説明

半導体装置およびその製造方法

【課題】MIM構造のキャパシタを含む半導体装置において、安定した容量値を与える。
【解決手段】半導体装置100は、基板(不図示)上に形成された絶縁膜154、同層に形成されるとともに、絶縁膜154を介して対向配置された第1の電極および第2の電極、を有するMIMキャパシタ200とを含む。第1の電極および第2の電極は、それぞれ、基板の積層方向において、他の領域300に形成されたビア130および当該ビア上に当該ビアに接続して設けられた配線132が形成された層にわたって延在する第1の高アスペクトビア110および第2の高アスペクトビア120により構成される。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、半導体装置およびその製造方法に関し、とくに、MIMキャパシタを含む半導体装置およびその製造方法に関する。
【背景技術】
【0002】
近年、キャパシタ素子においては、従来のMOS型キャパシタに比し、寄生抵抗、寄生容量が著しく小さいMIM(Metal-Insulator-Metal)キャパシタが利用されるようになっている。また、このようなMIMキャパシタをロジックデバイス中に組み込みワンチップ化した構造も開発されている。かかる構造を実現するには、両デバイスの構造および製造プロセスの統合を図る必要がある。ロジックデバイスでは、配線を多層に積層した構造が一般的に利用されている。こうした多層配線構造に、MIMキャパシタの構造やプロセスを如何に適合させるかが重要な技術的課題となる。このような観点から、MIMキャパシタの電極をデバイス領域の多層配線構造と同様の手法で製造するプロセスが開発されている。
【0003】
特許文献1(特開2006−261455号公報)には、櫛形電極を有するMIMキャパシタの構成が記載されている。また、特許文献2(特表2003−536271号公報)には、導電性ビア間に静電容量が形成されたアレイコンデンサ構造が記載されている。
【特許文献1】特開2006−261455号公報
【特許文献2】特表2003−536271号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
しかし、特許文献1や特許文献2に記載された構成の半導体装置には以下のような問題があった。図10および図11を参照して説明する。
図10に示すように、半導体装置10は、MIMキャパシタ12を含む。MIMキャパシタ12は、複数の第1の上層電極配線22と、複数の第2の上層電極配線32とが互い違いに配置された構成を有する。複数の第1の上層電極配線22は、一端で第1の電位供給配線26に接続される。第1の電位供給配線26と複数の第1の上層電極配線22とは、第1の上層電極配線22を櫛歯とする櫛形形状を有する。複数の第2の上層電極配線32は、一端で第2の電位供給配線36に接続される。第2の電位供給配線36と複数の第2の上層電極配線32とは、第2の上層電極配線32を櫛歯とする櫛形形状を有する。
【0005】
図11は、MIMキャパシタ12の第1の上層電極配線22および第2の上層電極配線32をビアファースト方式のデュアルダマシン法で製造する場合の工程断面図である。図11は、図10のC−C’ 断面図に該当する。半導体装置10は、基板(不図示)上に形成された絶縁層50、エッチング阻止膜52、および絶縁膜54を含む。ここで、絶縁層50には、第1の下層電極配線24および第2の下層電極配線34が形成されている。
【0006】
まず、絶縁膜54に複数のビアホール60を形成する(図11(a))。次いで、絶縁膜54上に配線溝形成用レジスト膜70を形成する(図11(b))。配線溝形成用レジスト膜70には、MIMキャパシタ12の第1の上層電極配線22、第2の上層電極配線32、第1の電位供給配線26、および第2の電位供給配線36に対応する位置に配線溝形成用開口部66が形成される。しかし、このとき、目ズレにより、配線溝形成用開口部66が、ビアホール60に対してずれることがある。その場合、配線溝64もビアホール60に対してずれて形成される(図11(c))。図11(c)には、比較のために、ビアホール60に対してずれることなく形成された場合の配線溝64を破線で示す。配線溝64がビアホール60に対してずれることなく形成された場合、隣接する配線溝間の間隔はd3となる。一方、配線溝64がビアホール60に対してずれて形成されると、配線溝幅は、ビアホール60からずれた分だけ広くなり、隣接する配線溝間の間隔はd2(d2<d3)となる。この後、配線溝64とビアホール60内に導電材料を埋め込み、第1のビア20、第1の上層電極配線22、第2のビア30、および第2の上層電極配線32を形成する(図11(d))。
