説明

半導体装置、及び、その製造方法

【課題】接続部材の耐久性が損なわれることが抑制された半導体装置、及び、その製造方法を提供する。
【解決手段】チップ(10)と台座(30)とが接続部材(50)を介して機械的に接続された半導体装置であって、チップ(10)と台座(30)との間に接続部材(50)が介在され、チップ(10)の上面(10c)の全面、及び、側面(10b)の全面の少なくとも一方に、応力緩和部材(70)が機械的に接続されており、台座(30)は、接続部材(50)よりも線膨張係数が高く、台座(30)、接続部材(50)、及び、応力緩和部材(70)は、チップ(10)よりも線膨張係数が高い。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電子素子が形成されたチップと、該チップを支持する台座と、該台座とチップとを機械的に接続する接続部材と、を有する半導体装置、及び、その製造方法に関するものである。
【背景技術】
【0002】
従来、例えば特許文献1に示されるように、半導体圧力センサチップが、ガラス台座を介して金属パイプに機械的に接続された半導体圧力センサが提案されている。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2000−298071号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
上記したように、特許文献1に示される半導体圧力センサでは、半導体圧力チップがガラス台座を介して金属パイプに機械的に接続されている。半導体圧力チップはシリコンから成り、ガラス台座はガラスから成り、金属パイプはコバール(鉄にニッケル、コバルトを配合した合金)から成る。一般的に、コバールは、シリコン及びガラスよりも線膨張係数が高く、ガラスは、シリコンよりも線膨張係数が高い。したがって、ガラス台座における金属パイプとの接続部位は、ガラス台座における半導体圧力チップとの接続部位よりも、熱伸縮され易くなっている。このように、2つの接続部位での熱伸縮に差が生じると、その差に応じた応力がガラス台座に印加され、ガラス台座の耐久性が損なわれる虞がある。
【0005】
そこで、本発明は上記問題点に鑑み、接続部材の耐久性が損なわれることが抑制された半導体装置、及び、その製造方法を提供することを目的とする。
【課題を解決するための手段】
【0006】
上記した目的を達成するために、請求項1に記載の発明は、電子素子が形成されたチップ(10)と、該チップ(10)を支持する台座(30)と、該台座(30)とチップ(10)とを機械的に接続する接続部材(50)と、を有する半導体装置であって、チップ(10)の下面(10a)と、台座(30)の上面(31a)との間に接続部材(50)が介在され、チップ(10)の上面(10c)の全面、及び、側面(10b)の全面の少なくとも一方に、応力緩和部材(70)が機械的に接続されており、台座(30)は、接続部材(50)よりも線膨張係数が高く、台座(30)、接続部材(50)、及び、応力緩和部材(70)は、チップ(10)よりも線膨張係数が高いことを特徴とする。
【0007】
このように本発明では、接続部材(50)を介して、チップ(10)と台座(30)とが機械的に接続されている。そして、台座(30)は、接続部材(50)よりも線膨張係数が高く、台座(30)及び接続部材(50)は、チップ(10)よりも線膨張係数が高くなっている。したがって、接続部材(50)における台座(30)との接続部位(以下、第1接続部位と示す)は、接続部材(50)におけるチップ(10)との接続部位(以下、第2接続部位と示す)よりも、熱伸縮され易くなる。
【0008】
しかしながら、請求項1に記載の発明では、チップ(10)の上面(10c)の全面、及び、側面(10b)の全面の少なくとも一方に、チップ(10)よりも線膨張係数が高い応力緩和部材(70)が機械的に接続されている。これにより、チップ(10)は、接続部材のみが機械的に接続された構成と比べて、より熱伸縮し易くなっており、見かけ上、チップ(10)の線膨張係数が台座(30)の線膨張係数に近づいている。このため、接続部材(50)における第2接続部位の熱伸縮し易さが、第1接続部位の熱伸縮し易さに近づき、2つの接続部位での熱伸縮の差が小さくなっている。この結果、2つの接続部位での熱伸縮の差に基づく応力によって、接続部材(50)の耐久性が損なわれることが抑制される。
【0009】
請求項2に記載のように、チップ(10)の周囲を囲む囲み部(33)を有し、チップ(10)の側面(10b)と、該側面(10b)と対向する囲み部(33)の内壁面(33a)との間に応力緩和部材(70)が介在され、該応力緩和部材(70)を介して、チップ(10)と囲み部(33)とが機械的に接続されており、囲み部(33)は、応力緩和部材(70)よりも線膨張係数が高い構成が好適である。
【0010】
これによれば、チップに応力緩和部材だけが機械的に接続された構成と比べて、囲み部(33)と応力緩和部材(70)との間に生じる熱応力の分、チップ(10)が伸縮し易くなる。そのため、接続部材(50)における第2接続部位の熱伸縮し易さが、第1接続部位の熱伸縮し易さに近づき、2つの接続部位での熱伸縮の差がより小さくなる。この結果、2つの接続部位での熱伸縮の差に基づく応力によって、接続部材(50)の耐久性が損なわれることが、請求項1に記載の発明と比べてより効果的に抑制される。
