値以下の状態でアップシフトが行われる場合に車両の運転者の意思によりブレーキ操作が行われる場合には、回転電機による回生制動が行われる場合がある。そのような場合には、上記のような通常通りの掛け換え変速が行われると、回転電機が出力する比較的大きな負トルク(回生トルク)により入力部材の回転速度は大きく引き下げられて急激に変化し、変速ショックが生じる可能性が高い。そのため、特許文献2に記載された車両用駆動装置では、回転電機が回生を行う際には、回転電機が出力する負トルクの大きさを一定の大きさ以下に制限するように構成されている。これにより、回転電機に駆動連結される入力部材の回転速度が急激に低下して、車両に変速ショックが生じるのを抑制している。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2002−130453号公報
【特許文献2】特開2008−094332号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
しかし、駆動力源としてエンジンと回転電機とを備えたハイブリッド車両用の駆動装置の変速装置において、特許文献2のように回生トルクの大きさを制限する構成とすると、変速ショックの発生は抑制できるが、その分だけ回生できるエネルギーが減少するので、エネルギー効率が低下してしまうという問題がある。なお、ハイブリッド車両用の駆動装置の変速装置において、特許文献1に記載された解放側摩擦係合要素制御のような油圧制御を行うことも不可能ではない。しかし、解放側要素に対する作動油の油圧が解放側要素のピストンのストロークエンド圧付近で上下され、当該解放側要素が僅かにスリップする状態と完全に解放される状態とを交互に繰り返すだけでは、回生エネルギーの増大効果の実効性は低くならざるを得ない。
【0008】
そこで、例えばオフアップ変速時等、変速比の小さい変速段への切り替えが行われる場合において、変速動作による変速ショックの発生の抑制と、エネルギー効率の向上とを両立させることが可能な技術の実現が望まれる。
【課題を解決するための手段】
【0009】
この目的を達成するための、本発明に係るエンジン及び車両の減速要求に基づいて回生トルクを発生可能な回転電機に駆動連結される入力部材と、車輪に駆動連結される出力部材と、複数の摩擦係合要素を有し、前記複数の摩擦係合要素の係合及び解放が制御されることにより複数の変速段が切り替えられ、前記入力部材の回転速度を各変速段の変速比で変速して前記出力部材に出力する変速機構と、を備えた変速装置を制御するための制御装置の特徴構成は、前記入力部材に入力される入力トルクの変化に基づいて、所定の判定基準時間後の前記入力トルクの予測値である予測入力トルクが負となる負トルク予測成立状態で、前記変速機構により変速比の小さい変速段への切り替えが行われるとき、解放される側の摩擦係合要素となる解放側要素に対する作動油の油圧である解放側油圧を低下させて前記解放側要素をスリップさせ、当該解放側要素がスリップを開始した時点から、前記出力部材の回転速度に変速段の切替後の変速比を乗算した回転速度と前記入力部材の回転速度とが同期する時点までの変速過程の全体に亘って、前記解放側要素のスリップ状態を維持させる特別変速制御を実行する点にある。
【0010】
なお、本願では、「スリップ状態」は完全係合状態と完全解放状態との間の半係合状態を意味し、より具体的には、対象となる摩擦係合要素の両側の係合部材が所定の差回転速度を有しつつ入力側回転部材と出力側回転部材との間の駆動力の伝達が行われる状態を意味する。
また、「回転電機」は、モータ(電動機)、ジェネレータ(発電機)、及び必要に応じてモータ及びジェネレータの双方の機能を果たすモータ・ジェネレータのいずれをも含む概念として用いている。
また、「駆動連結」とは、2つの回転要素が駆動力を伝達可能に連結された状態を指し、当該2つの回転要素が一体的に回転するように連結された状態、或いは当該2つの回転要素が一又は二以上の伝動部材を介して駆動力を伝達可能に連結された状態を含む概念として用いている。このような伝動部材としては、回転を同速で又は変速して伝達する各種の部材が含まれ、例えば、軸、歯車機構、ベルト、チェーン等が含まれる。また、このような伝動部材として、回転及び駆動力を選択的に伝達する係合要素、例えば摩擦クラッチや噛み合い式クラッチ等が含まれていてもよい。
【0011】
上記の特徴構成によれば、所定の判定基準時間後における入力トルクの予測値である予測入力トルクが負となることに基づいて、所定の判定基準時間後に回転電機が回生を行う可能性があることを事前に予測することができる。そして、予測入力トルクが負となる負トルク予測成立状態で変速比の小さい変速段への切り替えが行われる場合に、解放側油圧を低下させて変速過程の全体に亘って解放側要素をスリップ状態に維持させることにより、変速過程の全体に亘って、出力部材からの回転駆動力の一部が解放側要素を介して入力部材側に伝達される状態が維持される。そのため、変速動作中に回生制動を行うために回転電機に比較的大きな負トルクを出力させる場合であっても、当該出力部材から伝達される回転駆動力により入力部材の回転速度が急激に変化することが抑制される。よって、変速ショックの発生を抑制することができる。また、解放側油圧の制御を行なうだけで上記のように変速ショックの発生が抑制できるので、変速過程の初期段階で比較的速やかに解放側要素を完全に解放してしまう場合とは異なり、回転電機が出力する負トルク(回生トルク)の大きさを制限する必要がない。よって、回生できるエネルギーが減少する等の不都合が生じることがなく、エネルギー効率を高く維持させることができる。従って、上記の特徴構成によれば、変速比の小さい変速段への切り替えが行われる場合において、変速ショックの発生の抑制とエネルギー効率の向上とを両立させることが可能となる。
特に、上記の特徴構成によれば、負トルク予測成立状態であることを判定することにより、所定の判定基準時間後に回転電機が回生を行う可能性があることを事前に予測して、解放側要素をスリップ状態に維持させる特別変速制御を比較的早期に開始することができる。よって、エネルギー効率をより高く維持させることができる。
【0012】
ここで、前記入力トルクの時間変化率である入力トルク変化率を所定周期で取得すると共に、その入力トルク変化率に基づいて予測トルク変化率を導出し、現時点の前記入力トルクと前記予測トルク変化率とに基づいて、前記予測入力トルクを導出する構成とすると好適である。
【0013】
この構成によれば、所定周期で取得される入力トルク変化率に基づいて導出される入力トルク変化率と現時点の入力トルクとに基づいて、予測入力トルクを適切に導出することができる。よって、負トルク予測成立状態であるか否かを適切に判定することができる。
【0014】
また、前記予測トルク変化率を所定周期で演算し、最新の前記入力トルク変化率と前回の前記予測トルク変化率とを所定の比率で加算して最新の前記予測トルク変化率を導出し、その最新の予測トルク変化率に前記判定基準時間を乗算した値と、現時点の前記入力トルクとを加算して前記予測入力トルクを導出する構成とすると好適である。
【0015】
この構成によれば、最新の入力トルク変化率と前回の予測トルク変化率とを所定の比率で加算することで、過去の入力トルク変化率の寄与分が反映された状態の最新の予測トルク変化率を導出することができる。よって、入力トルクが瞬時的な変動を繰り返しながら変化する場合であっても、全体的な変化傾向を示す指標として予測トルク変化率を導出することができる。そして、このようにして導出された最新の予測トルク変化率に判定基準時間を乗算した値と現時点の入力トルクとを加算することで、現時点における判定基準時間後の予測入力トルクを所定周期で適切に導出することができる。
【0016】
また、前記予測入力トルクの大きさに応じた値であって、かつ、前記予測入力トルクが負の場合には前記解放側要素のピストンのストロークエンド圧以上の値となる第一制限油圧が設定され、前記特別変速制御では、前記変速過程の全体に亘って、前記解放側油圧を前記第一制限油圧以上の大きさに維持させる構成とすると好適である。
【0017】
この構成によれば、予測入力トルクが負の場合には、解放側油圧が確実に解放側要素のピストンのストロークエンド圧以上の圧に維持されるので、解放側要素のスリップ状態を適切に実現できる。また、その際、解放側油圧が予測入力トルクの大きさに応じた圧に維持されるので、予測入力トルクの大きさに応じて解放側要素のスリップ量を適切に調節することができる。
【0018】
また、前記第一制限油圧が、前記予測入力トルクが負方向に変化するに従って大きくなる値に設定される構成とすると好適である。
【0019】
予測入力トルクが負の値をとる場合には、その絶対値が大きいほど回転電機が出力する負トルク(回生トルク)が大きくなると予測できる。
この構成では、負の値をとる予測入力トルクの絶対値が大きいほど第一制限油圧を大きくしてスリップ量を低減させ、出力部材から解放側要素を介して入力部材側に伝達される回転駆動力の割合を大きくする。よって、回転電機により回生されるエネルギー量を大きく確保することができる。また、予測入力トルクが小さいほど第一制限油圧を小さくしてスリップ量を増大させ、出力部材から解放側要素を介して入力部材側に伝達される回転駆動力の割合を小さくする。よって、過大な回転駆動力が出力部材から解放側要素を介して入力部材側に伝達されるのを抑制することができる。
【0020】
また、前記負トルク予測成立状態ではない場合でも、車両のアクセル開度が所定値以下のアクセル低開度状態で前記変速機構により変速比の小さい変速段への切り替えが行われる場合には、前記特別変速制御を実行する構成とすると好適である。
【0021】
負トルク予測が成立しない場合、すなわち予測入力トルクが負の値とならない場合であっても、アクセル開度が所定値以下のアクセル低開度状態で変速機構により変速比の小さい変速段への切り替えが行われるような状況では、その後回転電機による回生制動が行われる可能性が高い。
この構成によれば、アクセル低開度状態で変速機構により変速比の小さい変速段への切り替えが行われる場合には、特別変速制御を実行することによりその後行われると予想される回生制動に適切に備えることができる。そして、実際に回生制動が行われた場合には、回転電機により回生されるエネルギー量を大きく確保してエネルギー効率をより高く維持させることができる。
【0022】
また、前記アクセル開度に応じた値であって、かつ、前記アクセル低開度状態では前記解放側要素のピストンのストロークエンド圧以上の値となる第二制限油圧が設定され、前記特別変速制御では、前記変速過程の全体に亘って、前記解放側油圧を前記第二制限油圧以上の大きさに維持させる構成とすると好適である。
【0023】
この構成によれば、アクセル低開度状態では、変速過程の全体に亘って解放側油圧が少なくとも解放側要素のピストンのストロークエンド圧以上の圧に維持されるので、回転電機の出力トルクによらずに解放側要素のスリップ状態を適切に実現できる。よって、回転電機が実際に負トルクを出力している場合に上記したような効果を得ることができるのはもちろんのこと、回転電機が実際には負トルクを出力してない場合にも、その後負トルクを出力する場合のために適切に備えることができる。よって、車両のアクセル開度が所定値以下の状態で変速比の小さい変速段への切り替えが行われる場合において、回転電機が変速過程の初期段階から負トルクを出力する場合、及び回転電機が変速過程の初期段階では負トルクを出力せずに変速過程の途中から負トルクを出力する場合の双方で、変速ショックの発生の抑制とエネルギー効率の向上とを両立させることが可能となる。
【0024】
また、変速段の切り替えに要する目標時間を表す予め設定された目標変速時間と、変速段の切り替え前後における前記入力部材の回転速度の差を表す回転速度変化幅と、に基づいて前記入力部材の目標回転速度変化率が決定され、前記特別変速制御では、前記入力部材の実際の回転速度変化率が前記目標回転速度変化率に追従するように、前記解放側油圧の低下に同調させて、係合される側の摩擦係合要素となる係合側要素に対する作動油の油圧である係合側油圧を変化させる構成とすると好適である。
【0025】
本願の特徴構成に従い、変速過程の全体に亘って解放側要素をスリップ状態に維持させる場合、回転電機の出力トルクの大きさ次第では、入力部材の回転速度の低下が緩慢となって変速時間が徒に長くなる可能性がある。この構成によれば、解放側要素をスリップ状態に維持することで緩慢となりがちな入力部材の回転速度の低下を係合側油圧の変化により補助して、目標変速時間内で変速動作を適切に終了させることができる。
【0026】
また、前記目標回転速度変化率に基づいて、前記入力部材の回転速度を当該目標回転速度変化率で変化させるのに必要な基準油圧変化量が決定され、前記基準油圧変化量に基づき、前記変速過程の進行度と前記回転電機の出力トルクとに応じて前記係合側油圧を変化させる構成とすると好適である。
【0027】
回転電機が出力する負トルク(回生トルク)の絶対値が小さいほど、解放側要素をスリップ状態に維持させることにより入力部材の回転速度の低下が緩慢となり易い。そして、この入力部材の回転速度の低下を係合側油圧の変化により補助する場合には、変速過程の初期段階から実行する構成とすることが好ましい。
上記の構成によれば、変速過程の進行度と回転電機の出力トルクとに応じて係合側油圧を適切に変化させることができる。また、係合側油圧を更に基準油圧変化量に基づいて変化させることで、入力部材の回転速度を目標回転速度変化率で変化させて、目標変速時間内で変速動作を適切に終了させることができる。
【0028】
より具体的には、前記変速過程の開始時における前記係合側油圧を基準とし、前記変速過程の進行度と前記回転電機の出力トルクとに応じて予め設定された所定の変化係数と、前記基準油圧変化量と、に基づいて前記係合側油圧を変化させる構成で、前記変化係数は、前記変速過程の進行度に応じて設定される複数段階のうち少なくとも最初の段階では当該変速過程が進行するに従って大きくなると共に、少なくとも最後の段階では当該変速過程が進行するに従って小さくなり、前記回転電機の出力トルクが負の場合には、当該回転電機の出力トルクが正方向に変化するに従って大きくなる値に設定される構成とすると好適である。
【0029】
この構成によれば、変化係数を、変速過程の進行度に応じて設定される複数段階のうちの最初の段階では当該変速過程が進行するに従って大きくなると共に、最後の段階では当該変速過程が進行するに従って小さくなるように設定することで、入力部材の回転速度の低下を補助する要請の大きい最初の段階で、係合側油圧を上昇させて入力部材の回転速度の低下を適切に補助することができる。また、最後の段階では、係合側油圧を低下させて入力部材の回転速度の過度の低下を抑制することができる。
また、変化係数を、回転電機の出力トルクが負の場合には、当該回転電機の出力トルクが正方向に変化する(すなわち、回転電機が出力する負トルクが正方向に変化してゼロに近づく)に従って大きくなるように設定することで、入力部材の回転速度の低下を補助する要請の大きい、回転電機が出力する負トルクの絶対値が小さい状況で、係合側油圧を大きく上昇させて入力部材の回転速度の低下を適切に補助することができる。
そして、上記の構成によれば、変速過程の進行度と回転電機の出力トルクとに応じた変化係数と基準油圧変化量とに基づいて、比較的単純な演算に基づいて係合側油圧を適切に変化させることができる。
【0030】
また、前記回転電機の出力トルクの大きさに応じた減圧変化率で前記解放側油圧を減少させる変化率制御を実行する構成とすると好適である。
【0031】
この構成によれば、解放側油圧を徐々に減少させて解放側要素がスリップする割合を徐々に大きくしていくという比較的単純な制御を行なうことにより、入力部材の回転速度が急激に変化するのを抑制することができる。このとき、回転電機が出力する回生トルクの大きさに応じて、入力部材の回転速度を緩やかに変化させるために必要となる出力部材から伝達される回転駆動力の大きさが異なることから、解放側油圧を減少させる際の減圧変化率を回転電機が出力する回生トルクの大きさに応じて変化させることにより、入力部材の回転速度を適切に変化させて、変速ショックの発生を抑制することができる。
【0032】
また、前記変速過程の初期段階では、前記回転電機の出力トルクの大きさに応じた減圧変化率で前記解放側油圧を減少させる変化率制御を実行し、当該変化率制御を実行した後、所定の切替点以降で、前記入力部材の回転速度が、前記変化率制御後の各時点における目標回転速度となるように前記解放側油圧を変化させる回転速度制御を実行する構成とすると好適である。
【0033】