【0007】
しかし、配線溝64がビアホール60に対してずれて形成されると、第1の上層電極配線22および第2の上層電極配線32の配線幅が設計値に比べて広くなり、第1の上層電極配線22と第2の上層電極配線32との間の幅が図示したようにd2となり、設計値のd3よりも狭くなる。これにより、MIMキャパシタ12の容量値が設計したものと異なってしまい、安定した容量値を与えることができない。
【課題を解決するための手段】
【0008】
本発明によれば、
基板と、
前記基板上に形成された絶縁膜、ならびに同層に形成されるとともに、前記絶縁膜を介して対向配置された第1の電極および第2の電極、を有するMIMキャパシタと、
前記絶縁膜中に形成され、前記第1の電極に電気的に接続され、当該第1の電極に第1の電位を供給するための第1の電位供給配線と、
前記絶縁膜中に形成され、前記第2の電極に電気的に接続され、当該第2の電極に第2の電位を供給するための第2の電位供給配線と、
を含み、
前記第1の電極および前記第2の電極は、それぞれ、前記基板の積層方向において、他の領域に形成されたビアおよび当該ビア上に当該ビアに接続して設けられた配線が形成された層にわたって延在する第1の高アスペクトビアおよび第2の高アスペクトビアにより構成された半導体装置が提供される。
【0009】
本発明によれば、
前記絶縁膜にビアホールを形成する工程と、前記絶縁膜の当該ビアホールに連通する配線溝を形成する工程とを含む、ビアファースト方式のデュアルダマシン法でデュアルダマシン配線溝を形成する工程と、
前記デュアルダマシン配線溝を形成する工程の後、前記デュアルダマシン配線溝に導電性材料を埋め込みデュアルダマシン配線を形成する工程と、
を含み、
前記デュアルダマシン配線溝を形成する工程の前記ビアホールを形成する工程において、第1のビアホールと第2のビアホールとを形成し、
前記デュアルダマシン配線溝を形成する工程の配線溝を形成する工程において、前記第1のビアホールの少なくとも一部および前記第2のビアホールの少なくとも一部をそれぞれレジスト膜で覆った状態で、前記配線溝を形成し、
前記デュアルダマシン配線を形成する工程において、前記第1のビアホールおよび前記第2のビアホールも前記導電性材料で埋め込み、少なくとも前記第1のビアホールの前記少なくとも一部を埋め込んで形成された第1の電極、および前記第2のビアホールの前記少なくとも一部を埋め込んで形成された第2の電極、および前記絶縁膜により構成されたMIMキャパシタを形成する半導体装置の製造方法が提供される。
【0010】
この構成によれば、MIMキャパシタを構成する電極を、第1の高アスペクトビアおよび第2の高アスペクトビアで構成するので、ビア上に配線を形成した場合に生じる目ズレを防ぐことができる。これにより、電極間の距離を一定にすることができ、MIMキャパシタの容量値を設計値と一致するようにすることができ、安定した容量値を与えることができる。また、TDDB(Time Dependent Dielectric Breakdown)寿命の低下を防ぐことができる。
【0011】
なお、以上の構成要素の任意の組合せ、本発明の表現を方法、装置などの間で変換したものもまた、本発明の態様として有効である。
【発明の効果】
【0012】
本発明によれば、MIM構造のキャパシタを含む半導体装置において、安定した容量値を与えることができる。
【発明を実施するための最良の形態】
【0013】
以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
【0014】
図1は、本実施の形態における半導体装置の構成を示す平面図である。図2は、本実施の形態における半導体装置の断面図である。図2(a)には、図1のA−A’ 断面およびB−B’断面を示す。図2(b)には、図1のA−A’ 断面および半導体装置100の他の領域の断面を示す。
【0015】