【0011】
請求項3に記載のように、囲み部(33)は、台座(30)と同一材料から成る構成が良い。この場合、請求項4に記載のように、囲み部(33)は、台座(30)の一部である構成が良い。これによれば、囲み部が台座と別部材から成る構成と比べて、部品点数が少なくなり、コストの増大が抑制される。
【0012】
請求項5に記載のように、囲み部(33)の内壁面(33a)、及び、台座(30)の上面(31a)によって凹部(34)が形成され、該凹部(34)内にチップ(10)と接続部材(50)とが設けられており、チップ(10)の側面(10b)と、該側面(10b)と対向する囲み部(33)の内壁面(33a)との間に介在される応力緩和部材(70)は、接続部材(50)である構成が良い。これによれば、応力緩和部材が接続部材とは全く異なる構成と比べて、部品点数の増大が抑制され、コストの増大が抑制される。
【0013】
請求項2〜5に記載のように、チップ(10)の側面(10b)に応力緩和部材(70)が機械的に接続された構成において、請求項6に記載のように、チップ(10)の上面(10c)に、応力緩和部材(70)が機械的に接続された構成が好ましい。これによれば、チップの側面だけに応力緩和部材が機械的に接続された構成と比べて、チップ(10)が縮み易くなる。そのため、接続部材(50)における第2接続部位の熱伸縮し易さが、第1接続部位の熱伸縮し易さに近づき、2つの接続部位での熱伸縮の差がより小さくなる。この結果、2つの接続部位での熱伸縮の差に基づく応力によって、接続部材(50)の耐久性が損なわれることが、チップの側面だけに応力緩和部材が機械的に接続された構成と比べてより効果的に抑制される。
【0014】
請求項7に記載のように、チップ(10)と接続部材(50)とは、チップ(10)よりも線膨張係数が高いモールド樹脂によって被覆されており、該モールド樹脂が、応力緩和部材(70)の少なくとも一部を担う構成が良い。これによれば、モールド樹脂(応力緩和部材(70))によってチップ(10)と接続部材(50)とが被覆保護される。そのため、チップ(10)及び接続部材(50)それぞれに故障が生じることが抑制される。
【0015】
請求項8に記載のように、請求項1に記載の半導体装置の製造方法であって、金型(90)におけるチップ(10)の上面(10c)と対向する部位に形成された吸引孔(92)に負圧を印加することで、チップ(10)の上面(10c)を金型(90)の内壁面に接触させた状態で、台座(30)と金型(90)とによって構成されるキャビティ内にチップ(10)を配置する配置工程と、該配置工程後、溶融した接続部材(50)をキャビティ内に注入することで、チップ(10)の下面(10a)の全面、及び、側面(10b)の全面を接続部材(50)によって覆う注入工程と、該注入工程後、溶融した接続部材(50)を冷却することで、接続部材(50)を固化し、チップ(10)と台座(30)とを接続部材(50)を介して機械的に接続する冷却工程と、を有する製造方法が良い。
【0016】
これによれば、溶融した接続部材(50)の注入によって、チップ(10)の配置位置が変動することが抑制される。また、チップ(10)の上面(10c)が接続部材(50)によって覆われることなく、チップ(10)の下面(10a)と側面(10b)それぞれの全面が接続部材(50)によって覆われる。なお、請求項8に記載の製造方法によって形成される半導体装置では、チップ(10)の側面(10b)に機械的に接続される接続部材(50)が、応力緩和部材(70)の少なくとも一部に相当する。
【0017】
請求項9に記載の発明の作用効果は、請求項7に記載の発明の作用効果と同等なので、その記載を省略する。なお、請求項9に記載の製造方法によって形成される半導体装置では、チップ(10)の上面(10c)に機械的に接続されるモールド樹脂と、チップ(10)の側面(10b)に機械的に接続される接続部材(50)とが、応力緩和部材(70)に相当する。
【0018】
請求項10に記載の発明の作用効果は、請求項5に記載の発明の作用効果と同等なので、その記載を省略する。なお、請求項10に記載の製造方法によって形成される半導体装置では、チップ(10)の側面(10b)に機械的に接続される接続部材(50)が、応力緩和部材(70)の少なくとも一部に相当する。
【0019】
請求項10に記載の製造方法の具体的な方法としては、請求項11〜13に記載の製造方法がある。請求項11に記載のように、設置工程において、溶融した接続部材(50)を凹部(34)に注入し、押圧工程において、冶具によって、溶融した接続部材(50)にチップ(10)を押圧する製造方法を採用することができる。また、請求項12に記載のように、設置工程は、溶融した接続部材(50)を凹部(34)に注入する注入工程と、該注入工程後、溶融した接続部材(50)を冷却して固化する冷却工程と、を有し、押圧工程は、固化した接続部材(50)にチップ(10)を配置する配置工程と、該配置工程後、チップ(10)から接続部材(50)に向かう方向のバネ力が、チップ(10)に印加される態様で、バネ力を発生させるバネ部材(97)が設けられた蓋部(99)を台座(30)に固定する固定工程と、該固定工程後、接続部材(50)に熱を印加して溶融させることで、バネ力によって、溶融した接続部材(50)にチップ(10)を押圧する熱印加工程と、を有する製造方法を採用することができる。更には、請求項13に記載のように、設置工程において、溶融した接続部材(50)を注入し、押圧工程において、チップ(10)と台座(30)とに電圧差を生じさせて、チップ(10)と台座(30)との間に静電引力を発生させることで、溶融した接続部材(50)にチップ(10)を押圧する製造方法を採用することができる。