この構成によれば、変速過程の初期段階では、解放側油圧を徐々に減少させて解放側要素がスリップする割合を徐々に大きくしていくという比較的単純な制御を行なうことにより、入力部材の回転速度が急激に変化するのを抑制することができる。また、所定の切替点以降の変速過程の後期段階では、目標回転速度に応じて逐次解放側油圧を変化させることで、各時点における入力部材の回転速度を精密にコントロールしつつ適切に変化させて、入力部材の回転速度が急激に変化するのを抑制することができる。従って、全体として比較的簡単な制御で、変速ショックの発生を抑制することができる。
なお、この場合の所定の切替点は、入力部材の回転速度、変化率制御が開始されてからの時間、或いは解放側油圧の油圧レベル等に基づいて設定される構成とすると好適である。
【図面の簡単な説明】
【0034】
【図1】本実施形態に係る変速装置及び制御ユニットを含む車両用駆動装置の構成を示す模式図である。
【図2】本実施形態に係る制御ユニットの構成を示すブロック図である。
【図3】本実施形態に係る変速マップの一例を示す図である。
【図4】本実施形態に係る第一制限油圧マップの一例を示す図である。
【図5】本実施形態に係る第二制限油圧マップの一例を示す図である。
【図6】本実施形態に係る変化係数マップの一例を示す図である。
【図7】本実施形態に係る変速過程を説明するための説明図である。
【図8】回転速度制御における解放側油圧の制御方法を説明するための説明図である。
【図9】本実施形態に係る増圧補正制御を説明するための説明図である。
【図10】本実施形態に係る変速制御処理の全体の処理手順を示すフローチャートである。
【図11】本実施形態に係る解放側特別変速制御処理の処理手順を示すフローチャートである。
【図12】本実施形態に係る係合側特別変速制御処理の処理手順を示すフローチャートである。
【図13】本実施形態に係る増圧補正制御処理の処理手順を示すフローチャートである。
【図14】本実施形態に係る通常変速制御処理の一例を説明するためのタイミングチャートである。
【図15】本実施形態に係る特別変速制御処理の一例を説明するためのタイミングチャートである。
【図16】本実施形態に係る特別変速制御処理の一例を説明するためのタイミングチャートである。
【図17】本実施形態に係る特別変速制御処理の一例を説明するためのタイミングチャートである。
【図18】本実施形態に係る特別変速制御処理の一例を説明するためのタイミングチャートである。
【図19】本実施形態に係る変速制御処理の一例を説明するためのタイミングチャートである。
【図20】本実施形態に係る変速制御処理の一例を説明するためのタイミングチャートである。
【発明を実施するための形態】
【0035】
本発明の実施形態について、図面を参照して説明する。本実施形態においては、本発明に係る制御装置をハイブリッド車両用の車両用駆動装置1の一部を構成する変速装置2に適用した場合を例として説明する。図1は、本実施形態に係る変速装置2を含む車両用駆動装置1の駆動伝達系及び油圧制御系の構成を示す模式図である。この図において、実線は駆動力の伝達経路を示し、破線は作動油の供給経路を示し、一点鎖線は電力の供給経路を示している。この図に示すように、本実施形態に係る車両用駆動装置1は、概略的には、エンジン11及び回転電機12を駆動力源として備え、これらの駆動力源の駆動力をトルクコンバータ13及び変速機構14を介して車輪16へ伝達する構成となっている。また、この車両用駆動装置1は、トルクコンバータ13や変速機構14等の各部に所定油圧の作動油を供給するための油圧制御装置17を備えている。図2は、本実施形態に係る制御ユニット31の構成を示すブロック図である。この図において、実線は信号の伝達経路を示し、白抜き矢印は作動油の供給経路を示している。この図に示すように、本実施形態に係る制御ユニット31は、油圧制御装置17を含む車両用駆動装置1の各部の制御を行う構成となっている。本実施形態においては、この制御ユニット31が本発明における「制御装置」に相当する。
【0036】
1.車両用駆動装置の駆動伝達系の構成
まず、本実施形態に係る車両用駆動装置1の駆動伝達系の構成について説明する。図1に示すように、車両用駆動装置1は、車両駆動用の駆動力源としてエンジン11及び回転電機12を備え、これらのエンジン11と回転電機12とが直列に駆動連結されるパラレル方式のハイブリッド車両用の駆動装置となっている。また、車両用駆動装置1は、トルクコンバータ13と変速機構14とを備えており、当該トルクコンバータ13及び変速機構14により、駆動力源としてのエンジン11及び回転電機12の回転速度を変速すると共にトルクを変換して出力軸Oに伝達する。
【0037】
エンジン11は、燃料の燃焼により駆動される内燃機関であり、例えば、ガソリンエンジンやディーゼルエンジンなどの公知の各種エンジンを用いることができる。本例では、エンジン11のクランクシャフト等の出力回転軸が、伝達クラッチ21を介して入力軸Iに駆動連結されている。これにより、入力軸Iは伝達クラッチ21を介してエンジン11と選択的に駆動連結される。この伝達クラッチ21は、油圧制御装置17により調圧された作動油の供給を受けて、図示しない油圧制御弁により制御されて動作する。なお、エンジン11の出力回転軸が、入力軸Iと一体的に駆動連結され、或いはダンパ等の他の部材を介して駆動連結された構成としても好適である。
【0038】
回転電機12は、図示しないケースに固定されたステータ12aと、このステータ12aの径方向内側に回転自在に支持されたロータ12bと、を有している。この回転電機12のロータ12bは、入力軸Iと一体回転するように駆動連結されている。すなわち、本実施形態においては、入力軸Iにエンジン11及び回転電機12の双方が駆動連結される構成となっている。回転電機12は、蓄電装置としてのバッテリ26に電気的に接続されている。そして、回転電機12は、電力の供給を受けて動力を発生するモータ(電動機)としての機能と、動力の供給を受けて電力を発生するジェネレータ(発電機)としての機能と、を果たすことが可能とされている。すなわち、回転電機12は、バッテリ26からの電力供給を受けて力行し、或いはエンジン11や車輪16から伝達される回転駆動力により発電した電力をバッテリ26に蓄電する。なお、バッテリ26は蓄電装置の一例であり、キャパシタなどの他の蓄電装置を用い、或いは複数種類の蓄電装置を併用することも可能である。
【0039】
この車両用駆動装置1では、エンジン11及び回転電機12の双方の回転駆動力を車輪16に伝達して車両を走行させる。この際、回転電機12は、バッテリ26の充電状態により、バッテリ26から供給される電力により駆動力を発生する状態と、エンジン11の回転駆動力により発電する状態と、のいずれともなり得る。また、車両の減速時(減速要求があった時)には、回転電機12は、回生トルクを発生させて車輪16から伝達される回転駆動力により発電する状態となる。回転電機12で発電された電力はバッテリ26に蓄電される。車両の停止状態では、伝達クラッチ21は解放状態とされ、エンジン11及び回転電機12は停止状態とされる。
【0040】
入力軸Iには、トルクコンバータ13が駆動連結されている。トルクコンバータ13は、駆動力源としてのエンジン11及び回転電機12に駆動連結された入力軸Iの回転駆動力を、中間軸Mを介して変速機構14に伝達する装置である。このトルクコンバータ13は、入力軸Iに駆動連結された入力側回転部材としてのポンプインペラ13aと、中間軸Mに駆動連結された出力側回転部材としてのタービンランナ13bと、これらの間に設けられ、ワンウェイクラッチを備えたステータ13cと、を備えている。そして、トルクコンバータ13は、内部に充填された作動油を介して、駆動側のポンプインペラ13aと従動側のタービンランナ13bとの間で駆動力の伝達を行う。なお、中間軸Mはトルクコンバータ13、入力軸I、及び伝達クラッチ21を介してエンジン11及び回転電機12の双方に駆動連結されており、本実施形態においては、この中間軸Mが本発明における「入力部材」に相当する。
【0041】
ここで、トルクコンバータ13は、ロックアップ用の摩擦係合要素として、ロックアップクラッチ22を備えている。このロックアップクラッチ22は、ポンプインペラ13aとタービンランナ13bとの間の回転差(スリップ)を無くして伝達効率を高めるために、ポンプインペラ13aとタービンランナ13bとを一体回転させるように連結するクラッチである。従って、トルクコンバータ13は、ロックアップクラッチ22の係合状態では、作動油を介さずに、駆動力源であるエンジン11及び回転電機12(入力軸I)の駆動力を直接変速機構14(中間軸M)に伝達する。本実施形態においては、このロックアップクラッチ22は、基本的には係合状態とされ、入力軸Iと中間軸Mとが一体回転する状態で動作する。従って、本実施形態では、入力軸Iと中間軸Mとは基本的には互いに等しい回転速度で回転する。ただし、変速段のダウンシフトを行う場合等、後述する通常変速制御を行なう場合等には、変速動作による衝撃(変速ショック)が車両に生じるのを抑制するため、トルクコンバータ13を介して駆動力を伝達させるべくロックアップクラッチ22が解放される。ロックアップクラッチ22を含むトルクコンバータ13には、油圧制御装置17により調圧された作動油が供給される。
【0042】
トルクコンバータ13の出力軸としての中間軸Mには、変速機構14が駆動連結されている。すなわち、中間軸Mは変速機構14の入力軸(変速入力軸)として機能する。変速機構14は、中間軸Mの回転速度を、変速して車輪16側の出力軸Oへ伝達する装置である。本実施形態においては、中間軸Mと変速機構14と出力軸Oとにより、本発明における「変速装置」が構成されている。ここで、変速機構14は、複数の変速段を有する有段の自動変速装置(有段変速装置)となっている。本実施形態においては、変速機構14は変速比(減速比)の異なる三つの変速段(第1速段、第2速段、及び第3速段)を備えている(不図示)。これらの変速段を構成するため、変速機構14は、遊星歯車機構等の歯車機構と、複数の摩擦係合要素とを備えて構成されている。図1には、複数の摩擦係合要素の一例として、クラッチC1及びブレーキB1が模式的に示されている。これら複数の摩擦係合要素の係合及び解放が制御されることにより、三つの変速段が切り替えられる。
【0043】
変速段の切り替えを行う際には、変速前において係合している摩擦係合要素のうちの一つを解放させると共に、変速前において解放されている摩擦係合要素のうちの一つを係合させる。これにより、歯車機構が有する複数の回転要素の回転状態が切り替えられて、変速後の変速段が形成される。そして、変速機構14は、各変速段について設定された所定の変速比で、中間軸Mの回転速度を変速すると共にトルクを変換して出力部材としての出力軸Oへ伝達する。変速機構14から出力軸Oへ伝達された回転駆動力は、出力用差動歯車装置15を介して車輪16に伝達される。なお本例では、入力軸I、中間軸M、及び出力軸Oの全てが同軸上に配置された一軸構成とされている。
【0044】
2.油圧制御系の構成
次に、上述した車両用駆動装置1の油圧制御系について説明する。油圧制御系は、図示しないオイルパンに蓄えられた作動油を吸引し、車両用駆動装置1の各部に作動油を供給するための油圧源として、図1に示すように、機械式ポンプ23及び電動ポンプ24の二種類のポンプを備えている。ここで、機械式ポンプ23は、入力軸I(駆動力源としてのエンジン11及び回転電機12)の回転駆動力により動作するオイルポンプである。このような機械式ポンプ23としては、例えば、歯車ポンプやベーンポンプ等が好適に用いられる。本例では、機械式ポンプ23は、トルクコンバータ13のポンプインペラ13aを介して入力軸Iに駆動連結され、エンジン11及び回転電機12の一方又は双方の回転駆動力により駆動される。そして、この機械式ポンプ23は、基本的には車両用駆動装置1に必要な作動油の油量を十分に上回る吐出能力を備えている。しかし、機械式ポンプ23は、入力軸Iの停止中(例えば、車両の停止中)には作動油を吐出しない。また、機械式ポンプ23は、入力軸Iの低速回転中(例えば、車両の低速走行中)には作動油を吐出するが、車両用駆動装置1にとって必要な油量を供給することができない場合がある。そこで、この車両用駆動装置1は、機械式ポンプ23を補助するためのポンプとして、電動ポンプ24を備えている。
【0045】
電動ポンプ24は、入力軸I(駆動力源)の回転駆動力とは無関係に、ポンプ駆動用の電動モータ25の駆動力により動作するオイルポンプである。この電動ポンプ24としても、例えば、歯車ポンプやベーンポンプ等が好適に用いられる。電動ポンプ24を駆動する電動モータ25は、バッテリ26と電気的に接続され、バッテリ26からの電力の供給を受けて駆動力を発生する。この電動ポンプ24は、機械式ポンプ23を補助するためのポンプであって、車両の停止中や低速走行中など、機械式ポンプ23から必要な油量が供給されない状態で動作する。
【0046】
また、油圧制御系は、機械式ポンプ23及び電動ポンプ24から供給される作動油の油圧を所定圧に調整するための油圧制御装置17を備えている。ここでは詳しい説明を省略するが、油圧制御装置17は、油圧調整用のリニアソレノイド弁からの信号圧に基づき一又は二以上の調整弁の開度を調整することにより、当該調整弁からドレインする作動油の量を調整して作動油の油圧を一又は二以上の所定圧に調整する。所定圧に調整された作動油は、それぞれ必要とされるレベルの油圧で、伝達クラッチ21、ロックアップクラッチ22、トルクコンバータ13、及び変速機構14の複数の摩擦係合要素C1、B1、・・・に供給される。
【0047】
ここで、油圧制御装置17から変速機構14の複数の摩擦係合要素C1、B1、・・・へ供給される作動油は、図2に示すように、変速制御弁VBを介してそれぞれ個別に供給される。この際、変速制御弁VBは、制御ユニット31から出力される制御指令信号S1、S2に応じて弁の開度を調整することにより、当該制御指令信号に応じた油圧に調整された作動油を各摩擦係合要素C1、B1、・・・へ供給する。各摩擦係合要素C1、B1、・・・は、複数の摩擦材とピストンとを備えて構成されており、供給される作動油の油圧に応じてピストンが移動する。作動油の油圧がストロークエンド圧Pse未満では、油圧の上昇に応じて複数の摩擦材は互いに離間したまま近接し、ストロークエンド圧Pseではトルクを伝達しない状態で複数の摩擦材が互いに接触し、ストロークエンド圧Pseより大きい場合には、作動油の油圧の大きさに応じたトルクを伝達する。本発明は、変速機構14により変速段の切り替えが行われる際における複数の摩擦係合要素の係合及び解放の双方の制御に特徴を有する。これらの詳細については後述する。
【0048】
3.制御ユニットの構成
次に、本実施形態に係る制御ユニット31の構成について説明する。車両用駆動装置1が備える制御ユニット31は、図2に示すように、車両用駆動装置1の各部の動作制御を行う中核部材としての機能を果たしている。この制御ユニット31は、CPU等の演算処理装置を中核部材として備えると共に、当該演算処理装置からデータを読み出し及び書き込みが可能に構成されたRAM(ランダム・アクセス・メモリ)や、演算処理装置からデータを読み出し可能に構成されたROM(リード・オンリ・メモリ)等の記憶装置等を有して構成されている(不図示)。そして、ROM等に記憶されたソフトウェア(プログラム)又は別途設けられた演算回路等のハードウェア、或いはそれらの両方により、制御ユニット31の各機能部32〜40が構成される。これらの各機能部32〜40は、互いに情報の受け渡しを行うことができるように構成されている。また、メモリ41は、例えばフラッシュメモリ等のように、情報を記憶及び書き換え可能な記録媒体をハードウェア構成として備え、制御ユニット31との間で互いに情報の受け渡しを行うことができるように構成されている。このメモリ41は、制御ユニット31が有する記憶装置内に設けられても良い。
【0049】
また、図1及び図2に示すように、この車両用駆動装置1は、各部に設けられた複数のセンサ、具体的には、入力軸回転速度センサSe1、中間軸回転速度センサSe2、車速センサSe3、アクセル開度検出センサSe4、及びバッテリ状態検出センサSe5を備えている。ここで、入力軸回転速度センサSe1は、入力軸Iの回転速度を検出するセンサである。中間軸回転速度センサSe2は、中間軸Mの回転速度を検出するセンサである。車速センサSe3は、車輪16の回転速度すなわち車速を検出するセンサである。アクセル開度検出センサSe4は、図示しないアクセルペダルの操作量を検出することによりアクセル開度を検出するセンサである。バッテリ状態検出センサSe5は、バッテリ26の充電量や電圧値等のバッテリ状態を検出するためのセンサである。これらの各センサSe1〜Se5による検出結果を示す情報は、制御ユニット31へ出力される。
【0050】