半導体装置100は、基板(不図示)と、基板上に形成された絶縁層150、エッチング阻止膜152、および絶縁膜154と、基板上に形成されたMIMキャパシタ200とを含む。MIMキャパシタ200は、第1の電極202と第2の電極204とを含み、これらの間に存在する絶縁膜を容量膜として構成される。絶縁層150、エッチング阻止膜152、および絶縁膜154は、たとえば、通常ロジック領域等の多層配線構造で用いられる絶縁膜やエッチング阻止膜と同じ材料により構成することができる。絶縁層150および絶縁膜154は、たとえばシリコン酸化膜や低誘電率膜等により構成することができる。
【0016】
本実施の形態において、第1の電極202および第2の電極204は、それぞれ、同層に形成されるとともに、絶縁膜154を介して対向配置された第1の高アスペクトビア110および第2の高アスペクトビア120により構成される。
【0017】
他の領域300において、絶縁層150には下層配線134が形成され、絶縁膜154およびエッチング阻止膜152にはビア130が形成され、絶縁膜154には上層配線132が形成されている。ここで、ビア130と上層配線132とは、デュアルダマシン法により形成されたデュアルダマシン配線とすることができる。他の領域300は、たとえば、MIMキャパシタ200が形成される領域の周囲に配置される周辺回路とすることもでき、また、たとえば、トランジスタと、そのトランジスタの上に多層配線構造が形成されたロジック領域とすることができる。本実施の形態において、MIMキャパシタ200の配線やビアは、他の領域300の多層配線構造の配線やビアと同時に同工程で形成することができる。配線やビアは、たとえば、銅を主成分とする配線材料と、当該配線材料の側壁および底面に形成されたバリアメタル膜とにより構成することができる。さらに、後述するように、第1の電位供給配線112や第2の電位供給配線122を第1の高アスペクトビア110や第2の半導体チップ120と同層に形成する場合、他の領域300は、第1の電位供給配線112や第2の電位供給配線122が形成される領域とすることもできる。
【0018】
第1の高アスペクトビア110および第2の高アスペクトビア120は、それぞれ、基板の積層方向において、他の領域300でビア130が形成された層と上層配線132(配線)が形成された層とにわたって延在する。また、第1の高アスペクトビア110および第2の高アスペクトビア120は、それぞれ、平面視で、第1の方向(図1における縦方向)に延在するスリットビアにより構成される。
【0019】
半導体装置100は、さらに、絶縁膜154中に形成され、第1の高アスペクトビア110に電気的に接続され、第1の高アスペクトビア110に第1の電位を供給するための第1の電位供給配線112と、絶縁膜154中に形成され、第2の高アスペクトビア120に電気的に接続され、第2の高アスペクトビア120に第2の電位を供給するための第2の電位供給配線122と、をさらに含む。
【0020】
図1に示すように、MIMキャパシタ200は、それぞれ第1の方向(図中縦方向)に延在するスリットビアである複数の第1の高アスペクトビア110と第2の高アスペクトビア120とを含み、これらの第1の高アスペクトビア110と第2の高アスペクトビア120とは、第1の方向と直交する第2の方向(図中横方向)に沿って互い違いに配置される。平面視において、第1の電位供給配線112は、第1の高アスペクトビア110の端部に第2の方向に沿って形成され、第1の電位供給配線112と複数の第1の高アスペクトビア110とは、複数の第1の高アスペクトビア110を櫛歯とする櫛形形状を有する。また、平面視において、第2の電位供給配線122は、第2の高アスペクトビア120の端部に第2の方向に沿って形成され、第2の電位供給配線122と複数の第2の高アスペクトビア120とは、複数の第1の高アスペクトビア110を櫛歯とする櫛形形状を有する。本実施の形態において、MIMキャパシタ200は、第1の電位供給配線112と第1の高アスペクトビア110により構成される櫛形形状と、第2の電位供給配線122と第2の高アスペクトビア120により構成される櫛形形状とが入れ子状に配置された構成となっている。第1の電位と第2の電位のいずれか一方を接地電位、他方を電源電位とすることができる。
【0021】