【0020】
請求項12及び請求項13に記載の発明によれば、請求項11に記載の発明と比べて、チップ(10)を溶融した接続部材(50)に押しつける際に、その押圧する力によって、チップ(10)に故障が生じることが抑制される。
【0021】
請求項14及び請求項15に記載の発明の作用効果は、いずれも請求項7に記載の発明の作用効果と同等なので、その記載を省略する。
【図面の簡単な説明】
【0022】
【図1】第1実施形態に係る圧力センサの概略構成を示す断面図である。
【図2】第1実施形態に係る圧力センサの概略構成を示す上面図である。
【図3】配置工程を説明するための断面図である。
【図4】圧力センサに生じる熱応力を説明するための断面図であり、(a)は熱収縮時、(b)は熱膨張時を示している。
【図5】第2実施形態に係る圧力センサの概略構成を示す断面図である。
【図6】第2実施形態に係る圧力センサの概略構成を示す上面図である。
【図7】設置工程を説明するための断面図である。
【図8】押圧工程を説明するための断面図である。
【図9】第3実施形態に係る圧力センサの概略構成を示す断面図である。
【図10】第1実施形態に係る圧力センサの変形例を示す断面図である。
【図11】第2実施形態に係る圧力センサの変形例を示す断面図である。
【図12】第2実施形態に係る圧力センサの変形例を示す断面図である。
【図13】第2実施形態に係る圧力センサの変形例を示す断面図である。
【図14】第2実施形態に係る圧力センサの変形例を示す断面図である。
【図15】第2実施形態に係る圧力センサの変形例を示す断面図である。
【図16】設置工程の変形例を説明するための断面図である。
【図17】押圧工程の変形例を説明するための断面図である。
【図18】設置工程の変形例を説明するための断面図である。
【図19】押圧工程の変形例を説明するための断面図である。
【図20】第3実施形態に係る圧力センサの変形例を示す断面図である。
【発明を実施するための形態】
【0023】
以下、本発明を、圧力センサに適用した場合の実施形態を図に基づいて説明する。
(第1実施形態)
図1は、第1実施形態に係る圧力センサの概略構成を示す断面図である。図2は、第1実施形態に係る圧力センサの概略構成を示す上面図である。図3は、配置工程を説明するための断面図である。図4は、圧力センサに生じる熱応力を説明するための断面図であり、(a)は熱収縮時、(b)は熱膨張時を示している。なお、以下においては、後述するチップ10と台座30とが並ぶ方向を高さ方向、チップ10及び台座30それぞれの中心を高さ方向に貫く線を中心線CLと示す。
【0024】
図1及び図2に示すように、圧力センサ100は、要部として、チップ10と、台座30と、接続部材50と、を有する。チップ10と台座30との間に接続部材50が設けられ、該接続部材50を介して、チップ10と台座30とが機械的に接続されている。台座30には、圧力流体が導入される圧力導入孔32が形成されており、圧力導入孔32に流入した圧力流体によって台座30に歪みが生じ、その歪みによって生じた応力が、接続部材50を介してチップ10に伝達されるようになっている。伝達された応力は、チップ10にて電気信号に変換され、外部素子(図示略)に出力される。本実施形態に係る圧力センサ100は、上記した構成要素10〜50に加えて、応力緩和部材70を有している。この応力緩和部材70が、圧力センサ100の特徴点である。応力緩和部材70については、後述する。
【0025】
チップ10は、台座30、接続部材50、及び、応力緩和部材70よりも線膨張係数が低い材料から成る。本実施形態に係るチップ10は、シリコンから成り、(多くの場合)平面矩形を成している。チップ10には、圧力を電気信号に変換する圧電素子(図示略)が形成されており、圧力流体(台座30の歪み)によってチップ10に歪みが生じると、その歪みによる圧力が圧電素子にて電気信号に変換される。
【0026】
本実施形態に係る圧電素子は、圧力印加によって抵抗値が変動するゲージ抵抗であり、少なくとも4つのゲージ抵抗によってフルブリッジ回路が構成されている。フルブリッジ回路を構成する2つのハーフブリッジ回路それぞれの中点電圧が、圧力の検出信号として外部素子に出力される。
【0027】
ゲージ抵抗における、圧力の強さに対して抵抗が変動し易い範囲(以下、有効感度と示す)は、平面形状や、構成材料によって決定される。そのため、例えば、圧力センサ100の製造時において、残留応力のためにチップ10に歪が生じ、その歪によって圧力がゲージ抵抗に印加される場合、ゲージ抵抗の有効感度が残留応力以上となるように、ゲージ抵抗の平面形状や構成材料を予め決定しておく。こうすることで、残量応力の影響を除くことができる。本実施形態では、後述するように、チップ10が熱伸縮し易い構成となっているので、ゲージ抵抗の有効感度が熱伸縮時に生じる応力以上となるように、ゲージ抵抗の有効感度が予め調整されている。こうすることで、チップ10の熱伸縮による圧力の検出精度の低下が抑制されている。