図2に示すように、制御ユニット31は、エンジン制御部32、回転電機制御部33、回転加速度取得部34、差回転取得部35、切替制御部36、制限油圧決定部39、及び入力トルク予測部40を備えている。また、切替制御部36は、その下位の機能部として解放側油圧制御部37及び係合側油圧制御部38を備えている。制御ユニット31の各機能部32〜40が参照するメモリ41には、変速マップ42、目標変速時間データ44、制限油圧マップ45、及び変化係数マップ46が格納されている。以下では、制御ユニット31の各機能部32〜40について詳細に説明する。
【0051】
エンジン制御部32は、エンジン11の動作制御を行なう機能部である。エンジン制御部32は、エンジン動作点を決定し、当該エンジン動作点でエンジン11を動作させるように制御する処理を行う。ここで、エンジン動作点は、エンジン11の制御目標点を表す制御指令値であって、回転速度及びトルクにより定まる。より詳細には、エンジン動作点は、車両要求出力(車両要求トルク及びエンジン回転速度に基づいて定まる)と最適燃費とを考慮して決定されるエンジン11の制御目標点を表す指令値であって、回転速度指令値とトルク指令値により定まる。そして、エンジン制御部32は、エンジン動作点に示されるトルク及び回転速度で動作するようにエンジン11を制御する。本実施形態においては、エンジン制御部32により決定されたエンジン11のトルク指令値の情報は、入力トルク予測部40にも出力される。
【0052】
回転電機制御部33は、回転電機12の動作制御を行なう機能部である。回転電機制御部33は、回転電機動作点を決定し、当該回転電機動作点で回転電機12を動作させるように制御する処理を行う。ここで、回転電機動作点は、回転電機12の制御目標点を表す制御指令値であって、回転速度及びトルクにより定まる。より詳細には、回転電機動作点は、車両要求出力とエンジン動作点とを考慮して決定される回転電機12の制御目標点を表す指令値であって、回転速度指令値とトルク指令値により定まる。そして、回転電機制御部33は、回転電機動作点に示されるトルク及び回転速度で動作するように回転電機12を制御する。また、回転電機制御部33は、バッテリ状態検出センサSe5により検出されるバッテリ26の充電量に応じて、バッテリ26から供給される電力により回転電機12に駆動力を発生させる状態と、エンジン11の回転駆動力等により回転電機12に発電させる状態とを切り替える制御も行なう。
【0053】
ここで、トルク指令値が正の場合には回転電機12は回転方向と同方向の駆動トルクを出力して駆動力を発生させ、トルク指令値が負の場合には回転電機12は回転方向とは反対方向の回生トルクを出力して発電する。いずれの場合においても、回転電機12の出力トルク(駆動トルク及び回生トルクを含む)は、回転電機制御部33からのトルク指令値により定まることになる。本実施形態においては、回転電機制御部33により決定された回転電機12のトルク指令値の情報は、制限油圧決定部39及び入力トルク予測部40にも出力される。更に、回転電機制御部33は、電動ポンプ24を駆動するための電動モータ25の回転速度の制御も行なうように構成されている。
【0054】
回転加速度取得部34は、中間軸Mの実際の回転加速度AMを取得する機能部である。本実施形態においては、回転加速度取得部34は、中間軸回転速度センサSe2により検出される中間軸Mの実際の回転速度NMの情報の入力を逐次受け付け、単位時間当たりの回転速度変化量を演算することにより回転加速度(回転速度変化率)AMを取得する。回転加速度取得部34により取得された中間軸Mの実際の回転加速度AMに関する情報は、切替制御部36の解放側油圧制御部37及び係合側油圧制御部38に出力される。
【0055】
差回転取得部35は、出力軸Oの実際の回転速度NOに基づいて定まる中間軸Mの目標回転速度NTと、中間軸Mの実際の回転速度NMとの間の回転速度の差である差回転速度ΔNを取得する機能部である。ここで、中間軸Mの目標回転速度NTは、出力軸回転速度センサSe3により検出される出力軸Oの実際の回転速度NOに、変速機構14における各変速段の変速比を乗算することにより定まる。中間軸Mの実際の回転速度NMは、中間軸回転速度センサSe2により検出される。そして、ここでは、中間軸Mの目標回転速度NTから実際の回転速度NMを減算した値の絶対値として、差回転速度ΔNが取得される。差回転取得部35により取得された差回転速度ΔNに関する情報は、切替制御部36の解放側油圧制御部37及び係合側油圧制御部38に出力される。
【0056】
切替制御部36は、車両のアクセル開度及び車速に基づいて変速機構14における目標変速段を決定し、決定された目標変速段に応じて変速制御弁VBの動作を制御することにより、変速機構14の変速段を切り替える制御を行う機能部である。このような目標変速段を決定するため、切替制御部36は、メモリ41に格納された変速マップ42を参照する。図3は、本実施形態に係る変速マップ42の一例を示す図である。変速マップ42は、アクセル開度及び車速に基づいて変速機構14における変速段のシフトスケジュールを設定したマップである。この図に示すように、概略右上がりの(車速が大きくなるに従い、アクセル開度も大きくなる)直線で表される、複数のアップシフト線と複数のダウンシフト線とが設定されている。ここで、アップシフト線は変速機構14における隣り合う二つの変速段の間での低速段から高速段への移行スケジュールを規定した線であり、ダウンシフト線は高速段から低速段への移行スケジュールを規定した線である。本実施形態においては、変速機構14は三つの変速段を有しているので、第1速段から第2速段へのアップシフト線、第2速段から第3速段へのアップシフト線、第2速段から第1速段へのダウンシフト線、及び第3速段から第2速段へのダウンシフト線がそれぞれ設定されている。なお、ここでは、アップシフトとは、変速前の変速段の変速比(減速比)を基準とした、変速比の小さい変速段への変速段の切り替えを意味するものとし、ダウンシフトとは変速比の大きい変速段への変速段の切り替えを意味するものとする。
【0057】
変速機構14における目標変速段が決定されると、当該決定された目標変速段に応じた摩擦係合要素が作動油の供給を受けて係合状態となり、当該目標変速段が形成される。車速及びアクセル開度が変化して、図3の変速マップ上でアップシフト線又はダウンシフト線を跨ぐと、切替制御部36は、車両のアクセル開度及び車速に基づいて変速機構14における新たな目標変速段を決定し、当該決定された目標変速段に応じた摩擦係合要素が作動油の供給を受けて係合状態となり、新たな変速段が形成される。この際、変速前において係合していた摩擦係合要素のうちの一つを解放させると共に、変速前において解放されている摩擦係合要素のうちの一つを係合させる。例えば、変速機構14における変速段が第2速段から第3速段へと切り替えられてアップシフトされる際には、第一クラッチC1が解放されると共に第一ブレーキB1が係合される。この場合、変速機構14における変速段が第3速段から第2速段へと切り替えられてダウンシフトされる際には、第一ブレーキB1が解放されると共に第一クラッチC1が係合されることになる。
【0058】
変速段のアップシフト又はダウンシフトに伴う各摩擦係合要素C1、B1、・・・の係合及び解放は、解放側油圧制御部37及び係合側油圧制御部38により制御される。解放側油圧制御部37は、解放される側の摩擦係合要素(解放側要素)に対する作動油の油圧(解放側油圧)を制御する機能部である。解放側油圧制御部37は、制御信号としての解放側制御指令信号S1を変速制御弁VBへ出力して、基本的には解放側制御指令信号S1に応じて、解放側要素に対応する変速制御弁VBの制御弁の動作を制御することにより、解放側油圧を制御する。ただし、後述するように、切替制御部36が特別変速制御を実行する際には、解放側油圧制御部37は、変速過程TPの初期段階でのみ解放側制御指令信号S1によって解放側油圧を制御し、それ以降は解放側制御指令信号S1とは無関係に中間軸Mの実際の回転加速度AMに基づいて解放側油圧を制御する。
【0059】
係合側油圧制御部38は、係合される側の摩擦係合要素(係合側要素)に対する作動油の油圧(係合側油圧)を制御する機能部である。係合側油圧制御部38は、制御信号としての係合側制御指令信号S2を変速制御弁VBへ出力して、係合側制御指令信号S2に応じて、係合側要素に対応する変速制御弁VBの制御弁の動作を制御することにより、係合側油圧を制御する。これら解放側油圧制御部37による解放側油圧制御及び係合側油圧制御部38による係合側油圧制御の詳細については、後述する。
【0060】
制限油圧決定部39は、解放される側の摩擦係合要素(解放側要素)に対する作動油の油圧(解放側油圧)の設定下限値及び設定上限値の一方又は双方を定めるための基準となる制限油圧を決定する機能部である。本実施形態においては、制限油圧決定部39は、解放側油圧の設定下限値を定めるための基準となる制限油圧として、回転電機12の出力トルクに応じた第一制限油圧PL1、及びアクセル開度検出センサSe4により検出されるアクセル開度に応じた第二制限油圧PL2の、互いに独立して定まる2つの制限油圧を設定する。また、制限油圧決定部39は、解放側油圧の設定上限値を定めるための基準となる制限油圧として、所定の第三制限油圧PL3を設定する。
【0061】
第一制限油圧PL1は、回転電機12の出力トルク(本例では、回転電機制御部33からのトルク指令値により定まる)の大きさに応じた値であって、かつ、回転電機12の出力トルクが負の場合には解放側要素のストロークエンド圧Pse以上の値となるように設定されている。ここで、解放側要素のストロークエンド圧Pseとは、解放側要素の摩擦材のクリアランスがなくなるまでピストンが移動して、当該解放側要素がトルク容量を持ち始める直前の解放側油圧をいう。第一制限油圧PL1を少なくともストロークエンド圧Pse以上の値とすることで、回転電機12の出力トルクが負の場合には解放側要素の係合圧を少なくともゼロより大きくして解放側要素にトルク容量を持たせることができる。なお、回転電機12の出力トルクが正の場合には、第一制限油圧PL1は解放側要素のストロークエンド圧Pse未満の値となっていても良い。図4は回転電機12の出力トルクと第一制限油圧PL1との関係を規定した第一制限油圧マップの一例を示している。図4に示すように、本例では、第一制限油圧PL1は回転電機12の出力トルクがゼロとなる場合に解放側要素のストロークエンド圧Pseに等しくなると共に、回転電機12の出力トルクが負方向に大きくなる(回生トルクが大きくなる)に従って大きくなる値に設定されている。この第一制限油圧マップは、メモリ41に格納された制限油圧マップ45の一部として構成されている。このような第一制限油圧PL1の設定により、本例では、回転電機12が負トルク(回生トルク)を出力して発電を行う場合には、解放側油圧は変速過程TPの全体に亘って、当該負トルクの絶対値が大きいほど、ストロークエンド圧Pse以上のより高い油圧に維持される。なお、図4に示した第一制限油圧マップはあくまで一例であり、車両特性等に応じて適宜変更が可能である。
【0062】
第二制限油圧PL2は、アクセル開度に応じた値であって、かつ、当該アクセル開度が所定値以下のアクセル低開度状態では解放側要素のストロークエンド圧Pse以上の値となるように設定されている。ここで、上記所定値としては、「1〜5%」の値を設定することができる。本例では、上記所定値には「1%」が設定されており、アクセル開度検出センサSe4により検出されるアクセル開度が実質的にゼロに等しい、アクセルペダルの踏み込み量が略完全にゼロの状態を「アクセル低開度状態」としている。アクセル低開度状態では第二制限油圧PL2を少なくともストロークエンド圧Pse以上の値とすることで、解放側要素の係合圧を少なくともゼロより大きくして解放側要素にトルク容量を持たせることができる。なお、アクセル開度が所定値より大きい状態では、第二制限油圧PL2は解放側要素のストロークエンド圧Pse未満の値となっていても良い。本例では、アクセル開度が1%より大きい状態では、第二制限油圧PL2はアクセル開度が大きくなるに従って小さくなる値に設定されている。図5はアクセル開度と第二制限油圧PL2との関係を規定した第二制限油圧マップの一例を示している。この第二制限油圧マップは、メモリ41に格納された制限油圧マップ45の一部として構成されている。このような第二制限油圧PL2の設定により、アクセル低開度状態では、解放側油圧は変速過程TPの全体に亘ってストロークエンド圧Pse以上の油圧に維持される。なお、図5に示した第二制限油圧マップはあくまで一例であり、車両特性等に応じて適宜変更が可能である。
【0063】
第三制限油圧PL3は、所定値に設定されている。本実施形態では、第三制限油圧PL3を設定するに際して、係合側要素と解放側要素とが同時に係合状態となる割合であるタイアップ率が考慮される。タイアップ率が高くなると変速過程TPにおける変速フィーリングが悪化する可能性があるため、本実施形態では、このタイアップ率を所定値以下に維持させるために第三制限油圧PL3が設定されている。すなわち、第三制限油圧PL3は、変速過程TPの全体に亘ってタイアップ率を所定値以下に維持させるような解放側油圧の設定上限値であり、解放側上限油圧として機能する(図18を参照)。
【0064】
制限油圧決定部39により決定された第一制限油圧PL1、第二制限油圧PL2、及び第三制限油圧PL3は、解放側油圧制御部37へ出力される。そして本実施形態では、後述するように、解放側油圧制御部37は、変速過程TPの全体に亘って、当該変速過程TPの各時点において第一制限油圧PL1と第二制限油圧PL2とのうちいずれか大きい方を解放側油圧の下限値に規制すると共に、第三制限油圧PL3を開放側油圧の上限値に規制した状態で、解放側油圧を制御することになる。従って、変速過程TPでは、その全体に亘って解放側油圧は、第一制限油圧PL1と第二制限油圧PL2とのうちいずれか大きい方以上であって、かつ、第三制限油圧PL3以下となるように制御される。
【0065】
入力トルク予測部40は、入力軸Iに入力される入力トルクTiの変化に基づいて、所定の予測判定基準時間(ここでは、TSpとする)後の入力トルクTiの予測値である予測入力トルクPTiを予測する機能部である。本実施形態では、上記のとおり入力軸Iには車両の駆動力源としてエンジン11及び回転電機12が駆動連結されている。よって、本実施形態では、エンジン11の出力トルク及び回転電機12の出力トルクの合計値を入力トルクTiとしている。ここで、本実施形態では、エンジン11の出力トルクは、エンジン制御部32により決定されたエンジン11のトルク指令値として取得可能であり、同様に回転電機12の出力トルクは、回転電機制御部33により決定された回転電機12のトルク指令値として取得可能である。なお、上記のとおり回転電機12のトルク指令値は、当該回転電機12の出力トルクが駆動トルク(力行トルク)であるか回生トルクであるかに応じて正又は負のいずれの値も採り得るが、いずれにしても、エンジン11のトルク指令値と回転電機12のトルク指令値との合計値が入力トルクTiとされる。また、予測判定基準時間TSpとしては、任意の値を予め設定しておくことが可能であり、例えば0.1〜1〔sec〕等が設定される。
【0066】
本実施形態においては、入力トルク予測部40は、入力トルク変化率RTiを所定周期で取得する。ここで、入力トルク変化率RTiは、入力トルクTiの時間変化率である。現時点(第n周期の時点とする。以下同様。)の入力トルク変化率RTi(n)は、現時点の入力トルクTi(n)と現時点よりも1周期前の時点の入力トルクTi(n−1)との差分である入力トルク変化量ΔTiを周期Aで除算することにより導出される。
RTi(n)=ΔTi/A
={Ti(n)−Ti(n−1)}/A・・・(式1)
導出された入力トルク変化率RTiは、予測トルク変化率QTiの導出のために供される。
【0067】
本実施形態においては、入力トルク予測部40は、予測トルク変化率QTiを所定周期で演算する。この予測トルク変化率QTiの導出に際しては、入力トルク予測部40は、最新の入力トルク変化率RTiと前回の予測トルク変化率QTiとを所定の比率で加算して最新の予測トルク変化率QTiを導出する。すなわち、現時点における最新の予測トルク変化率QTi(n)は、上記の(式1)に基づいて導出された現時点における最新の入力トルク変化率RTi(n)と、1周期前の時点における予測トルク変化率QTi(n−1)と、を所定の比率で加算して、入力トルク変化率RTi(n)に対するなまし処理を行うことにより導出される。
QTi(n)=k*RTi(n)+(1−k)*QTi(n−1)・・・(式2)
このようにして、入力トルク予測部40は、所定周期で各時点における最新の予測トルク変化率QTiを更新する。なお、符号「*」は、積算を表す記号として用いている(以下、同様)。
【0068】