図2(a)および図2(b)に示すように、本実施の形態において、第1の電位供給配線112は、基板の積層方向において、第1の高アスペクトビア110が延在する領域のうち、他の領域300で上層配線132が形成された層と同水準に設けられる。また、本実施の形態において、第2の電位供給配線122は、基板の積層方向において、第1の電位供給配線112と同水準に設けられる。すなわち、後述するように、本実施の形態において、第1の高アスペクトビア110、第2の高アスペクトビア120、第1の電位供給配線112、および第2の電位供給配線122は、同一工程のビアファースト方式のデュアルダマシン法で形成される。ここで、第1の高アスペクトビア110および第2の高アスペクトビア120は、ビアファースト方式のデュアルダマシン法の工程において、ビアホールのみを形成して配線溝を形成しないようにすることにより形成される。
【0022】
次に、本実施の形態における半導体装置100のMIMキャパシタ200の製造手順を説明する。図3は、本実施の形態における半導体装置100の工程断面図である。図3は、図2(a)に示したのと同様の半導体装置100の断面部分を示す。図4は、本実施の形態における半導体装置100の製造工程における平面図である。
【0023】
本実施の形態において、半導体装置100の製造方法は、絶縁膜154にビアホールを形成する工程と、絶縁膜154膜に当該ビアホールに連通する配線溝を形成する工程とを含む、ビアファースト方式のデュアルダマシン法でデュアルダマシン配線溝を形成する工程と、デュアルダマシン配線溝を形成する工程の後、デュアルダマシン配線溝に導電性材料を埋め込みデュアルダマシン配線を形成する工程とを含む。
【0024】
まず、絶縁膜154上にビアホール形成用レジスト膜170を形成し、ビアホール形成用レジスト膜170をマスクとして絶縁膜154をエッチングし、絶縁膜154に第1のビアホール160および第2のビアホール161を形成する。図4(a)は、絶縁膜154にビアホール160を形成するために用いるビアホール形成用レジスト膜170の構成を示す。ビアホール形成用レジスト膜170には、MIMキャパシタ200の第1の高アスペクトビア110と第2の高アスペクトビア120に対応する位置にビアホール形成用開口部162が形成されている。
【0025】
図3(a)は、絶縁膜154に第1のビアホール160および第2のビアホール161が形成された構成を示す。ここで、第1のビアホール160および第2のビアホール161は、デュアルダマシン配線溝のビアホールと配線溝とが形成される層にわたって延在して形成される。図示していないが、このとき、図2(b)を参照して説明した他の領域300におけるビア130を形成するためのビアホールも形成される。
【0026】
つづいて、絶縁膜154上に配線溝形成用レジスト膜172を形成する。図4(b)は、絶縁膜154に配線溝164を形成するために用いる配線溝形成用レジスト膜172の構成を示す。配線溝形成用レジスト膜172には、半導体装置100の第1の電位供給配線112と第2の電位供給配線122に対応する位置に配線溝形成用開口部166が形成されている。このとき、第1のビアホール160の端部以外の領域、および第2のビアホール161の端部以外の領域は、配線溝形成用レジスト膜172で覆われている。このような配線溝形成用レジスト膜172をマスクとして絶縁膜154をエッチングし、絶縁膜154に配線溝164を形成する。図示していないが、このとき、第2の電位供給配線122を形成するための配線溝、および図2(b)を参照して説明した他の領域300における上層配線132を形成するための配線溝も形成される。
【0027】
この後、第1のビアホール160および第2のビアホール161等のビアホール、配線溝164等の配線溝を導電材料で埋め込む。導電材料の埋め込みは、通常のデュアルダマシン法における配線形成と同様とすることができ、まずバリアメタル膜を形成し、その後に配線材料でビアホールおよび配線溝を埋め込み、ビアホールおよび配線溝外部に露出した導電材料を化学機械研磨法(CMP:Chemical Mechanical Polishing)で除去して形成することができる。これにより、図2に示したように、第1の高アスペクトビア110、第2の高アスペクトビア120、第1の電位供給配線112が形成される。また、同時に、第2の電位供給配線122、他の領域300のビア130および上層配線132も形成される。
【0028】