【0028】
台座30は、チップ10、接続部材50、及び、応力緩和部材70よりも線膨張係数が高い材料から成る。本実施形態に係る台座30は、ステンレスから成り、2つの開口部の内、1つの開口部が底部31によって閉塞された有底筒状を成している。台座30の中空は、圧力流体を底部31に導入する圧力導入孔32であり、台座30の開口端から流入した圧力流体が、底部31に印加される構成となっている。図1及び図2に示すように、チップ10は、接続部材50を介して、底部31の外面31aに機械的に接続されている。したがって、圧力流体によって生じた底部31の歪みが、接続部材50を介して、チップ10に伝達される。なお、上記した底部31の外面31aが、特許請求の範囲に記載の台座(30)の上面(31a)に相当する。
【0029】
接続部材50は、チップ10よりも線膨張係数が高く、台座30よりも線膨張係数が低い材料から成る。本実施形態に係る接続部材50は、ガラスから成る。接続部材50は、底部31の外面31aと、チップ10の下面10aとの間に介在されており、外面31aと下面10aとに機械的に接続されている。
【0030】
応力緩和部材70は、チップ10の熱伸縮を促すことで、チップ10と機械的に接続された接続部材50の耐久性が損なわれるのを抑制するものである。本実施形態に係る応力緩和部材70は、接続部材50の一部である。したがって、応力緩和部材70は、チップ10よりも線膨張係数が高く、台座30よりも線膨張係数が低い性質を有する。図1に破線で示すように、応力緩和部材70は、チップ10の側面10bの全面と機械的に接続されており、図2に示すように、平面環状を成している。
【0031】
次に、本実施形態に係る圧力センサ100の製造方法を図3に基づいて説明する。先ず、図3に示すように、チップ10と接続部材50とを配置するための凹部91と、該凹部91の底部に一方の開口端が開口した、負圧を印加する負圧印加孔92と、凹部91の側部に一方の開口端が開口した、溶融した接続部材50を注入する部材注入孔93と、が形成された金型90を準備する。そして、凹部91内にチップ10を配置し、図3に白抜き矢印で示す負圧を負圧印加孔92に印加する。こうすることで、チップ10の上面10cを、金型90の内壁面(凹部91の底面)に接触させる。その後、凹部91を構成する側部の端面を、底部31の外面31aに接触させて、凹部91の開口端を閉塞する。こうすることで、溶融した接続部材50を注入するキャビティを金型90と台座30とによって構成し、このキャビティ内にチップ10を配置する。以上が、特許請求の範囲に記載の配置工程に相当する。
【0032】
該配置工程後、溶融した接続部材50を、部材注入孔93を介してキャビティ内に注入する。こうすることで、チップ10の下面10a、及び、側面10bそれぞれの全面を接続部材50によって覆う。以上が、特許請求の範囲に記載の注入工程に相当する。
【0033】
該注入工程後、溶融した接続部材50を冷却することで、接続部材50を固化し、チップ10と台座30とを接続部材50を介して機械的に接続する。以上が、特許請求の範囲に記載の冷却工程に相当する。以上の工程を経ることで、本実施形態に係る圧力センサ100が製造される。
【0034】
次に、本実施形態に係る圧力センサ100の作用効果を説明する。上記したように、チップ10は、台座30、接続部材50、及び、応力緩和部材70よりも線膨張係数が低い材料から成る。したがって、台座30と接続部材50との間、チップ10と接続部材50との間、及び、チップ10と応力緩和部材70との間それぞれには、線膨張係数の差に起因する熱応力が、同一の方向に印加される、すなわち、熱膨張する場合、図4の(a)に白抜き矢印で示すように、破線で示す中心線CLに近づく方向の熱応力が発生し、熱収縮する場合、図4の(b)に白抜き矢印で示すように、中心線CLから遠ざかる方向の熱応力が発生する。
【0035】
ところで、応力緩和部材70がチップ10に機械的に接続されていない場合、台座30は接続部材50よりも線膨張係数が高いので、接続部材50における台座30との接続部位(以下、第1接続部位と示す)は、接続部材50におけるチップ10との接続部位(以下、第2接続部位と示す)よりも、熱伸縮され易くなる。このように、2つの接続部位での熱伸縮に差が生じると、その差に応じた応力が接続部材50に印加され、接続部材50の耐久性が損なわれる虞がある。
【0036】
しかしながら、本実施形態では、チップ10の側面10bの全面に、チップ10よりも線膨張係数が高い応力緩和部材70が機械的に接続されている。これにより、チップ10は、接続部材のみが機械的に接続された構成と比べて、より熱伸縮し易くなっており、見かけ上、チップ10の線膨張係数が台座30の線膨張係数に近づいている。このため、第2接続部位の熱伸縮し易さが、第1接続部位の熱伸縮し易さに近づき、2つの接続部位での熱伸縮の差が小さくなっている。この結果、2つの接続部位での熱伸縮の差に基づく応力によって、接続部材50の耐久性が損なわれることが抑制される。また、接続部材50の耐久性が損なわれ難くなるので、圧力流体による底部31に生じた歪みが、チップ10へ伝達され難くなることが抑制される。これにより、圧力の検出精度の低下が抑制される。
【0037】
応力緩和部材70が接続部材50から成る。これによれば、応力緩和部材が接続部材とは異なる構成と比べて、部品点数の増大が抑制され、コストの増大が抑制される。