ここで、kは所定の重み付け係数である(0<k≦1)。重み付け係数kが1未満の値に設定される場合には、各演算周期において導出される入力トルク変化率RTiが順次累積されて、それ以降の予測トルク変化率QTiの導出に反映される。そして、上記の(式2)からも良く理解できるように、重み付け係数kが小さいほど(0に近いほど)、現時点の予測トルク変化率QTiの導出に際して過去の入力トルク変化率RTiの累積分が重視され、重み付け係数kが大きいほど(1に近いほど)、現時点の予測トルク変化率QTiの導出に際して現時点における最新の入力トルク変化率RTiが重視されることになる。なお、重み付け係数kが「1」に設定される場合には、現時点の入力トルク変化率RTiがそのまま現時点の予測トルク変化率QTiとされる。このような重み付け係数kとして、本実施形態では例えば0.1〜0.5(好ましくは0.1〜0.3)の値が設定されている。このような重み付け係数kの設定により、入力トルクTiの経時変化の全体的な傾向を捉えて、最新の予測トルク変化率QTiを的確に導出することが可能となっている。
【0069】
入力トルク予測部40は、現時点の入力トルクTiとその最新の予測トルク変化率QTiとに基づいて予測入力トルクPTiを導出する。より具体的には、入力トルク予測部40は、予測トルク変化率QTiに予測判定基準時間TSpを乗算した値と、現時点の入力トルクTiと、を加算して予測入力トルクPTiを導出する。すなわち、現時点の予測入力トルクPTi(n)は、現時点の予測トルク変化率QTi(n)と予め設定された予測判定基準時間TSpとの乗算値と、現時点の入力トルクTi(n)と、を加算することにより導出される。
PTi(n)=Ti(n)+QTi(n)*TSp・・・(式3)
このようにして、入力軸Iに入力される入力トルクTiの変化に基づいて、現時点から予測判定基準時間TSp後の入力トルクTiの予測値である予測入力トルクPTiが導出される。なお、本実施形態においては、入力トルク予測部40は、(式3)により導出された予測入力トルクPTiが入力トルクTiよりも大きい場合には、当該入力トルクTiを予測入力トルクPTiとする。すなわち、本実施形態に係る入力トルク予測部40は、予測判定基準時間TSp後に予測される入力トルクTiが現時点における入力トルクTiよりも小さくなる場合にのみ、入力トルクTiとは異なる値となる予測入力トルクPTiを導出する構成となっている。入力トルク予測部40により導出された予測入力トルクPTiの情報は、切替制御部36に出力される。
【0070】
4.変速制御の詳細
次に、本実施形態に係る変速制御、すなわち係合側要素及び解放側要素についての供給油圧制御の詳細について説明する。本実施形態に係る変速制御では、車両の状態が所定の特別変速制御移行条件を満たしている場合に、解放側要素に対する解放側油圧を低下させて解放側要素をスリップさせ、当該解放側要素のスリップ状態を変速過程TPの全体に亘って維持させる点に特徴を有している。また、変速過程TPの全体に亘って解放側要素をスリップ状態に維持させるに際して、中間軸Mの実際の回転速度を適切に変化させるように係合側要素に対する係合側油圧を変化させる点にも特徴を有している。以下、詳細に説明する。
【0071】
切替制御部36は、車両の状態が所定の特別変速制御移行条件を満たしているか否かに応じて、通常変速制御と特別変速制御とを切り替えて変速制御を行なう。つまり、切替制御部36は基本的には通常変速制御を実行し、車両の状態が所定の特別変速制御移行条件を満たしている場合には特別変速制御を実行する。ここで、本実施形態では、上記特別変速制御移行条件は、アクセル開度、予測入力トルクPTi、及び変速機構14における変速段の切替方向に関する条件とされている。具体的には、アクセル開度検出センサSe4により検出されるアクセル開度が所定値(例えば、1〜5%)以下のアクセル低開度状態、又は、入力トルク予測部40により導出される予測入力トルクPTiが負の値となる負トルク予測成立状態で、変速機構14における目標変速段が変速比の大きい変速段から変速比の小さい変速段へ切り替えられる(アップシフトされる)ことが、特別変速制御移行条件として設定されている。
【0072】
4−1.通常変速制御
上記特別変速制御移行条件を満たしていない場合、すなわち、アクセル開度が所定値より大きくかつ予測入力トルクPTiがゼロ若しくは正の値となる場合、又は変速機構14における目標変速段が変速比の小さい変速段から変速比の大きい変速段へ切り替えられる(ダウンシフトされる)場合には、通常変速制御が実行される。通常変速制御では、図14に示すように、変速過程TPの初期段階で解放側要素が速やかに解放されると共に、係合側要素がスリップ状態を経て完全係合される。つまり、解放側油圧制御部37は、変速過程TPが開始されると解放側油圧を急激に低下させて解放側要素を速やかに解放させる制御を行なう。また、係合側油圧制御部38は、係合側要素の油室内に作動油を予備充填した後、中間軸Mの回転速度を所定の目標回転加速度ATで変化させるように係合側油圧を変化させる制御を行う。なお、中間軸Mの目標回転加速度は、変速段の切り替えに要する目標変速時間と、変速段の切り替え前後における中間軸Mの回転速度変化幅と、に基づいて決定される。
【0073】
4−2.特別変速制御
一方、特別変速制御移行条件を満たしている場合には、本願特有の特別変速制御が実行される。なお、以下ではまず、アクセル低開度状態で変速機構14における目標変速段がアップシフトされることにより特別変速制御移行条件が成立する場合を念頭において説明する。特別変速制御では、解放側要素に対する解放側油圧の制御である解放側特別変速制御と、係合側要素に対する係合側油圧の制御である係合側特別変速制御と、の双方が実行される。解放側特別変速制御は、変速過程TPの全体に亘って解放側要素をスリップ状態に維持させる制御であり、本実施形態においては、待機制御、変化率制御、回転速度制御、及び解放制御の各制御ステップを経て実行される。これらの待機制御、変化率制御、回転速度制御、及び解放制御は、解放側油圧制御部37による解放側油圧の制御である。また、係合側特別変速制御は、変速過程TPの全体に亘って中間軸Mの実際の回転速度を適切に変化させるように係合側油圧を変化させる制御であり、本実施形態においては、第一係合制御及び第二係合制御の各制御ステップを経て実行される。これらの第一係合制御及び第二係合制御は、係合側油圧制御部38による係合側油圧の制御である。
【0074】
ここで、変速過程TP(図7等を参照)は、変速装置2の入力軸としての中間軸Mの回転速度NMが、変速段の切り替え前の目標回転速度NTである切替前目標回転速度NT1から、変速段の切り替え後の目標回転速度NTである切替後目標回転速度NT2までの間を遷移する過程である。本例では、変速過程TPは、差回転取得部35により取得される、変速段の切り替え前における差回転速度ΔN1が所定値以上となった時点から、差回転取得部35により取得される、変速段の切り替え後における差回転速度ΔN2が所定値以下となった時点までの期間に設定される。この場合の所定値は、中間軸Mの実際の回転速度NMと変速段の切替前後の目標回転速度NT1、NT2との間に偏差が生じていることが識別可能な値に設定される。従って、本実施形態では、変速過程TPは、解放側要素がスリップを開始した時点から出力軸Oの回転速度に変速段の切替後の変速比を乗算した回転速度と中間軸Mの回転速度NMとの間の差回転速度ΔN2が所定値以下となって同期した時点までの期間となる。また、変速過程TPは、解放側要素がスリップを開始した時点から係合側要素の両側の係合部材(入力側回転部材と出力側回転部材)が同期した時点までの期間となる。なお、この場合において係合側要素がブレーキにより構成される場合には、入力側回転部材及び出力側回転部材のうちの一方は非回転部材(例えば、図示しないケース等)であるので、変速過程TPの終期は他方の回転部材の回転速度が略ゼロとなった時点となる。
【0075】
4−2−1.解放側特別変速制御
解放側特別変速制御では、まず変速過程TPに入る前に待機制御が実行される。この待機制御では、車両のアクセル開度及び車速に基づいて目標変速段のアップシフトが要求されると、解放側油圧制御部37は、一定時間が経過するまで解放側油圧を出力トルクに応じた保持圧とする。このときの待機時間は、内部タイマーにより監視される。
【0076】
アップシフト要求後一定時間が経過すると、次に変化率制御が実行される。この変化率制御は変速過程TPの初期段階で実行される制御であり、解放側油圧制御部37は、回転電機12の出力トルクの大きさに応じた変化率で解放側油圧を低下させる。本例では、更に回転電機12が負のトルク(回生トルク)を出力している場合には、出力トルクが小さいほど(回生トルクが大きいほど)解放側油圧を低下させる変化率の絶対値が小さくされ、出力トルクが大きいほど(回生トルクが小さいほど)解放側油圧を低下させる変化率の絶対値は大きくされる。ただし、このときの解放側油圧を低下させる変化率の絶対値は、上述した通常変速制御における変化率の絶対値よりも十分に小さい値とされ、解放側油圧は緩やかに低下される。この間、解放側要素は完全には係合も解放もしていない半係合状態に維持される。これにより、解放側要素の両側の係合部材(入力側回転部材と出力側回転部材)が所定の差回転速度を有するスリップ状態に維持されたままで、解放側要素の入力側回転部材と出力側回転部材との間の駆動力の伝達が行われる。
【0077】
変化率制御中においては、解放側油圧制御部37は、解放側要素の係合圧が所定値以上の大きさとなるように解放側油圧を制御する。本実施形態においては、解放側要素の係合圧が所定値以上の大きさとなるように、変化率制御時の解放側油圧には下限値が設定されている。具体的には、制限油圧決定部39により決定された2つの制限油圧(第一制限油圧PL1及び第二制限油圧PL2)のうちいずれか大きい方が解放側油圧の下限値に設定される。これにより、変化率制御時の解放側油圧は、第一制限油圧PL1以上であってかつ第二制限油圧PL2以上の圧に維持される。本例では、上記のとおり第二制限油圧PL2は、特別変速制御が実行されることになるアクセル低開度状態では解放側要素のストロークエンド圧Pse以上の値となるように設定されている。従って、本実施形態では、特別変速制御の実行中は解放側要素が半係合状態とされ、スリップ状態に維持される。また本例では、上記のとおり第一制限油圧PL1は、回転電機12の出力トルクが負方向に大きくなる(回生トルクが大きくなる)に従って大きくなる値に設定される。従って、本実施形態では、特別変速制御中における解放側油圧は、基本的には第二制限油圧PL2以上に維持されつつ、回転電機12が出力する回生トルク(負トルク)の大きさに応じて第一制限油圧PL1が第二制限油圧PL2よりも大きくなる場合には第一制限油圧PL1以上に維持されることになる。更に本実施形態においては、解放側要素の係合圧が所定値以下の大きさとなるように、変速過程TPにおける解放側油圧には上限値が設定されている。具体的には、所定の第三制限油圧PL3が解放側油圧の上限値に設定される。これにより、変速過程TPにおける解放側油圧は、第三制限油圧PL3以下の圧に維持される。
【0078】
切替制御部36は、変速過程TPの全体に亘って当該変速過程TPにおける変速動作の進行度αを監視している。進行度αは、変速過程TPにおいて変速段の切り替えがどの程度進行したかを表す指標となる。本例では、中間軸Mの切替前目標回転速度NT1と中間軸Mの切替後目標回転速度NT2との回転速度の差(回転速度変化幅W)に対する、中間軸Mの切替前目標回転速度NT1と変速動作中における実際の中間軸Mの回転速度NMとの回転速度の差の割合として進行度αが導出される。変速段の切替前後の中間軸Mの目標回転速度NT1、NT2は、上記のとおり出力軸回転速度センサSe3により検出される出力軸Oの実際の回転速度NOに、変速機構14における各変速段の変速比を乗算することにより導出される。中間軸Mの実際の回転速度NMは、中間軸回転速度センサSe2により検出される。従って、中間軸回転速度センサSe2により検出される中間軸Mの実際の回転速度NM、出力軸回転速度センサSe3により検出される出力軸Oの実際の回転速度NO、及び切り替え前後の各変速段の変速比に基づいて進行度αが導出される。
【0079】
変化率制御は、特別変速制御移行条件を満たしている限り、進行度αが所定割合に到達する時点を切替点とし、当該切替点まで実行される。本実施形態においては、特別変速制御移行条件が満たされていることを条件に、変速動作が50%進行した(進行度αが0.5となった)時点を切替点とし、当該切替点まで変化率制御が実行される。ここで、特別変速制御移行条件が満たされているか否かは、ここではアクセル開度検出センサSe4により検出されるアクセル開度及び変速機構14における目標変速段の切替方向に基づいて判定される構成となっている。すなわち、アクセル開度が所定値以下のアクセル低開度状態であって、かつ、変速機構14における目標変速段が変速比の大きい変速段から変速比の小さい変速段へ切り替えられる(アップシフトされる)場合には特別変速制御移行条件が満たされていると判定され、それ以外の場合には特別変速制御移行条件が満たされていないと判定される。
【0080】
特別変速制御移行条件が満たされている状態で、変速動作が50%進行して(進行度αが0.5となって)切替点に達すると、次に回転速度制御が実行される。この回転速度制御では、解放側油圧制御部37は、中間軸Mの回転速度NMが、変速過程TPの各時点における目標回転速度NTとなるように解放側油圧を変化させる。本実施形態においては、変速段の切り替えに要する目標時間を表す目標変速時間(ここでは、Ttとする)が予め設定されており、変速動作の開始後、目標変速時間Ttが経過した時に変速動作が完了するものとされる。なお、目標変速時間Ttは、目標変速時間データ44としてメモリ41に記憶されている。そして、目標変速時間Ttと、変速段の切り替え前後における中間軸Mの回転速度の差である回転速度変化幅Wと、に基づいて各時点における中間軸Mの目標回転速度NTが決定される。このとき、変速過程TPの各時点における目標回転速度NTは、変速段の切り替えが行われた際に車両に挙動変化をほとんど生じさせないような経時軌跡を描くように設定される。より具体的には、変速過程TPの各時点における目標回転速度NTは、変速過程TPの終期に向かうに従って当該目標回転速度NTの時間変化率の絶対値が小さくなるような経時軌跡を描くように設定される。本例では、各時点における目標回転速度NTは、回転速度制御が開始された時点から変速動作が完了する時点までの中間軸Mの回転速度が、二次曲線で表される経時軌跡を描くように設定される。
【0081】
本実施形態においては、上記のようにして設定された各時点における目標回転速度NTから、更に各時点における目標回転加速度AT(目標回転速度変化率)が導出される。本例では、各時点における目標回転速度NTは二次曲線で表される経時軌跡を描くように設定されるので、各時点における目標回転加速度ATは、その絶対値が変速動作の終点に向かって直線的に徐々に小さくなり、最終的にはゼロとなるように設定される。なお、車両の加速度をも考慮して各時点における目標回転加速度ATを設定する構成としても良い。そして、解放側油圧制御部37は、回転加速度取得部34により取得された中間軸Mの実際の回転加速度AMが、各時点における目標回転加速度ATに追従するように解放側油圧を変化させる。すなわち、図8に示すように、解放側油圧制御部37は、中間軸Mの各時点における目標回転加速度ATと実際の回転加速度AMとを比較し、これらの間に偏差が生じている場合には、当該偏差を打ち消す方向に中間軸Mの実際の回転加速度AMが変化するように解放側油圧を変化させる。このようにすれば、変速過程TPの後半段階において、中間軸Mの回転速度NMを滑らかに切替後目標回転速度NT2へと移行させることができる。なお、この間解放側要素は、上記のとおり完全には係合も解放もされない半係合状態に維持され、スリップ状態に維持されている。
【0082】
回転速度制御は、特別変速制御移行条件が満たされている限り、差回転取得部35により取得される切替後目標回転速度NT2と中間軸Mの実際の回転速度NMとの間の差回転速度ΔN2が所定値以下となるまで実行される。このときの所定値としては、本例では変速過程TPの終了を判定するための基準値と等しい値が設定されている。従って、本例では回転速度制御終了のタイミングと変速過程TP終了のタイミングとが等しいことになる。
【0083】
変化率制御又は回転速度制御の実行中に特別変速制御移行条件が満たされなくなった場合や、差回転取得部35により取得される変速段の切り替え後の差回転速度ΔN2が所定値以下となった場合には、次に解放制御が実行される。この解放制御では、解放側油圧制御部37は、通常変速制御における解放側油圧の変化率と等しい変化率で解放側油圧を低下させ、急速にゼロとする。これにより、速やかに解放側要素を完全に解放させる。
【0084】
4−2−2.係合側特別変速制御