本実施の形態において、MIMキャパシタ200を構成する第1の高アスペクトビア110および第2の高アスペクトビア120は、ビアファースト方式のデュアルダマシン法でデュアルダマシン配線溝を形成する工程において、配線溝を形成しないことにより形成される。そのため、ビア上に配線を形成した場合に生じる目ズレを防ぐことができる。これにより、電極間の距離を一定にすることができ、MIMキャパシタ200の容量値を設計値と一致するようにすることができ、安定した容量値を与えることができる。また、TDDB(Time Dependent Dielectric Breakdown)寿命の低下を防ぐことができる。
【0029】
図5は、図1および図2に示したMIMキャパシタ200の構成の変形例を示す図である。
ここで、第1の電極202および第2の電極204は、複数層にわたって形成することができる。
たとえば、ここでは、第1の電極202は、3層にわたって積層された第1の高アスペクトビア110により構成することができる。また、第2の電極204も、3層にわたって形成された第2の高アスペクトビア120により構成することができる。第1の電位供給配線112は、最上層の第1の高アスペクトビア110と同層にのみ設けることができる。また、第2の電位供給配線122は、最上層の第2の高アスペクトビア120と同層にのみ設けることができる。また、第1の電位供給配線112と第2の電位供給配線122とは、異なる層にも設けることもできる。
【0030】
このような積層構造とした場合、上下に形成されるビア間での目ズレも生じ得る。図6は、この例を示す図である。第1の高アスペクトビア110および第2の高アスペクトビア120は、下方ほどビア径が小さい順テーパー形状の断面を有する。そのため、上のビアの底面が下のビアの上面からはみ出すほど目ズレが生じなければ、隣接する第1の高アスペクトビア110と第2の高アスペクトビア120との間の距離はd1となり、一定にすることができる。これにより、容量値および耐圧への影響をほとんどなくすことができる。また、上のビアの底面が下のビアの上面からはみ出した場合でも、エッチング阻止膜152が配置されているため、上のビアと下のビアとの重なり厚さがエッチング阻止膜152により薄くなるように制御され、容量値と耐圧に与える影響を大幅に低減することができる。
【0031】
図7は、図1に示した半導体装置100の他の例を示す図である。
この例では、第1の高アスペクトビア110および第2の高アスペクトビア120の下層に、それぞれ第1の電極配線114と第2の電極配線124とが設けられる。図8は、図7の平面図である。図8(a)および図8(b)のA−A’断面図およびB−B’断面図が図7に該当する。図8(a)では、第1の高アスペクトビア110および第2の高アスペクトビア120がそれぞれスリットビアで構成された例を示す。
【0032】
第1の電極配線114は、第1の高アスペクトビア110に接触して設けられ、第1の方向に延在する。第2の電極配線124は、第2の高アスペクトビア120に接触して設けられ、第1の方向に延在する。
【0033】
また、このように最下層に電極配線を設けた場合、第1の高アスペクトビア110および第2の高アスペクトビア120は、図8(b)に示すように、それぞれ、第1の方向に連続して形成されたスリットビアではなく、第1の方向に沿って配置された複数のビアにより構成することができる。すなわち、第1の電極202は、第1の方向に沿って配置された複数の第1の高アスペクトビア110と、その下層に形成された第1の電極配線114とにより構成することができる。また、第2の電極204は、第1の方向に沿って配置された複数の第2の高アスペクトビア120と、その下層に形成された第2の電極配線124とにより構成することができる。
【0034】
図9は、図7および図8に示したMIMキャパシタ200の構成の変形例を示す図である。
ここでも、図5に示した構成と同様、第1の電極202および第2の電極204は、複数層にわたって形成することができる。最下層の第1の高アスペクトビア110と第2の高アスペクトビア120とのさらに下層に、それぞれ第1の電極配線114と第2の電極配線124とが設けられる。
【0035】
以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
【図面の簡単な説明】
【0036】
【図1】本発明の実施の形態における半導体装置の構成の一例を示す平面図である。
【図2】本発明の実施の形態における半導体装置の構成の一例を示す断面図である。
【図3】本発明の実施の形態における半導体装置の製造手順を示す工程断面図である。
【図4】本発明の実施の形態における半導体装置の製造工程における平面図である。