【0038】
負圧によって、チップ10の上面10cを金型90の内壁面に接触させた状態で、溶融した接続部材50をキャビティ内に注入することで、チップ10の下面10a、及び、側面10bそれぞれの全面を接続部材50によって覆っている。これによれば、溶融した接続部材50の注入によって、チップ10の配置位置が変動することが抑制される。また、チップ10の上面10cが接続部材50によって覆われることなく、チップ10の下面10aと側面10bそれぞれの全面が接続部材50によって覆われる。
【0039】
(第2実施形態)
次に、本発明の第2実施形態を、図5〜図8に基づいて説明する。図5は、第2実施形態に係る圧力センサの概略構成を示す断面図であり、第1実施形態で示した図1に対応している。図6は、第2実施形態に係る圧力センサの概略構成を示す上面図であり、第1実施形態で示した図2に対応している。図7及び図8は、第2実施形態に係る圧力センサの製造方法を説明するための断面図であり、第1実施形態で示した図3に対応している。図7は、設置工程を説明するための断面図、図8は、押圧工程を説明するための断面図である。
【0040】
第2実施形態に係る圧力センサ100は、第1実施形態によるものと共通するところが多いので、以下、共通部分については詳しい説明を省略し、異なる部分を重点的に説明する。なお、第1実施形態で示した要素と同一の要素には、同一の符号を付与している。
【0041】
本実施形態に係る圧力センサ100は、第1実施形態に係る圧力センサ100に囲み部33が設けられた点を特徴とする。囲み部33は、チップ10、接続部材50、及び、応力緩和部材70よりも線膨張係数が高い材料から成る。本実施形態に係る囲み部33は、台座30の一部であり、図5及び図6に示すように、底部31の外面31aから高さ方向に突起して、平面環状を成している。これにより、囲み部33の内環面33aと外面31aとによって、凹部34が構成され、該凹部34内に、チップ10、接続部材50、及び、応力緩和部材70が設けられている。
【0042】
なお、本実施形態に係る応力緩和部材70も、第1実施形態と同様にして、接続部材50の一部であり、チップ10の側面10bと、該側面10bと対向する囲み部33の内環面33aとの間に設けられており、両者を機械的に接続している。
【0043】
次に、本実施形態に係る圧力センサ100の製造方法を図7及び図8に基づいて説明する。図7に示すように、先ず、チップ10を押圧するための冶具94を準備する。そして、溶融した接続部材50を凹部34内に注入した後、冶具94に仮止めされたチップ10を、冶具94とともに、溶融した接続部材50の液面上に配置する。以上が、特許請求の範囲に記載の配置工程に相当する。
【0044】
該配置工程後、図8に示すように、チップ10の下面10a、及び、側面10bそれぞれの全面が接続部材50によって覆われるように、冶具94によって、溶融した接続部材50にチップ10を押圧する。以上が、特許請求の範囲に記載の押圧工程である。なお、図8に示すように、冶具94は、チップ10と直接接触して、チップ10に圧力を印加する接触部95と、チップ10が接続部材50に押圧される深さを決めるストッパー96と、を有する。ストッパー96が囲み部33の端面と接触するまで、チップ10の接続部材50への押圧が実行され、両者が接触すると、接触部95とチップ10との仮止めが解除される。なお、接触部95とチップ10との仮止めは、チップ10を押圧する直前に解除しても良い。
【0045】
上記した配置工程後、冶具94を取り除いて、溶融した接続部材50を冷却固化することで、チップ10と台座30とを接続部材50を介して機械的に接続する。以上の工程を経ることで、本実施形態に係る圧力センサ100が製造される。
【0046】
次に、本実施形態に係る圧力センサ100の作用効果を説明する。上記したように、チップ10の側面10bと、囲み部33の内壁面33aとの間に応力緩和部材70が介在され、該応力緩和部材70を介して、チップ10と囲み部33とが機械的に接続されている。そして、囲み部33は、応力緩和部材70よりも線膨張係数が高くなっている。これによれば、チップに応力緩和部材だけが機械的に接続された構成と比べて、囲み部33と応力緩和部材70との間に生じる熱応力の分、チップ10が伸縮し易くなる。そのため、接続部材50における第2接続部位の熱伸縮し易さが、第1接続部位の熱伸縮し易さに近づき、2つの接続部位での熱伸縮の差がより小さくなる。この結果、2つの接続部位での熱伸縮の差に基づく応力によって、接続部材50の耐久性が損なわれることが、第1実施形態に記載の構成と比べてより効果的に抑制される。
【0047】
囲み部33は、台座30の一部である。これによれば、囲み部33が台座30と別部材から成る構成と比べて、部品点数が少なくなり、コストの増大が抑制される。
【0048】
(第3実施形態)
次に、本発明の第3実施形態を、図9に基づいて説明する。図9は、第3実施形態に係る圧力センサの概略構成を示す断面図である。
【0049】
第3実施形態に係る圧力センサは、上記した各実施形態によるものと共通するところが多いので、以下、共通部分については詳しい説明を省略し、異なる部分を重点的に説明する。なお、上記した各実施形態で示した要素と同一の要素には、同一の符号を付与している。