係合側特別変速制御では、係合側油圧制御部38は、まず変速過程TPに入る前に、係合側油圧を変化させるための基準となる基準油圧変化量ΔPbを決定する。ここで、基準油圧変化量ΔPbは、中間軸Mの回転速度を所定の目標回転加速度ATで変化させるのに必要な油圧変化量である。基準油圧変化量ΔPbは、目標回転加速度ATと所定の係数との乗算値として導出される。ここで、中間軸Mの目標回転加速度ATは、上記のとおり変速段の切り替えに要する目標時間を表す予め設定された目標変速時間(ここでは、Ttとする)と、変速段の切り替え前後における中間軸Mの回転速度の差を表す回転速度変化幅Wと、に基づいて決定される。すなわち、回転速度変化幅Wを目標変速時間Ttで除算した除算値として中間軸Mの目標回転加速度ATが導出される。よって、基準油圧変化量ΔPbも、目標変速時間Ttと回転速度変化幅Wとに基づいて決定されることになる。
【0085】
係合側油圧制御部38は、導出された目標回転加速度ATに基づいて、中間軸Mの実際の回転加速度AMが目標回転加速度ATに追従するように、係合側要素に対する作動油の油圧(係合側油圧)を変化させる第一係合制御を実行する。このような第一係合制御を実行するため、本実施形態では、係合側油圧制御部38は、変速過程TPの開始時における係合側油圧を基準とし、変速過程TPの進行度αと回転電機12の出力トルクとに応じて予め設定された所定の変化係数Gと、基準油圧変化量ΔPbと、に基づいて係合側油圧を変化させるように構成されている。図6は、変速過程TPの進行度α及び回転電機12の出力トルクと変化係数Gとの関係を規定した変化係数マップ46の一例を示している。この図6のマップでは、横軸及び縦軸にそれぞれ進行度α及び変化係数Gが取られており、回転電機12の出力トルクに関する複数(ここでは、4つ)の代表値毎の進行度αと変化係数Gとの関係を表す折線状のグラフが複数示されている。なお、変速過程TPは進行度αに応じて設定される複数の段階(本例では、第一段階α1、第二段階α2、及び第三段階α3の3つの段階)に区分されている。
【0086】
図6に示すように、変化係数Gは、回転電機12の出力トルクが変速過程TPの全体に亘って一定値に保たれるという条件の下では、変速過程TPの最初の段階である第一段階α1では当該変速過程TPが進行するに従って大きくなると共に、変速過程TPの最後の段階である第三段階α3では当該変速過程TPが進行するに従って小さくなる値に設定されている。ここで、第一段階α1は、変速過程TPの進行度αが所定値以下の段階であり、本例では0≦α≦0.4の期間が第一段階α1とされている。また、第三段階α3は、変速過程TPの進行度αが所定値以上の段階であり、本例では0.6≦α≦1の期間が第三段階α3とされている。本実施形態では、第一段階α1と第三段階α3との間の0.4<α<0.6の期間である第二段階α2では、変化係数Gは変速過程TPの進行度αによらずに一定となる値に設定されている。なお、図6のマップから明らかなように、第三段階α3では、進行度αに対する変化係数Gの変化率(ここでは、低下率)は、当該第三段階α3の後半部分α32よりも前半部分α31の方が大きくなっている。また、第一段階α1における進行度αに対する変化係数Gの変化率(ここでは、上昇率)の絶対値は、第三段階α3の前半部分α31における変化係数Gの変化率(ここでは、低下率)の絶対値よりも小さく、第三段階α3の後半部分α32における変化係数Gの変化率(ここでは、低下率)の絶対値よりも大きくなっている。
【0087】
また、変化係数Gは、変速過程TPの進行度αが等しいという条件の下では、回転電機12の出力トルクが負の場合には、当該回転電機12の出力トルクが正方向に変化するに従って大きくなる(回転電機12の出力トルクが負方向に変化するに従って小さくなる)値に設定されている。本実施形態では、変化係数Gは、回転電機12の出力トルクがゼロとなる、動力も電力も発生しない状態を基準(G=1)として、回転電機12が出力する負トルク(回生トルク)が大きくなるに従って次第に小さくなると共に、その絶対値が所定値(図示の例では、回生トルクとして300〔N・m〕)以上では進行度αによらず常にゼロとなる値に設定されている。なお、図6には、回転電機12の出力トルクが負の場合(ゼロの場合を含む)における関係のみが示されているが、本例では回転電機12の出力トルクが正の場合における関係は、ゼロの場合における関係と同一とされている。また、図6には回転電機12の出力トルクに関する4つの代表値についての関係のみが示されているが、更に多くの出力トルクに関する関係を規定した構成としても良い。また、図6に示した変化係数マップはあくまで一例であり、車両特性等に応じて適宜変更が可能である。
【0088】
係合側油圧制御部38は、変速過程TPの開始時における係合側油圧を基準として、変速過程TPの進行度αと回転電機12の出力トルクとに基づいて決まる変化係数Gと、基準油圧変化量ΔPbと、に基づいて係合側油圧を変化させる。すなわち本例では、基準油圧変化量ΔPbと変化係数Gとを乗算して得られる乗算値を、変速過程TPの進行度α及び回転電機12の出力トルクに応じた係合側油圧の変化量として導出し、これを変速過程TPの開始時における係合側油圧に加算することにより、変速過程TPの各時点における係合側油圧の指令値を決定する。そして係合側油圧制御部38は、当該係合側油圧の指令値に追従するように実際の係合側油圧を変化させる。これにより、係合側油圧の変化は、基準油圧変化量ΔPbに基づき、かつ、変速過程TPの進行度αと回転電機12の出力トルクとに応じたものとなる。具体的には、係合側油圧は、回転電機12が出力する負トルク(回生トルク)の絶対値が小さいほど大きい変化幅で、変速過程TPの進行に伴って上昇〜固定〜低下〜緩低下となる態様で変化する。なお、変速過程TPの開始時における係合側油圧は、当該係合側油圧を僅かに上昇させることにより速やかに係合側要素を係合させることができる係合開始直前の圧である。このような第一係合制御は、解放側特別変速制御による解放側油圧の低下に同調して実行される。
【0089】
上記のようにして係合側油圧制御部38により制御される係合側油圧を、本実施形態では「係合側基準油圧PES」とする(図9を参照)。この係合側基準油圧PESは、基本的には変速過程TPの進行度αに応じてその大きさが変化する油圧を表す概念である。但し、回転電機12が出力する負トルク(回生トルク)の大きさ次第では、変速過程TPの進行度αによらずに一定値となる場合もある(図6及び図9を参照)。
【0090】
ところで、回転電機12が出力する負トルク(回生トルク)の絶対値が小さいほど、解放側要素をスリップ状態に維持させることにより中間軸Mの回転速度の低下が緩慢となって変速時間が徒に長くなる可能性がある。変速時間が長くなって間延びすると、変速フィーリングが悪化する可能性がある。この点、上記のように係合側基準油圧PESに従って係合側油圧を制御する構成を採用することで、解放側要素をスリップ状態に維持することで緩慢となりがちな中間軸Mの回転速度の低下を係合側油圧の変化により補助して、目標変速時間Tt内で変速動作を適切に終了させることが容易となっている。
【0091】
なお、上記のように係合側基準油圧PESに従って係合側油圧を制御する構成を採用した場合であっても、解放側油圧を低下させた後、解放側要素のスリップが遅れて中間軸Mの回転速度の低下も遅れる可能性がある。この場合、変速時間が徒に長くなって間延びし、変速フィーリングが悪化する可能性がある。そこで本実施形態においては、特別変速制御の開始に際して、解放側油圧制御部37が解放側油圧を低下させた時点を基準として所定のスリップ判定基準時間(ここでは、TSsとする)内に解放側要素のスリップを検出しない場合には、係合側油圧制御部38は、解放側要素のスリップを検出するまで係合側油圧を上昇させる増圧補正制御を行う。この増圧補正制御は、上記の第一係合制御の一環として実行される係合側油圧の制御であり、係合側基準油圧PESに従った係合側油圧の制御とは独立して実行される。すなわち、係合側油圧制御部38は、係合側基準油圧PESに従って係合側油圧を制御しつつ、それでもなお解放側油圧の低下開始後スリップ判定基準時間TSs内に解放側要素がスリップを開始しない場合には増圧補正制御を実行し、係合側基準油圧PESに対して更に係合側油圧を上昇させる増圧補正を行う。
【0092】
図9は、本実施形態に係る増圧補正制御を説明するための説明図である。この図においては、上から順に、予想残り変速時間、中間軸Mの回転速度NM、係合側油圧及び解放側油圧を示している。ここで、係合側油圧に関しては、係合側基準油圧PESを一点鎖線で示し、増圧補正後の係合側油圧を実線で示している。なお、本例では、係合側基準油圧PESが変化しない一定値に維持される場合を例示しているが、係合側基準油圧PESが経時変化する場合には、各時点における係合側基準油圧PESに対して各時点における増圧補正圧ΔPE分がそれぞれ加算された値が、増圧補正後の各時点における係合側油圧となる。
【0093】
図9に示すように、本実施形態においては、増圧補正制御では、係合側油圧制御部38は係合側基準油圧PESに対して一定の増圧変化率で係合側油圧を上昇させる。このような増圧補正制御は、解放側要素がスリップを開始するまで実行される。上記のとおり、解放側要素がスリップを開始する時点は変速過程TPの始期に一致し、本実施形態では差回転取得部35により取得される変速段の切り替え前における差回転速度ΔN1に基づいて、解放側要素がスリップを開始する時点を判定することができる。このような増圧補正制御を実行する構成を採用することにより、解放側油圧を低下させた後、解放側要素のスリップが遅れて中間軸Mの回転速度の低下が遅れる(変速過程TPの開始が遅れる)場合にも、解放側要素のスリップ及び中間軸Mの回転速度NMの低下を促し、変速過程TPの開始が遅れて変速フィーリングが悪化するのを抑制することができる。
【0094】
増圧補正制御の実行により解放側要素がスリップを開始したことが検出された後は、係合側油圧制御部38は、変速過程TPの終了前に、増圧補正制御により上昇された分の係合側油圧(増圧補正圧ΔPE)を次第に解消して、最終的に係合側基準油圧PESまで低下させる。本実施形態においては、係合側油圧制御部38は、現時点から変速過程TPの終了前に設定した所定の増圧終了時点EPまでの予測時間に応じて、増圧終了時点EPで係合側油圧が係合側基準油圧PESとなるように、係合側油圧を次第に低下させる。より具体的には、係合側油圧制御部38は、解放側要素がスリップを開始した時点における増圧補正圧ΔPEを基準増圧補正圧ΔPEb、解放側要素がスリップを開始した時点における予想残り変速時間をTa、現時点における予想残り変速時間をTb、増圧終了時点EPから変速過程TPの終了時点までの間に設定される所定の余裕時間をTxとして、変速過程TPの各時点における増圧補正圧ΔPEを、
ΔPE=ΔPEb*(Tb−Tx)/(Ta−Tx)・・・(式4)
として、所定周期で導出する。なお、1回の増圧補正制御において、基準増圧補正圧ΔPEb、予想残り変速時間Ta、及び余裕時間Txは定数であり、予想残り変速時間Tbは変数となる。そして、係合側油圧制御部38は、係合側基準油圧PESと上記の(式4)に従って導出された各時点における増圧補正圧ΔPEとを加算した値とするように、各時点における係合側油圧を制御する。
【0095】
このように、本実施形態では、解放側要素がスリップを開始した後は、増圧補正制御で上昇させた増圧補正圧ΔPE分を再度低下させることで、タイアップ率の過度の上昇を抑制している。特に、本実施形態のように変速過程TPにおける切替点以降に回転速度制御が実行され、一旦低下した解放側油圧が変速過程TPの終盤に再度上昇される場合にも、タイアップ率が過度に上昇するのを有効に抑制することができる。また、本実施形態では、増圧補正圧ΔPE分を、現時点から増圧終了時点EPまでの予測時間(Tb−Tx)に応じて低下させることで、変速過程TPの終点前の増圧終了時点EPにおいて、確実に増圧補正圧ΔPE分を解消することができる。この際、解放側要素がスリップを開始した直後は、増圧補正がされていた分だけ係合側油圧が高く、中間軸Mの回転加速度AM(ここでは、減速度)も比較的大きいので、予想残り変速時間Tbは比較的急速に減少する。よって、解放側要素のスリップの開始が遅れた場合にも当該解放側要素のスリップの開始後の変速時間を短縮して、全体として変速時間が間延びするのを抑制することができる。
【0096】
なお、解放側要素がスリップを開始した時点における予想残り変速時間Taは、先に説明した目標変速時間Ttに等しい。また、各時点における予想残り変速時間Tbは、その時点における変速段の切り替え後の差回転速度ΔN2と中間軸Mの回転加速度AMとに基づいて、当該差回転速度ΔN2を回転加速度AMで除算した除算値として取得することができる。また、解放側油圧の低下開始後スリップ判定基準時間TSs内に解放側要素が問題なくスリップを開始した場合には、増圧補正制御は実行されず、係合側油圧制御部38は、係合側基準油圧PESにそのまま従って係合側油圧を制御することになる。
【0097】
第一係合制御は、特別変速制御移行条件が満たされている限り、差回転取得部35により取得される切替後目標回転速度NT2と中間軸Mの実際の回転速度NMとの間の差回転速度ΔN2が所定値以下となるまで実行される。このときの所定値としては、本例では回転速度制御の終了を判定するための基準値、及び変速過程TPの終了を判定するための基準値と等しい値が設定されている。従って、本例では第一係合制御終了のタイミングと回転速度制御及び変速過程TP終了のタイミングとが等しいことになる。
【0098】
差回転取得部35により取得される変速段の切り替え後の差回転速度ΔN2が所定値以下となった場合には、次に第二係合制御が実行される。この第二係合制御では、係合側油圧制御部38は、差回転速度ΔN2が所定値以下となって変速過程TPが終了した後で係合側要素を完全係合状態とさせるように係合側油圧を制御する。本実施形態においては、係合側油圧制御部38は、変速過程TPが終了した後で、係合側油圧を完全係合圧まで一気に上昇させる。
【0099】
なお、上記では、アクセル低開度状態で変速機構14における目標変速段がアップシフトされることにより特別変速制御移行条件が成立する場合を念頭において説明したが、負トルク予測成立状態で変速機構14における目標変速段がアップシフトされることにより特別変速制御移行条件が成立する場合にも、同様の特別変速制御が実行される。但し、この場合において、解放側油圧の下限値を規定する2つの制限油圧のうちの第一制限油圧PL1の設定に関しては、「回転電機12の回生トルク」を、「予測入力トルクPTi」に置き換えて考えるものとする。すなわち、制限油圧決定部39は、第一制限油圧PL1として、予測入力トルクPTiの大きさに応じた値の圧を設定する。つまり、制限油圧決定部39は、予測入力トルクPTiがゼロの時点では解放側要素のストロークエンド圧Pseに等しいと共に、予測入力トルクPTiが負方向に大きくなるに従って大きくなる値の圧を、第一制限油圧PL1として設定する(図4の括弧書を参照)。
【0100】
5.変速制御処理の手順
次に、本実施形態に係る変速装置2を含む車両用駆動装置1の制御の内容について説明する。図10は、本実施形態に係る車両用駆動装置1の変速制御処理の全体の処理手順を示すフローチャートである。また、図11は、図10のステップ#06の特別変速制御処理のうち、解放側要素に関する特別変速制御処理である解放側特別変速制御処理の処理手順を示すフローチャートである。また、図12は、図10のステップ#06の特別変速制御処理のうち、係合側要素に関する特別変速制御処理である係合側特別変速制御処理の処理手順を示すフローチャートである。以下に説明する車両用駆動装置1の変速制御処理の手順は、制御ユニット31の各機能部32〜40により実行される。制御ユニット31の各機能部32〜40がプログラムにより構成される場合には、制御ユニット31が備える演算処理装置は、上記の各機能部32〜40を構成するプログラムを実行するコンピュータとして動作する。
【0101】
5−1.変速制御処理の全体の手順
本実施形態に係る変速制御処理においては、まず、回転電機12の出力トルク、アクセル開度、及び予測入力トルクPTiが取得される(ステップ#01)。本実施形態では、回転電機12の出力トルクは回転電機制御部33により決定されたトルク指令値として取得され、アクセル開度はアクセル開度検出センサSe4により検出されて取得される。また、予測入力トルクPTiは入力トルク予測部40により導出されて取得される。制限油圧決定部39は、取得された回転電機12の出力トルクに基づいて、当該回転電機12の出力トルクに応じた第一制限油圧PL1を決定すると共に、取得されたアクセル開度に基づいて、当該アクセル開度に応じた第二制限油圧PL2を決定し、更に、所定値となる第三制限油圧PL3を設定する(ステップ#02)。次に、車両の状態が特別変速制御移行条件を満たしているか否かが判定される。すなわち、負トルク予測成立状態であるか否か(ステップ#03)、アクセル低開度状態であるか否か(ステップ#04)、及び変速機構14における目標変速段のアップシフト要求がなされたか否か(ステップ#05)、が判定される。本実施形態では、アクセル開度検出センサSe4により検出されるアクセル開度が所定値(本例では、1%)以下の場合に、アクセル低開度状態であると判定される。