【0050】
第1及び第2実施形態では、応力緩和部材70が接続部材50の一部である例を示した。これに対し、本実施形態では、応力緩和部材70が、モールド樹脂である点を特徴とする。図9に示すように、本実施形態では、チップ10における接続部材50との接続面を除く全ての面と、接続部材50におけるチップ10との接続面、及び、台座30との接続予定面を除く全ての面とが応力緩和部材70(モールド樹脂)によって被覆保護されている。応力緩和部材70は、第1及び第2実施形態と同様にして、チップ10よりも線膨張係数が高い性質を有する。モールド樹脂の具体的な材料としては、エポキシ樹脂を採用することができ、この樹脂を採用した場合、応力緩和部材70は、チップ10、接続部材50、及び、台座30よりも線膨張係数が高くなる。
【0051】
なお、本実施形態では、チップ10の上面10cに形成された電極11と、回路基板12に搭載されたリード13とが、ワイヤ14を介して電気的に接続されており、電極11とリード13との電気的接続部位も、応力緩和部材70によって被覆保護されている。
【0052】
次に、本実施形態に係る圧力センサ100の製造方法を説明する。先ず、チップ10と接続部材50とを機械的に接続する。以上が、特許請求の範囲に記載の第1接続工程に相当する。
【0053】
該第1接続工程後、応力緩和部材70(モールド樹脂)によって、チップ10と接続部材50とを被覆する。この際、電極11とリード13との電気的接続部位も、応力緩和部材70によって被覆保護する。以上が、特許請求の範囲に記載の被覆工程である。
【0054】
該被覆工程後、台座30と接続部材50とを機械的に接続する。以上が、特許請求の範囲に記載の第2接続工程である。以上の工程を経ることで、本実施形態に係る圧力センサ100が製造される。
【0055】
なお、本実施形態に係る圧力センサ100の製造方法としては、上記例に限定されない。例えば、チップ10と台座30とを、接続部材50を介して機械的に接続した後、応力緩和部材70(モールド樹脂)によって、チップ10と接続部材50、及び、電極11とリード13との電気的接続部位を被覆しても良い。この場合、応力緩和部材70と台座30とは機械的に接続される。
【0056】
次に、本実施形態に係る圧力センサ100の作用効果を説明する。上記したように、応力緩和部材70によってチップ10と接続部材50とが被覆保護される。そのため、チップ10及び接続部材50それぞれに故障が生じることが抑制され、接続部材50の耐久性が損なわれることが抑制される。
【0057】
また、応力緩和部材70は、第1実施形態と同様にして、チップ10よりも線膨張係数が高く、チップ10の側面10bと上面10cそれぞれの全面と機械的に接続されている。したがって、チップ10は、接続部材のみが機械的に接続された構成と比べて、より熱伸縮し易くなっており、見かけ上、チップ10の線膨張係数が台座30の線膨張係数に近づいている。このため、接続部材50における第2接続部位の熱伸縮し易さが、第1接続部位の熱伸縮し易さに近づき、2つの接続部位での熱伸縮の差が小さくなっている。この結果、2つの接続部位での熱伸縮の差に基づく応力によって、接続部材50の耐久性が損なわれることが抑制される。
【0058】
以上、本発明の好ましい実施形態について説明したが、本発明は上記した実施形態になんら制限されることなく、本発明の主旨を逸脱しない範囲において、種々変形して実施することが可能である。
【0059】
各実施形態では、特許請求の範囲に記載の半導体装置として、圧力センサが適用された例を示した。しかしながら、本発明に記載の構成を有する半導体装置としては、圧力センサに限定されず、民生の機器に適宜採用することができる。
【0060】
第1実施形態では、チップ10の側面10bに応力緩和部材70が機械的に接続された例を示した。しかしながら、応力緩和部材70がチップ10に機械的に接続される構成としては、上記例に限定されない。例えば、図10に示すように、応力緩和部材70がチップ10の上面10cに機械的に接続された構成を採用することができる。また、図11に示すように、応力緩和部材70が、チップ10の上面10c、及び、側面10bそれぞれの全面に機械的に接続された構成を採用することができる。図10及び図11は、第1実施形態に係る圧力センサの変形例を示す断面図である。
【0061】
第2実施形態では、チップ10の側面10bに応力緩和部材70が機械的に接続された例を示した。しかしながら、応力緩和部材70がチップ10に機械的に接続される構成としては、上記例に限定されない。例えば、図12に示すように、応力緩和部材70が、チップ10の上面10c、及び、側面10bそれぞれの全面に機械的に接続された構成を採用することができる。また、図13に示すように、チップ10の上面10cに設けられた応力緩和部材70と、側面10bに設けられた応力緩和部材70とが機械的に接続されていても良い。更に言えば、図14に示すように、応力緩和部材70が、囲み部33の上端面と機械的に連結された構成を採用することもできる。
【0062】
第2実施形態では、囲み部33が台座30の一部である例を示した。しかしながら、図15に示すように、囲み部33が、台座30と別部材でも良い。この場合、囲み部33は、チップ10よりも線膨張係数が高い材料から成り、接続部材50を介して台座30と機械的に接続される。図12〜図15は、第2実施形態に係る圧力センサの変形例を示す断面図である。