【0102】
そして、負トルク予測成立状態(ステップ#03:Yes)又はアクセル低開度状態(ステップ#04:Yes)であると判定され、かつ、目標変速段のアップシフト要求がなされたと判定された場合には(ステップ#05:Yes)、切替制御部36は特別変速制御を実行する(ステップ#06)。特別変速制御の詳細な処理手順については次に述べる。一方、負トルク予測成立状態ではなく(ステップ#03:No)かつアクセル低開度状態でもない(ステップ#04:No)と判定された場合、又は目標変速段のアップシフト要求はなされていないと判定された場合には(ステップ#05:No)、切替制御部36は通常変速制御を実行する(ステップ#07)。この通常変速制御では、変速過程TPの初期段階で解放側要素が速やかに解放されると共に、係合側要素がスリップ状態を経て完全係合される。そして、車両が走行中は、ステップ#01〜#07の処理が逐次繰り返し実行される。
【0103】
5−2.特別変速制御処理の全体の手順
次に、ステップ#06の特別変速制御処理の詳細な処理手順について説明する。特別変速制御処理は、解放側要素に関する解放側特別変速制御処理と係合側要素に関する係合側特別変速制御処理とを含んで構成される。図11に示す解放側特別変速制御処理では、まず、待機制御が実行される(ステップ#21)。待機制御では、一定時間が経過するまで解放側油圧は出力トルクに応じた保持圧とされる。内部タイマーにより一定時間が経過したと判定されると(ステップ#22:Yes)、次に変化率制御が実行される(ステップ#23)。この変化率制御では、回転電機12の出力トルク(負トルク予測成立状態にあっては、予測入力トルクPTi)の大きさに応じた変化率で解放側油圧が低下される。変化率制御は、特別変速制御移行条件が満たされている限り継続して実行され、これと並行して変速過程TPが切替点に達したか否かが判定される(ステップ#24)。本例では、変速動作が50%進行した時点(進行度αが0.5に達した時点)が切替点とされている。
【0104】
切替点に達するまでは(ステップ#24:No)変化率制御が継続して実行され、やがて変速動作の進行度が50%に達して切替点に達したと判定されると(ステップ#24:Yes)、次に回転速度制御が実行される(ステップ#25)。この回転速度制御では、変速装置2の入力軸としての中間軸Mの実際の回転加速度AMが各時点における目標回転加速度ATに追従するように、解放側油圧が変化される。回転速度制御は、特別変速制御移行条件が満たされている限り継続して実行され、これと並行して差回転速度ΔN2が所定値以下であるか否かが判定される(ステップ#26)。この場合の所定値としては、本例では中間軸Mの実際の回転速度と変速段の切替後の目標回転速度NT2との間に偏差が生じていることが識別可能な値が設定されている。差回転速度ΔN2が所定値より大きい間は(ステップ#26:No)回転速度制御が継続して実行され、やがて差回転速度ΔN2が所定値以下となると、(ステップ#26:Yes)、次に解放制御が実行される(ステップ#27)。解放制御では、解放側要素が速やかに完全に解放される。なお、図11のフローチャートには示されていないが、変化率制御の実行中又は回転速度制御の実行中に特別変速制御移行条件が満たされなくなった場合にも解放制御が実行される(ステップ#27)。以上で、解放側特別変速制御処理を終了する。
【0105】
図12に示す係合側特別変速制御処理では、まず、基準油圧変化量ΔPbが決定される(ステップ#31)。基準油圧変化量ΔPbは、目標変速時間Ttと回転速度変化幅Wとに基づいて決定される。次に、差回転速度ΔN1が所定値以上であるか否かが判定される(ステップ#32)。この場合の所定値としては、本例では中間軸Mの実際の回転速度と変速段の切替前の目標回転速度NT1との間に偏差が生じていることが識別可能な値が設定されている。差回転速度ΔN1が所定値以上になったと判定されると(ステップ#32:Yes)、次に第一係合制御が実行されると共に、所定条件下で当該第一係合制御と並行して増圧補正制御が実行される(ステップ#33)。第一係合制御では、基準油圧変化量ΔPbに基づき、かつ、変速過程TPの進行度αと回転電機12の出力トルクとに応じた係合側基準油圧PESに従って、係合側油圧が変化される。増圧補正制御の詳細な処理手順については次に述べる。第一係合制御は、特別変速制御移行条件が満たされている限り継続して実行され、これと並行して差回転速度ΔN2が所定値以下であるか否かが判定される(ステップ#34)。
【0106】
差回転速度ΔN2が所定値より大きい間は(ステップ#34:No)回転速度制御が継続して実行され、やがて差回転速度ΔN2が所定値以下となると、(ステップ#34:Yes)、次に第二係合制御が実行される(ステップ#35)。この第二係合制御では、差回転速度ΔN2が所定値以下となって変速過程TPが終了した後で、係合側油圧が完全係合圧まで一気に上昇される。以上で、係合側特別変速制御処理を終了する。なお、図12のフローチャートには示されていないが、第一係合制御の実行中に特別変速制御移行条件が満たされなくなった場合には、係合側特別変速制御処理を終了して、通常変速制御(ステップ#07)における係合側油圧制御が実行されることになる。
【0107】
図13に示す増圧補正制御処理では、まず、解放側油圧制御部37が解放側油圧を低下させた時点を基準として所定のスリップ判定基準時間TSs内に解放側要素がスリップを開始したか否かが判定される(ステップ#41)。解放側要素のスリップ開始時点の判定は、変速段の切り替え前における差回転速度ΔN1に基づいて行うことができる。スリップ判定基準時間TSs内に解放側要素がスリップを開始したと判定された場合には(ステップ#41:Yes)、増圧補正制御の実質的な内容は実行されることなく、そのまま増圧補正制御処理を終了する。一方、スリップ判定基準時間TSs内に解放側要素がスリップを開始したとは判定されなかった場合には(ステップ#41:No)、増圧補正制御の実質的な内容が実行される。すなわち、係合側油圧制御部38は、係合側基準油圧PESを基準として、更に一定の増圧変化率で係合側油圧を上昇させる(ステップ#42)。このような係合側油圧の増圧補正は、解放側要素が実際にスリップを開始するまで継続して実行される(ステップ#43)。やがて解放側要素がスリップを開始したことが判定されると(ステップ#43:Yes)、次に係合側油圧制御部38は、現時点から増圧終了時点EPまでの予測時間に応じて係合側油圧を低下させ(ステップ#44)、最終的には増圧終了時点EPにおいて係合側油圧を係合側基準油圧PESとする。以上で、増圧補正制御処理を終了して、係合側特別変速制御処理におけるステップ#33の処理に戻る。
【0108】
6.変速制御処理の具体例
次に、本実施形態に係る変速制御処理により変速装置2を含む車両用駆動装置1の制御を行った場合の具体例について図14〜図20を参照して説明する。これらの図においては、上から順に中間軸Mの回転速度NM、回転電機12の出力トルク、予測入力トルクPTi、運転者によるブレーキ操作、アクセル開度、アップシフト要求、解放側油圧及び係合側油圧、が示されている。なお、解放側油圧及び係合側油圧に重ねて、第一制限油圧PL1及び二制限油圧PL2が示されている。
【0109】
図14は、通常変速制御により変速動作が行なわれた場合の一例を示すタイミングチャートである。この図14には、車両のアクセル開度が、アクセル低開度状態を規定するアクセル開度(本例では、1%)よりも大きい状態で、変速機構14によりアップシフトが行われる場合(パワーオンアップシフト)の例が示されている。この場合、特別変速制御移行条件が満たされていないので、通常変速制御が実行されることになる。本例では、アクセル開度が所定の大きさを維持したままで、時刻T11においてアップシフト要求がオンとなっている。時刻T11からT12までの間、解放側油圧は出力トルクに応じた保持圧とされ、係合側油圧は予備充填が完了した後所定の維持圧に維持される。
【0110】
その後、時刻T12からT13にかけて、解放側油圧が急速に低下されて変速過程TPの初期段階で解放側要素が速やかに解放される。また、時刻T12からT14にかけて、中間軸Mの回転速度NMを、所定の目標回転加速度ATで変化させるように係合側油圧を変化させる。更に、時刻T15において係合側油圧を完全係合圧まで上昇させて係合側要素を完全係合状態として変速過程TPを終了する。なお、本例では変速過程TPの全体に亘ってアクセル開度及び回転電機12が出力する正トルクは比較的大きい値に維持され、第一制限油圧PL1及び第二制限油圧PL2は解放側要素のストロークエンド圧Pseよりも十分に小さい値に設定されている。よって、解放側油圧は、第一制限油圧PL1又は第二制限油圧PL2により規制されることなく変化している。
【0111】
図15は、特別変速制御により変速動作が行なわれた場合の一例を示すタイミングチャートである。なお、本例では、予測入力トルクPTiは回転電機12の出力トルクにほぼ一致している。この図15には、車両のアクセル開度が所定値以下のアクセル低開度状態で、変速機構14によりアップシフトが行われる場合(パワーオフアップシフト)の例が示されている。この場合、特別変速制御移行条件が満たされているので、特別変速制御が実行されることになる。時刻T21においてアクセル開度がゼロとなると、回転電機12の出力トルクは徐々に減少していき、時刻T22においてゼロとなる。なお、時刻T21においてアップシフト要求がオンとなっている。また本例では、運転者によるブレーキ操作はなされておらず、回転電機12の出力トルクは変速過程TPの全体に亘ってゼロに保たれている。これにより、本例では変速過程TPの全体に亘って、第二制限油圧PL2が、第一制限油圧PL1より大きくかつ解放側要素のストロークエンド圧Pseよりも大きい値となっている。時刻T21からT22までの間、解放側油圧は出力トルクに応じた保持圧とされ、係合側油圧は予備充填が完了した後所定の維持圧に維持される。その後、時刻T22からT25にかけて、変速過程TPの全体に亘って解放側要素をスリップ状態に維持させるように解放側油圧が制御される。
【0112】
より詳細には、時刻T22からT24までは変化率制御が実行され、回転電機12が出力する負トルク(回生トルク)の大きさに応じた減圧変化率で、解放側油圧が徐々に低下させられる。ただし、時刻T23において解放側油圧が第一制限油圧PL1及び第二制限油圧PL2のうちの大きい方である第二制限油圧PL2に達しているので、それ以上低下されることはなく、時刻T23からT24まで解放側油圧は第二制限油圧PL2に維持される。そして時刻T24において変速動作が50%進行した時点、すなわち切替点で、変化率制御から回転速度制御に切り替わる。回転速度制御では、中間軸Mの実際の回転加速度AMが各時点における目標回転加速度ATに追従するように解放側油圧が変化される。図示の例では、時刻T24からT25にかけて解放側油圧は一度上昇し、その後略一定の圧を維持するように変化している。
【0113】
なお、時刻T22からT25までの変速過程TPの全体に亘って、係合側油圧は、中間軸Mの実際の回転加速度AMが目標回転加速度ATに追従するように解放側油圧の変化に同調して変化される。本例では、変速過程TPの全体に亘って回転電機12の出力トルクがゼロに保たれているので、変速過程TPの進行に伴って比較的大きい変化幅で、上昇〜固定〜低下〜固定の態様で係合側油圧(係合側基準油圧PES)が変化している。その後、時刻T25において差回転速度ΔN2が所定値以下となったときに係合側油圧が完全係合圧まで上昇されると共に、その後速やかに解放側油圧がゼロとされて変速過程TPを終了する。
【0114】
図16は、特別変速制御により変速動作が行なわれた場合の他の一例を示すタイミングチャートである。なお、本例では、予測入力トルクPTiは回転電機12の出力トルクにほぼ一致している。この図16には、図15と同様、車両のアクセル開度が所定値以下のアクセル低開度状態で、変速機構14によりアップシフトが行われる場合(パワーオフアップシフト)の例が示されている。この場合、特別変速制御移行条件が満たされているので、特別変速制御が実行されることになる。時刻T31においてアクセル開度がゼロとなると、回転電機12の出力トルクは徐々に減少していき、時刻T32においてゼロとなる。なお、時刻T31においてアップシフト要求がオンとなっている。本例では、時刻T32以降において運転者によるブレーキ操作がなされており、このブレーキ操作による減速要求に基づいて、回転電機12は車両を制動させるために負トルクを出力して自身は回生を行う状態(オフアップ回生)となる。また本例では、変速過程TPが進行するに従って回転電機12が出力する負トルクは徐々に大きくなっており、これに合わせて第一制限油圧PL1も徐々に大きくなっている。なお、時刻T34より前では第一制限油圧PL1よりも第二制限油圧PL2が大きく、時刻T34以降では第二制限油圧PL2よりも第一制限油圧PL1が大きい値となっている。いずれの場合も、解放側要素のストロークエンド圧Pseよりも大きい。時刻T31からT33までの間、解放側油圧は出力トルクに応じた保持圧とされ、係合側油圧は予備充填が完了した後所定の維持圧に維持される。その後、時刻T33からT36にかけて、変速過程TPの全体に亘って解放側要素をスリップ状態に維持させるように解放側油圧が制御される。
【0115】
より詳細には、時刻T33からT35までは変化率制御が実行され、回転電機12が出力する負トルク(回生トルク)の大きさに応じた減圧変化率で、解放側油圧が徐々に低下させられる。ただし、時刻T34において解放側油圧が、第一制限油圧PL1及び第二制限油圧PL2のうちの大きい方である第一制限油圧PL1に達しているので、それ以上低下されることはなく、時刻T34からT35まで解放側油圧は第一制限油圧PL1に維持される。なお、上記のとおり第一制限油圧PL1は変速過程TPが進行するに従って徐々に大きくなっているので、これに合わせて解放側油圧も徐々に上昇している。そして時刻T35において変速動作が50%進行した時点、すなわち切替点で、変化率制御から回転速度制御に切り替わる。回転速度制御では、中間軸Mの実際の回転加速度AMが各時点における目標回転加速度ATに追従するように解放側油圧が変化される。図示の例では、時刻T35からT36にかけて解放側油圧は一度上昇し、その後略一定の圧を維持するように変化している。
【0116】
なお、時刻T33からT36までの変速過程TPの全体に亘って、係合側油圧は、中間軸Mの実際の回転加速度AMが目標回転加速度ATに追従するように解放側油圧の変化に同調して変化される。本例では、変速過程TPの全体に亘って回転電機12は負トルク(回生トルク)を出力しているので、係合側油圧は変速過程TPの進行に伴って比較的小さい変化幅で上昇〜固定〜低下〜固定の態様で変化している。すなわち、図15と図16とを対比して良く理解できるように、係合側油圧は変速過程TPの進行に伴って、回転電機12の出力トルクがゼロに保たれる場合よりも小さい変化幅で変化している。その後、時刻T36において差回転速度ΔN2が所定値以下となったときに係合側油圧が完全係合圧まで上昇されると共に、その後速やかに解放側油圧がゼロとされて変速過程TPを終了する。
【0117】
図17は、特別変速制御により変速動作が行なわれた場合の他の一例を示すタイミングチャートである。なお、本例では、予測入力トルクPTiは回転電機12の出力トルクよりも低いレベルで推移している。そのため、この図17には、予測判定基準時間TSp後に入力軸Iに入力されると予測される予測入力トルクPTiが負の値となる負トルク予測成立状態で、変速機構14によりアップシフトが行われる場合(パワーオフアップシフト)の例が示されている。この場合も、特別変速制御移行条件が満たされているので、特別変速制御が実行されることになる。すなわち、本例では、時刻T41ではアクセル開度はゼロ以上の所定値を維持しておりアクセル低開度状態とはなっていないが、当該時刻T41において予測入力トルクはゼロ以下となって負トルク予測成立状態となっている。よって、時刻T41以降、特別変速制御が実行される。この特別変速制御の詳細な内容に関しては、図16を参照して説明したものに類似している。但し、本例では、第一制限油圧PL1は、回転電機12の出力トルク(回生トルク)ではなく、予測入力トルクPTiに基づいて設定されている点で図16の例とは異なる。その他の点に関しては図16の例と同様であるので、ここでは詳細な説明は省略する