【0063】
第2実施形態では、囲み部33の平面形状が環状である例を示した。しかしながら、凹部34を構成する必要がない場合、囲み部33の平面形状としては、上記例に限定されない。応力緩和部材70を介して、チップ10の側面10bと囲み部33の内壁面33aの少なくとも一部とが対向する形状であれば、適宜採用することができる。例えば、平面形状がC字状の囲み部33などを採用することができる。
【0064】
第2実施形態では、冶具94によって、チップ10を溶融した接続部材50内に押圧する製造方法を示した。しかしながら、チップ10を溶融した接続部材50内に押圧する製造方法としては、上記例に限定されない。例えば、設置工程において、溶融した接続部材50を凹部34内に注入する注入工程を行った後、溶融した接続部材50を冷却して固化する冷却工程を行う。そして、押圧工程において、図16に示すように、固化した接続部材50にチップ10を配置する配置工程を行った後、チップ10から接続部材50に向かう方向のバネ力が、チップ10に印加される態様で、バネ力を発生させるバネ部材97、を台座30に固定する固定工程を行う。そして、図17に示すように、固定工程後、接続部材50に熱を印加して溶融させることで、バネ力によって、溶融した接続部材50にチップ10を押圧する熱印加工程を行う。これによっても、チップ10を溶融した接続部材50内に押圧することができる。上記した製造方法によれば、第2実施形態で記載した製造方法と比べて、チップ10を溶融した接続部材50に押しつける際に、その押圧する力によって、チップ10に故障が生じることが抑制される。
【0065】
なお、図16及び図17に示すように、バネ部材97は、チップ10の電極11と外部端子98とを機械的及び電気的に接続する機能を果たし、外部端子98は、凹部34の開口端を閉塞する蓋部99に設けられている。この蓋部99を、固定工程において、囲み部33と機械的に接続することで、上記したバネ力が発生する。図16は、設置工程の変形例を説明するための断面図である。図17は、押圧工程の変形例を説明するための断面図である。
【0066】
更に、チップ10を溶融した接続部材50内に押圧する製造方法としては、図18及び図19に示す製造方法がある。設置工程において、溶融した接続部材50を凹部34内に注入する。そして、押圧工程において、図18に示すように、接続部材50にチップ10を配置した後、図19に示すように、チップ10をグランド電位とし、台座30に正の電位V+を印加して、チップ10と台座30との間に、チップ10から台座30に向かう静電引力をチップ10に発生させる。この静電引力によって、溶融した接続部材50にチップ10を押圧する。これによっても、チップ10を溶融した接続部材50内に押圧することができる。また、第2実施形態で記載した製造方法と比べて、チップ10を溶融した接続部材50に押しつける際に、その押圧する力によって、チップ10に故障が生じることが抑制される。図18は、設置工程の変形例を説明するための断面図である。図19は、押圧工程の変形例を説明するための断面図である。
【0067】
第3実施形態では、モールド樹脂から成る応力緩和部材70によって、チップ10の上面10cと側面10bそれぞれが被覆された例を示した。しかしながら、図20に示すように、接続部材50から成る応力緩和部材70によってチップ10の側面10bが被覆され、モールド樹脂から成る応力緩和部材70によってチップ10の上面10cが被覆された構成を採用することもできる。図19は、押圧工程の変形例を説明するための断面図である。
【符号の説明】
【0068】
10・・・チップ
30・・・台座
33・・・囲み部
50・・・接続部材
70・・・応力緩和部材
100・・・圧力センサ

【特許請求の範囲】
【請求項1】
電子素子が形成されたチップ(10)と、該チップ(10)を支持する台座(30)と、該台座(30)と前記チップ(10)とを機械的に接続する接続部材(50)と、を有する半導体装置であって、
前記チップ(10)の下面(10a)と、前記台座(30)の上面(31a)との間に前記接続部材(50)が介在され、
前記チップ(10)の上面(10c)の全面、及び、側面(10b)の全面の少なくとも一方に、応力緩和部材(70)が機械的に接続されており、
前記台座(30)は、前記接続部材(50)よりも線膨張係数が高く、
前記台座(30)、前記接続部材(50)、及び、前記応力緩和部材(70)は、前記チップ(10)よりも線膨張係数が高いことを特徴とする半導体装置。
【請求項2】
前記チップ(10)の周囲を囲む囲み部(33)を有し、
前記チップ(10)の側面(10b)と、該側面(10b)と対向する前記囲み部(33)の内壁面(33a)との間に前記応力緩和部材(70)が介在され、該応力緩和部材(70)を介して、前記チップ(10)と前記囲み部(33)とが機械的に接続されており、
前記囲み部(33)は、前記応力緩和部材(70)よりも線膨張係数が高いことを特徴とする請求項1に記載の半導体装置。
【請求項3】
前記囲み部(33)は、前記台座(30)と同一材料から成ることを特徴とする請求項2に記載の半導体装置。
【請求項4】
前記囲み部(33)は、前記台座(30)の一部であることを特徴とする請求項3に記載の半導体装置。
【請求項5】