【0118】
図18は、特別変速制御により変速動作が行なわれた場合の他の一例を示すタイミングチャートである。なお、本例では、予測入力トルクPTiは回転電機12の出力トルクにほぼ一致している。この図18には、図15及び図16と同様、車両のアクセル開度が所定値以下のアクセル低開度状態で、変速機構14によりアップシフトが行われる場合(パワーオフアップシフト)の例が示されている。この場合、特別変速制御移行条件が満たされているので、特別変速制御が実行されることになる。時刻T51においてアクセル開度がゼロとなると、回転電機12の出力トルクは徐々に減少していき、時刻T52において負となって回転電機12は回生を行う状態(オフアップ回生)となっている。なお、時刻T51においてアップシフト要求がオンとなっている。本例では変速過程TPの全体に亘って、第二制限油圧PL2が、第一制限油圧PL1より大きくかつ解放側要素のストロークエンド圧Pseよりも大きい値となっている。時刻T51からT52までの間、解放側油圧は出力トルクに応じた保持圧とされ、係合側油圧は予備充填が完了した後所定の維持圧に維持される。その後、時刻T52を始期として、変速過程TPの全体に亘って解放側要素をスリップ状態に維持させるように、解放側油圧が低下される。
【0119】
本例では、解放側油圧を低下させ始めた時刻T52以降もしばらくの間は、中間軸Mの回転速度は所定の差回転速度ΔN1が生じる程度には低下していない。つまり、解放側油圧を低下させた後もしばらくの間は、解放側要素はスリップしていない。そこで本例では、解放側油圧を低下させた後所定時間(スリップ判定基準時間TSs)経過後の時刻T53を始期として、係合側基準油圧PESに対して更に係合側油圧を上昇させる増圧補正制御を行っている。なお、図18においては、増圧補正制御前の係合側基準油圧PESを二点鎖線で示している。この増圧補正制御を行ったことにより、時刻T54において解放側要素がスリップを開始して所定の差回転速度ΔN1が生じたことが検出されると、当該時刻T54以降は、増圧補正制御により上昇された分の係合側油圧を次第に解消して、係合側基準油圧PESまで低下させる。また、図18には、第一制限油圧PL1及び第二制限油圧PL2に加えて、第三制限油圧PL3も表示している。本例では、解放側油圧は変速過程TPの全体に亘って第三制限油圧PL3未満の圧に維持されており、第三制限油圧PL3による解放側油圧の上限規制は行われていない。なお、ここでは、増圧補正制御の内容に焦点を当てて本例における特別変速制御について説明したが、特に明記しなかった点に関しては、図15〜図17を参照して説明したものと同様である。
【0120】
図19は、通常変速制御及び特別変速制御の組み合わせにより変速動作が行なわれた場合の一例を示すタイミングチャートである。この図19には、当初通常変速制御が行われ、その後、切り替え後の目標変速段が形成される前に特別変速制御に移行する場合の例が示されている。本例では、アクセル開度が所定の大きさを維持したままで、時刻T61においてアップシフト要求がオンとなっている。時刻T61からT62までの間、解放側油圧は出力トルクに応じた保持圧とされ、係合側油圧は予備充填が完了した後所定の維持圧に維持される。その後、解放側油圧を急速に低下させて解放側要素を速やかに解放すると共に、中間軸Mの回転速度NMを所定の目標回転加速度ATで変化させるように係合側油圧を変化させる通常変速制御が行われる。
【0121】
本例では、通常変速制御が完了する前の時刻T63において、アクセル開度がゼロとされており、この時点において特別変速制御移行条件が事後的に満たされている。よって、時刻T63以降は特別変速制御が実行されることになる。なお、アクセル開度がゼロとなるのに伴って第二制限油圧PL2が解放側要素のストロークエンド圧Pseよりも大きい値となり、時刻T63以降は解放側油圧が当該第二制限油圧PL2により下限値が規制されて解放側要素がスリップ状態に維持される。具体的には、時刻T63からT64までは変化率制御が実行され、時刻T64からT65までは回転速度制御が実行される。その後、時刻T65において差回転速度ΔN2が所定値以下となったときに係合側油圧が完全係合圧まで上昇されると共に、その後速やかに解放側油圧がゼロとされて変速動作を終了する。
【0122】
図20は、通常変速制御及び特別変速制御の組み合わせにより変速動作が行なわれた場合の他の一例を示すタイミングチャートである。この図20には、当初特別変速制御が行われ、その後、切り替え後の目標変速段が形成される前に通常変速制御に移行する場合の例が示されている。本例では、アクセル開度が所定値以下のアクセル低開度状態で、時刻T71においてアップシフト要求がオンとなっている。時刻T71からT72までの間、解放側油圧は出力トルクに応じた保持圧とされ、係合側油圧は予備充填が完了した後所定の維持圧に維持される。その後、解放側要素をスリップ状態に維持させるように解放側油圧を制御する特別変速制御が行われる。
【0123】
本例では、特別変速制御が完了する前の時刻T73において車両の運転者によりアクセルペダルが踏み込まれ、少なくともその直後の時刻T74においてアクセル開度が所定値以上まで上昇して特別変速制御移行条件が事後的に満たされなくなっている。よって、時刻T74以降は通常変速制御が実行されることになる。すなわち、解放側油圧を急速に低下させて解放側要素を速やかに解放すると共に、中間軸Mの回転速度NMを所定の目標回転加速度ATで変化させるように係合側油圧を変化させる制御が行われる。その後、時刻T75において差回転速度ΔN2が所定値以下となったときに係合側油圧が完全係合圧まで上昇されて変速動作を終了する。
【0124】
以上説明した特別変速制御では、変速過程TPの全体に亘って、解放側要素は完全には係合も解放もされずスリップ状態に維持される。従って、本発明に係る特別変速制御によれば、切替制御部36は、基本的には解放側油圧の制御を行なうことのみにより、変速動作中における中間軸Mの回転速度NMの制御を行なうことができる。そして、変速過程TPの全体に亘って解放側要素をスリップ状態に維持することにより、車輪16から伝達される回転駆動力の一部が変速過程TPの全体に亘って解放側要素を介して中間軸M及びこれに駆動連結される入力軸I側に伝達される状態が維持される。そのため、回生制動を行うために回転電機12に比較的大きな負トルクを出力させたとしても、回転電機12が出力する大きな負トルクが車輪16から伝達される回転駆動力で一部補われ、入力軸Iの回転速度が急激に変化することが抑制される。図16及び図17には、中間軸Mの回転速度NMが変速過程TPの全体に亘って緩やかに変化している様子が示されている。よって、変速ショックの発生を抑制することができる。また、基本的には解放側油圧の制御を行なうだけで変速ショックの発生が抑制できるので、変速過程TPの初期段階で比較的速やかに解放側要素を完全に解放してしまう場合とは異なり、回転電機12が出力する負トルク(回生トルク)の大きさを制限する必要がない。よって、回生できるエネルギーが減少する等の不都合が生じることがなく、エネルギー効率を高く維持させることができる。
【0125】
なお図16においては、比較のため、回転電機12が負トルクを出力して回生を行っている場合にも通常変速制御と同じように解放側要素を速やかに解放した場合(図14を参照)の中間軸Mの回転速度NMの変化の様子が破線で示されている。この例では、入力軸Iの回転速度NMは急激に低下して、変速過程TPの初期段階で、切替後目標回転速度NT2以下にまで落ち込んでいることが分かる。中間軸Mの回転速度NMがこのように急激に変化する場合、比較的大きなトルク変動が出力軸Oに伝達され易く、変速ショックが発生する可能性が高い。これに対して、特別変速制御を行なった場合には、上記のとおり中間軸Mの回転速度NMが変速過程TPの全体に亘って緩やかに変化するため、変速ショックの発生が有効に抑制されている。
【0126】
また、本実施形態では、変速機構14における目標変速段がアップシフトされることと組み合わされて特別変速制御移行条件を構成する条件が、アクセル開度が所定値以下となるアクセル低開度状態であること、又は、予測入力トルクが負の値となる負トルク予測成立状態であることとされている。よって、実際にアクセル開度が所定値以下となる場合のみならず、所定時間(予測判定基準時間TSp)後に入力トルクTiが負の値となると予測される場合にも特別変速制御移行条件を成立させることを可能としている。これにより、例えば車両の運転者によるアクセルペダルの開放操作が緩慢に行われ、アクセル開度が緩やかに低下してアクセル低開度状態となるのが遅れる場合等であっても、予測入力トルクPTiの変化に基づいて特別変速制御を開始することができる。更にこの場合、特別変速制御の実行中における第一制限油圧PL1は、実際の回転電機12の出力トルク(回生トルク)ではなく、予測入力トルクPTiに応じて設定される。従って、実際に回転電機12の出力トルクがゼロ以下まで落ち込むよりも前に、予測入力トルクPTiに応じた第一制限油圧PL1により解放側油圧を下限規制することができ、エネルギー効率を高く維持させることができる。
【0127】
また、本実施形態では、特別変速制御中は、アクセル低開度状態では、回転電機12の出力トルクが負方向に大きくなる(回生トルクが大きくなる)に従って大きくなる第一制限油圧PL1が第二制限油圧PL2よりも大きい場合には、解放側油圧は第一制限油圧PL1以上の圧に規制される。これにより、特別変速制御では変速過程TPの全体に亘って解放側要素がスリップ状態に維持されると共に、回転電機12の負トルク(回生トルク)に応じてそのスリップ量が適切に調節される。すなわち、回生トルクが大きいほど第一制限油圧PL1を大きくしてスリップ量を低減させ、回生トルクが小さいほど第一制限油圧PL1を小さくしてスリップ量を増大させる。これにより、回転電機12の出力トルクの変化に対応させて、変速ショックの発生をより確実に抑制することができる。また、負トルク予測成立状態においても同様に、予測入力トルクPTiの変化に対応させて、変速ショックの発生をより確実に抑制することができる。
【0128】
ところで、特別変速制御では、変速過程TPの全体に亘って解放側要素をスリップ状態に維持するので、回生制動が行われず回転電機12が負トルクを出力しない場合や、回転電機12が負トルクを出力するにしてもその大きさが比較的小さい場合には、中間軸Mの実際の回転速度NMの低下が緩慢となって目標変速時間Ttに対して変速時間が徒に長くなる可能性がある。そこで、本実施形態においては、解放側要素をスリップ状態に維持するのに同調させて、第一係合制御により、中間軸Mの実際の回転加速度AMが目標回転加速度ATに追従するように係合側油圧が変化される。より具体的には、回転電機12が出力する負トルク(回生トルク)の絶対値が小さいほど大きい変化幅で変速過程TPの進行に伴って上昇〜固定〜低下となる態様で、係合側油圧が変化される。これにより、解放側要素をスリップ状態に維持することで緩慢となりがちな中間軸Mの回転速度NMの低下を係合側油圧の上昇により補助して、迅速な変速動作を可能としている。なお、このような第一係合制御による効果は、回転電機12が出力する負トルク(回生トルク)の絶対値が小さいほどより顕著に現れる。
【0129】
また、本実施形態では、特別変速制御の開始に際して、解放側油圧制御部37が解放側油圧を低下させ始めた時点を基準として所定のスリップ判定基準時間TSs内に解放側要素のスリップを検出しない場合には、係合側油圧制御部38は、解放側要素のスリップを検出するまで係合側油圧を上昇させる増圧補正制御を行う。このような増圧補正制御を実行する構成を採用することにより、上記の第一係合制御における通常の係合側油圧の制御のみでは中間軸Mの回転速度の低下が遅れる場合であっても、解放側要素のスリップ及び中間軸Mの回転速度の低下を促すことができる。
【0130】
また、特別変速制御における変化率制御では、回転電機12が出力する回生トルクの大きさに応じた変化率で解放側油圧を低下させる。本例では、回生トルクが大きいほど絶対値が小さい変化率で解放側油圧を低下させ、回生トルクが小さいほど絶対値が大きい変化率で解放側油圧を低下させる。本例の構成によれば、回生トルクが大きいほど解放側油圧がより緩やかに低下され、解放側要素を介して中間軸M及び入力軸I側に伝達される車輪16からの回転駆動力が大きくなって回転電機12の大きな負トルクを適切に補うことができる。よって、比較的単純な処理で中間軸Mの回転速度が急激に変化するのを適切に抑制することができる。
【0131】
更に、特別変速制御における回転速度制御では、目標変速時間Ttと回転速度変化幅Wとに基づいて各時点における中間軸Mの目標回転速度NT及び目標回転加速度ATを決定し、中間軸Mの実際の回転加速度AMが各時点における目標回転加速度ATに追従するように解放側油圧を変化させることで、変速ショックの発生に関連が深い中間軸Mの回転加速度AM(回転速度の時間変化率)を適切に制御することができる。よって、中間軸Mの回転速度の急激な変化をより確実に抑制して、変速ショックの発生をより確実に抑制することができる。更に本例では、回転速度制御が開始された時点から変速動作が完了する時点までの中間軸Mの回転速度が、二次曲線で表される経時軌跡を描くように各時点における目標回転速度NTが設定される。この場合、各時点における目標回転加速度ATの絶対値は、変速動作の終点に向かって徐々に小さくなる(最終的にはゼロになる)ので、変速過程TPの後半段階において、中間軸Mの回転速度NMを、切替後目標回転速度NT2へと滑らかに移行させることができる。よって、変速ショックの発生をより確実に抑制することができる。
【0132】
〔その他の実施形態〕
最後に、本発明に係る制御装置の、その他の実施形態について説明する。なお、以下のそれぞれの実施形態で開示される特徴構成は、その実施形態でのみ適用されるものではなく、矛盾が生じない限り、他の実施形態で開示される特徴構成と組み合わせて適用することも可能である。
【0133】
(1)上記の実施形態においては、入力トルク予測部40が、現時点の入力トルクTiとその時点における最新の予測トルク変化率QTiとに基づいて、所定値に設定された予測判定基準時間TSp後の予測入力トルクPTiを導出する場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、例えば入力トルク予測部40が、現時点の入力トルクTiと入力トルク変化率RTiとに基づいて予測入力トルクPTiを導出する構成とすることも、本発明の好適な実施形態の一つである。このような構成は、上記の実施形態において説明した重み付け係数kが、「1」に設定された構成に相当する。これらの場合において、予測判定基準時間TSpを設定するに際しては、上記の実施形態のように固定値ではなく、例えば車速や回転電機12の出力トルクに応じて可変としても良い。
【0134】
(2)上記の実施形態においては、負トルク予測成立状態で特別変速制御移行条件が成立する場合において、制限油圧決定部39が、予測入力トルクPTiに応じた値となる第一制限油圧PL1を決定する場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、そのような場合において、制限油圧決定部39が、回転電機12の出力トルク(回生トルク)に応じた値となる第一制限油圧PL1を決定する構成とすることも、本発明の好適な実施形態の一つである。この場合、入力トルク予測部40により導出される予測入力トルクPTiは、特別変速制御の開始判定にのみ用いられることになる。また、上記の実施形態においては、アクセル低開度状態で特別変速制御移行条件が成立する場合において、制限油圧決定部39が、回転電機12の出力トルク(回生トルク)に応じた値となる第一制限油圧PL1を決定する場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、そのような場合において、制限油圧決定部39が、予測入力トルクPTiに応じた値となる第一制限油圧PL1を決定する構成とすることも、本発明の好適な実施形態の一つである。
【0135】
(3)上記の実施形態においては、第一制限油圧PL1及び第二制限油圧PL2の双方が設定され、これら2つの制限油圧のうちいずれか大きい方が解放側油圧の下限値に設定される場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、第一制限油圧PL1及び第二制限油圧PL2のいずれか一方のみが設定され、それをそのまま解放側油圧の下限値に設定する構成とすることも、本発明の好適な実施形態の一つである。また、上記の実施形態においては、解放側油圧の上限値として第三制限油圧PL3が設定されている場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、このような第三制限油圧PL3が設定されていない構成とすることも、本発明の好適な実施形態の一つである。
【0136】
(4)上記の実施形態においては、第一制限油圧PL1が、回転電機12の出力トルク又は予測入力トルクPTiに応じた値に設定されている場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、第一制限油圧PL1は、少なくとも回転電機12が負トルク(回生トルク)を出力し、或いは予測入力トルクPTiが負の値となる場合に解放側要素のストロークエンド圧Pse以上となる値に設定されていると好適であり、例えば第一制限油圧PL1が、解放側要素のストロークエンド圧Pse以上の値であって、かつ回転電機12の負トルクの大きさ或いは予測入力トルクPTiの大きさによらない固定値に設定された構成とすることも、本発明の好適な実施形態の一つである。
【0137】
(5)上記の実施形態においては、第二制限油圧PL2が、アクセル開度が所定値以下のアクセル低開度状態では解放側要素のストロークエンド圧Pse以上の値となると共に、アクセル開度が大きくなるに従って小さくなる値に設定されている場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、第二制限油圧PL2は、少なくともアクセル低開度状態では解放側要素のストロークエンド圧Pse以上となる値に設定されていると好適であり、例えば第二制限油圧PL2が、解放側要素のストロークエンド圧Pse以上の値であってかつアクセル開度の大きさによらない固定値に設定された構成とすることも、本発明の好適な実施形態の一つである。
【0138】
(6)上記の実施形態においては、解放側特別変速制御で、変速過程TPの初期段階では変化率制御が実行され、変速動作が50%進行して(進行度αが0.5となって)切替点に到達したときに回転速度制御に移行する場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、変化率制御から回転速度制御へと移行するタイミングを規定する切替点をどのように設定するかは任意であり、本例のように中間軸Mの回転速度NMに基づいて切替点を設定する場合には、0%(α=0)〜100%(α=1)の間で設定値を適宜変更することが可能である。なお、切替点を0%(α=0)に設定した場合には、変速過程TPの全体に亘って回転速度制御のみが実行される構成となる。この場合、変速過程TPの全体の各時点において、中間軸Mの回転加速度AM及び回転速度NMを精密にコントロールしつつ適切に変化させて、変速ショックの発生の抑制とエネルギー効率の向上とを両立させることができる。また、切替点を100%(α=1)に設定した場合には、変速過程TPの全体に亘って変化率制御のみが実行される構成となる。この場合、比較的単純な制御内容で、変速ショックの発生の抑制とエネルギー効率の向上とを両立させることができる。また、切替点を設定するに際しては、変化率制御が開始されてからの経過時間や、解放側油圧の油圧レベル等に基づいて設定される構成としても好適である。例えば、変化率制御が開始されてから所定時間が経過した時点や解放側油圧の油圧レベルが所定圧に達した時点等を切替点とし、当該切替点以降では回転速度制御を実行する構成としても良い。
【0139】
(7)上記の実施形態においては、係合側特別変速制御の第一係合制御で、係合側油圧が、回転電機12が出力する負トルクに応じた変化幅で変化される場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、例えば第一係合制御で、回転電機12が出力する負トルク(回生トルク)の大きさによらずに一定の変化幅で変化させるように係合側油圧を制御する構成とすることも、本発明の好適な実施形態の一つである。或いは、係合側油圧が、予測入力トルクPTiに応じた変化幅で変化される構成とすることも、本発明の好適な実施形態の一つである。
【0140】
(8)上記の実施形態においては、係合側特別変速制御で、第一係合制御と第二係合制御との双方が実行される場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、係合側特別変速制御において第一係合制御を実行することなく第二係合制御のみを実行する構成とすることも、本発明の好適な実施形態の一つである。この場合、係合側油圧を、変速過程TPの全体に亘って所定の大きさだけ上昇させることにより速やかに係合側要素を係合させることができる圧に維持させるように制御する構成とすることができる。なお、その後、変速過程TPが終了した後で第二係合制御により係合側油圧を完全係合圧まで一気に上昇させる構成とすると好適である。また、第一係合制御を実行する場合において、係合側基準油圧PESに従った係合側油圧の制御のみを実行し、増圧補正制御は実行しない構成とすることも、本発明の好適な実施形態の一つである。
【0141】
(9)上記の実施形態においては、増圧補正制御において、係合側油圧制御部38が、係合側基準油圧PESに対して一定の増圧変化率で係合側油圧を上昇させる場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、例えば係合側油圧を上昇し始めてからの経過時間に応じて異なる増圧変化率で係合側油圧を上昇させる構成とすることも、本発明の好適な実施形態の一つである。この場合、例えば係合側油圧を上昇し始めてからの経過時間が長くなるに従って大きくなる増圧変化率で係合側油圧を上昇させる構成を採用することができる。
【0142】
(10)上記の実施形態においては、増圧補正制御において、解放側要素のスリップが検出された後、変速過程TPの終了前に係合側油圧を係合側基準油圧PESまで低下させる場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、例えば係合側基準油圧PESよりも高い所定圧まで低下させる構成とすることも、本発明の好適な実施形態の一つである。この場合における所定圧としては、少なくともタイアップ率を所定値以下に収めることができるような圧に設定されていると好適である。
【0143】
(11)上記の実施形態においては、増圧補正制御において、解放側要素のスリップが検出された後、各時点から増圧終了時点EPまでの予測時間(Tb−Tx)に応じて、係合側油圧を次第に低下させる場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、例えば解放側要素のスリップが検出された後、各時点から変速過程TPの終了時点までの予測時間(Tb)に応じて係合側油圧を次第に低下させる構成とすることも、本発明の好適な実施形態の一つである。また、解放側要素のスリップが検出された後、各時点から増圧終了時点EPまでの予測時間(Tb−Tx)とは無関係に、一定の減圧変化率で係合側油圧を次第に低下させる構成とすることも、本発明の好適な実施形態の一つである。
【0144】
(12)上記の実施形態においては、第一制限油圧PL1、第二制限油圧PL2、及び変化係数Gが、それぞれメモリ41に格納された第一制限油圧マップ(制限油圧マップ45の一部)、第二制限油圧マップ(制限油圧マップ45の一部)、及び変化係数マップ46に基づいて、所定の引数に応じて決定される場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、これらのうちの一部又は全部を、所定の演算式に基づいて決定する構成とすることも、本発明の好適な実施形態の一つである。
【0145】
(13)上記の実施形態においては、解放側特別変速制御の回転速度制御において、回転加速度取得部34により取得された中間軸Mの実際の回転加速度AMが、各時点における目標回転加速度ATに追従するように解放側油圧を変化させる場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、回転加速度AMではなく例えば回転速度NMを基準として、中間軸回転速度センサSe2により検出された中間軸Mの実際の回転速度NMが、各時点における目標回転速度NTに追従するように解放側油圧を変化させる構成とすることも、本発明の好適な実施形態の一つである。
【0146】
(14)上記の実施形態においては、解放側特別変速制御の回転速度制御において、各時点における目標回転速度NTが二次曲線で表される経時軌跡を描くように設定される場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、各時点における目標回転加速度ATが、変速動作の終点に向かってその絶対値が徐々に小さくなるような経時軌跡を描くものであれば、一次又は三次以上の高次曲線や双曲線等で表される経時軌跡を描くように設定される構成とすることも、本発明の好適な実施形態の一つである。
【0147】
(15)上記の実施形態においては、変速機構14が変速比の異なる三つの変速段(第1速段、第2速段、及び第3速段)を備えている場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、有段の変速機構であれば変速段の段数は特に限定されず、二つの変速段、或いは四つ以上の変速段を備える構成とすることも、本発明の好適な実施形態の一つである。
【0148】
(16)上記の実施形態においては、車両用駆動装置1が入力軸I、中間軸M、及び出力軸Oの全てが同軸上に配置された一軸構成とされている場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、例えば入力軸I及び中間軸Mと出力軸Oとが異なる軸上に配置された構成の車両用駆動装置1に適用することも、本発明の好適な実施形態の一つである。
【0149】
(17)その他の構成に関しても、本明細書において開示された実施形態は全ての点で例示であって、本発明の実施形態はこれに限定されない。すなわち、本願の特許請求の範囲に記載された構成及びこれと均等な構成を備えている限り、特許請求の範囲に記載されていない構成の一部を適宜改変した構成も、当然に本発明の技術的範囲に属する。
【産業上の利用可能性】
【0150】
本発明は、エンジン及び車両の減速要求に基づいて回生トルクを発生可能な回転電機に駆動連結される入力部材と、車輪に駆動連結される出力部材と、複数の摩擦係合要素を有し、複数の摩擦係合要素の係合及び解放が制御されることにより複数の変速段が切り替えられ、入力部材の回転速度を各変速段の変速比で変速して出力部材に出力する変速機構と、を備えた変速装置を制御するための制御装置に好適に利用することができる。
【符号の説明】
【0151】
2 変速装置
11 エンジン
12 回転電機
14 変速機構
16 車輪
31 制御ユニット(制御装置)
M 中間軸(入力部材)
O 出力軸(出力部材)
C1 第一クラッチ(摩擦係合要素)
B1 第一ブレーキ(摩擦係合要素)
TP 変速過程
PL1 第一制限油圧
PL2 第二制限油圧
Pse ストロークエンド圧
Tt 目標変速時間
W 回転速度変化幅
AT 目標回転加速度(目標回転速度変化率)
ΔPb 基準油圧変化量
G 変化係数
α 進行度
Ti 入力トルク
PTi 予測入力トルク
RTi 入力トルク変化率
QTi 予測トルク変化率
TSp 予測判定基準時間

【特許請求の範囲】
【請求項1】
エンジン及び車両の減速要求に基づいて回生トルクを発生可能な回転電機に駆動連結される入力部材と、車輪に駆動連結される出力部材と、
複数の摩擦係合要素を有し、前記複数の摩擦係合要素の係合及び解放が制御されることにより複数の変速段が切り替えられ、前記入力部材の回転速度を各変速段の変速比で変速して前記出力部材に出力する変速機構と、を備えた変速装置を制御するための制御装置であって、
前記入力部材に入力される入力トルクの変化に基づいて、所定の判定基準時間後の前記入力トルクの予測値である予測入力トルクが負となる負トルク予測成立状態で、前記変速機構により変速比の小さい変速段への切り替えが行われるとき、解放される側の摩擦係合要素となる解放側要素に対する作動油の油圧である解放側油圧を低下させて前記解放側要素をスリップさせ、当該解放側要素がスリップを開始した時点から、前記出力部材の回転速度に変速段の切替後の変速比を乗算した回転速度と前記入力部材の回転速度とが同期する時点までの変速過程の全体に亘って、前記解放側要素のスリップ状態を維持させる特別変速制御を実行する制御装置。
【請求項2】
前記入力トルクの時間変化率である入力トルク変化率を所定周期で取得すると共に、その入力トルク変化率に基づいて予測トルク変化率を導出し、現時点の前記入力トルクと前記予測トルク変化率とに基づいて、前記予測入力トルクを導出する請求項1に記載の制御装置。
【請求項3】
前記予測トルク変化率を所定周期で演算し、最新の前記入力トルク変化率と前回の前記予測トルク変化率とを所定の比率で加算して最新の前記予測トルク変化率を導出し、その最新の予測トルク変化率に前記判定基準時間を乗算した値と、現時点の前記入力トルクとを加算して前記予測入力トルクを導出する請求項2に記載の制御装置。
【請求項4】
前記予測入力トルクの大きさに応じた値であって、かつ、前記予測入力トルクが負の場合には前記解放側要素のピストンのストロークエンド圧以上の値となる第一制限油圧が設定され、
前記特別変速制御では、前記変速過程の全体に亘って、前記解放側油圧を前記第一制限油圧以上の大きさに維持させる請求項1から3のいずれか一項に記載の制御装置。
【請求項5】
前記第一制限油圧が、前記予測入力トルクが負方向に変化するに従って大きくなる値に設定される請求項4に記載の制御装置。
【請求項6】
前記負トルク予測成立状態ではない場合でも、車両のアクセル開度が所定値以下のアクセル低開度状態で前記変速機構により変速比の小さい変速段への切り替えが行われる場合には、前記特別変速制御を実行する請求項1から5のいずれか一項に記載の制御装置。
【請求項7】
前記アクセル開度に応じた値であって、かつ、前記アクセル低開度状態では前記解放側要素のピストンのストロークエンド圧以上の値となる第二制限油圧が設定され、
前記特別変速制御では、前記変速過程の全体に亘って、前記解放側油圧を前記第二制限油圧以上の大きさに維持させる請求項6に記載の制御装置。
【請求項8】
変速段の切り替えに要する目標時間を表す予め設定された目標変速時間と、変速段の切り替え前後における前記入力部材の回転速度の差を表す回転速度変化幅と、に基づいて前記入力部材の目標回転速度変化率が決定され、
前記特別変速制御では、前記入力部材の実際の回転速度変化率が前記目標回転速度変化率に追従するように、前記解放側油圧の低下に同調させて、係合される側の摩擦係合要素となる係合側要素に対する作動油の油圧である係合側油圧を変化させる請求項1から7のいずれか一項に記載の制御装置。
【請求項9】
前記目標回転速度変化率に基づいて、前記入力部材の回転速度を当該目標回転速度変化率で変化させるのに必要な基準油圧変化量が決定され、
前記基準油圧変化量に基づき、前記変速過程の進行度と前記回転電機の出力トルクとに応じて前記係合側油圧を変化させる請求項8に記載の制御装置。
【請求項10】
前記変速過程の開始時における前記係合側油圧を基準とし、前記変速過程の進行度と前記回転電機の出力トルクとに応じて予め設定された所定の変化係数と、前記基準油圧変化量と、に基づいて前記係合側油圧を変化させる構成で、
前記変化係数は、
前記変速過程の進行度に応じて設定される複数段階のうち少なくとも最初の段階では当該変速過程が進行するに従って大きくなると共に、少なくとも最後の段階では当該変速過程が進行するに従って小さくなり、
前記回転電機の出力トルクが負の場合には、当該回転電機の出力トルクが正方向に変化するに従って大きくなる値に設定される請求項9に記載の制御装置。
【請求項11】
前記回転電機の出力トルクの大きさに応じた減圧変化率で前記解放側油圧を減少させる変化率制御を実行する請求項1から10のいずれか一項に記載の制御装置。
【請求項12】
前記変速過程の初期段階では、前記回転電機の出力トルクの大きさに応じた減圧変化率で前記解放側油圧を減少させる変化率制御を実行し、
当該変化率制御を実行した後、所定の切替点以降で、前記入力部材の回転速度が、前記変化率制御後の各時点における目標回転速度となるように前記解放側油圧を変化させる回転速度制御を実行する請求項1から10のいずれか一項に記載の制御装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate


【公開番号】特開2011−218835(P2011−218835A)
【公開日】平成23年11月4日(2011.11.4)
【国際特許分類】
【出願番号】特願2010−86553(P2010−86553)
【出願日】平成22年4月2日(2010.4.2)
【出願人】(000100768)アイシン・エィ・ダブリュ株式会社 (3,717)
【Fターム(参考)】