前記囲み部(33)の内壁面(33a)、及び、前記台座(30)の上面(31a)によって凹部(34)が形成され、該凹部(34)内に前記チップ(10)と前記接続部材(50)とが設けられており、
前記チップ(10)の側面(10b)と、該側面(10b)と対向する前記囲み部(33)の内壁面(33a)との間に介在される応力緩和部材(70)は、前記接続部材(50)であることを特徴とする請求項4に記載の半導体装置。
【請求項6】
前記チップ(10)の上面(10c)に、前記応力緩和部材(70)が機械的に接続されていることを特徴とする請求項2〜5いずれか1項に記載の半導体装置。
【請求項7】
前記チップ(10)と前記接続部材(50)とは、前記チップ(10)よりも線膨張係数が高いモールド樹脂によって被覆されており、
該モールド樹脂が、前記応力緩和部材(70)の少なくとも一部を担うことを特徴とする請求項1に記載の半導体装置。
【請求項8】
請求項1に記載の半導体装置の製造方法であって、
金型(90)における前記チップ(10)の上面(10c)と対向する部位に形成された吸引孔(92)に負圧を印加することで、前記チップ(10)の上面(10c)を金型(90)の内壁面に接触させた状態で、前記台座(30)と前記金型(90)とによって構成されるキャビティ内に前記チップ(10)を配置する配置工程と、
該配置工程後、溶融した接続部材(50)を前記キャビティ内に注入することで、前記チップ(10)の下面(10a)の全面、及び、側面(10b)の全面を前記接続部材(50)によって覆う注入工程と、
該注入工程後、溶融した前記接続部材(50)を冷却することで、前記接続部材(50)を固化し、前記チップ(10)と前記台座(30)とを前記接続部材(50)を介して機械的に接続する冷却工程と、を有することを特徴とする半導体装置の製造方法。
【請求項9】
前記冷却工程後、前記チップ(10)よりも線膨張係数が高いモールド樹脂によって、前記チップ(10)と前記接続部材(50)とを被覆する被覆工程を有することを特徴とする請求項8に記載の半導体装置の製造方法。
【請求項10】
請求項5に記載の半導体装置の製造方法であって、
前記凹部(34)に、前記接続部材(50)を設置する設置工程と、
該設置工程後、前記チップ(10)の下面(10a)の全面、及び、側面(10b)の全面が前記接続部材(50)によって覆われるように、前記接続部材(50)に前記チップ(10)を押圧する押圧工程と、を有することを特徴とする半導体装置の製造方法。
【請求項11】
前記設置工程において、溶融した前記接続部材(50)を前記凹部(34)に注入し、
前記押圧工程において、冶具(94)によって、溶融した前記接続部材(50)に前記チップ(10)を押圧することを特徴とする請求項10に記載の半導体装置の製造方法。
【請求項12】
前記設置工程は、
溶融した前記接続部材(50)を前記凹部(34)に注入する注入工程と、
該注入工程後、溶融した前記接続部材(50)を冷却して固化する冷却工程と、を有し、
前記押圧工程は、
固化した前記接続部材(50)に前記チップ(10)を配置する配置工程と、
該配置工程後、前記チップ(10)から前記接続部材(50)に向かう方向のバネ力が、前記チップ(10)に印加される態様で、前記バネ力を発生させるバネ部材(97)が設けられた蓋部(99)を前記台座(30)に固定する固定工程と、
該固定工程後、前記接続部材(50)に熱を印加して溶融させることで、前記バネ力によって、溶融した前記接続部材(50)に前記チップ(10)を押圧する熱印加工程と、を有することを特徴とする請求項10に記載の半導体装置の製造方法。
【請求項13】
前記設置工程において、溶融した前記接続部材(50)を注入し、
前記押圧工程において、前記チップ(10)と前記台座(30)とに電圧差を生じさせて、前記チップ(10)と前記台座(30)との間に静電引力を発生させることで、溶融した前記接続部材(50)に前記チップ(10)を押圧することを特徴とする請求項10に記載の半導体装置の製造方法。
【請求項14】
請求項1に記載の半導体装置の製造方法であって、
前記チップ(10)と前記接続部材(50)とを機械的に接続する第1接続工程と、
該第1接続工程後、前記チップ(10)よりも線膨張係数が高いモールド樹脂によって、前記チップ(10)と前記接続部材(50)とを被覆する被覆工程と、
該被覆工程後、前記台座(30)と前記接続部材(50)とを機械的に接続する第2接続工程と、を有することを特徴とする半導体装置の製造方法。
【請求項15】
請求項1に記載の半導体装置の製造方法であって、
前記チップ(10)と前記台座(30)とを、前記接続部材(50)を介して機械的に接続する接続工程と、
該接続工程後、前記チップ(10)よりも線膨張係数が高いモールド樹脂によって、前記チップ(10)と前記接続部材(50)とを被覆する被覆工程と、を有することを特徴とする半導体装置の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate


【公開番号】特開2013−96702(P2013−96702A)
【公開日】平成25年5月20日(2013.5.20)
【国際特許分類】
【出願番号】特願2011−236419(P2011−236419)
【出願日】平成23年10月27日(2011.10.27)
【出願人】(000004260)株式会社デンソー (27,639)
【Fターム(参考)】