【図5】本発明の実施の形態における半導体装置の構成の他の例を示す断面図である。
【図6】本発明の実施の形態における半導体装置の構成の他の例を示す断面図である。
【図7】本発明の実施の形態における半導体装置の構成の他の例を示す断面図である。
【図8】本発明の実施の形態における半導体装置の構成の他の例を示す平面図である。
【図9】本発明の実施の形態における半導体装置の構成の他の例を示す断面図である。
【図10】従来の問題点を説明するための図である。
【図11】従来の問題点を説明するための図である。
【符号の説明】
【0037】
10 半導体装置
12 MIMキャパシタ
20 第1のビア
22 第1の上層電極配線
24 第1の下層電極配線
26 第1の電位供給配線
30 第2のビア
32 第2の上層電極配線
34 第2の下層電極配線
36 第2の電位供給配線
50 絶縁層
52 エッチング阻止膜
54 絶縁膜
60 ビアホール
64 配線溝
70 配線溝形成用レジスト膜
100 半導体装置
110 第1の高アスペクトビア
112 第1の電位供給配線
114 第1の電極配線
120 第2の高アスペクトビア
122 第2の電位供給配線
124 第2の電極配線
130 ビア
132 上層配線
134 下層配線
150 絶縁層
152 エッチング阻止膜
154 絶縁膜
160 第1のビアホール
161 第2のビアホール
162 ビアホール形成用開口部
164 配線溝
166 配線溝形成用開口部
170 ビアホール形成用レジスト膜
172 配線溝形成用レジスト膜
200 MIMキャパシタ
202 第1の電極
204 第2の電極
300 他の領域

【特許請求の範囲】
【請求項1】
基板と、
前記基板上に形成された絶縁膜、ならびに同層に形成されるとともに、前記絶縁膜を介して対向配置された第1の電極および第2の電極、を有するMIMキャパシタと、
前記絶縁膜中に形成され、前記第1の電極に電気的に接続され、当該第1の電極に第1の電位を供給するための第1の電位供給配線と、
前記絶縁膜中に形成され、前記第2の電極に電気的に接続され、当該第2の電極に第2の電位を供給するための第2の電位供給配線と、
を含み、
前記第1の電極および前記第2の電極は、それぞれ、前記基板の積層方向において、他の領域に形成されたビアおよび当該ビア上に当該ビアに接続して設けられた配線が形成された層にわたって延在する第1の高アスペクトビアおよび第2の高アスペクトビアにより構成された半導体装置。
【請求項2】
請求項1に記載の半導体装置において、
前記第1の電位供給配線は、前記基板の積層方向における前記第1の高アスペクトビアの延在領域の上側の一部で当該第1の高アスペクトビアと同水準に設けられ、当該第1の高アスペクトビアと接続して設けられた半導体装置。
【請求項3】
請求項2に記載の半導体装置において、
前記第2の電位供給配線は、前記基板の積層方向において、前記第1の電位供給配線と同水準に設けられ、前記第2の高アスペクトビアと接続して設けられた半導体装置。
【請求項4】
請求項1から3いずれかに記載の半導体装置において、
前記MIMキャパシタは、
前記第1の高アスペクトビアの下層に形成され、当該第1の高アスペクトビアに接触して設けられ、第1の方向に延在する第1の電極配線と、
前記第2の高アスペクトビアの下層に形成され、当該第2の高アスペクトビアに接触して設けられ、前記第1の方向に延在する第2の電極配線と、をさらに含む半導体装置。
【請求項5】
請求項1から4いずれかに記載の半導体装置において、
前記第1の高アスペクトビアおよび前記第2の高アスペクトビアは、それぞれ、第1の方向に延在するスリットビアである半導体装置。
【請求項6】
請求項4に記載の半導体装置において、
前記第1の電極は、複数の前記第1の高アスペクトビアにより構成され、当該複数の第1の高アスペクトビアは、前記第1の電極配線上に前記第1の方向に沿って配置され、
前記第2の電極は、複数の前記第2の高アスペクトビアにより構成され、当該複数の第2の高アスペクトビアは、前記第2の電極配線上に前記第1の方向に沿って配置された半導体装置。
【請求項7】
請求項1から6いずれかに記載の半導体装置において、
それぞれ同層に設けられ、第1の方向に沿って形成された複数の前記第1の電極と複数の前記第2の電極とを含み、当該複数の第1の電極と当該複数の第2の電極とは、前記第1の方向と直交する第2の方向に沿って互い違いに配置され、
平面視において、前記第1の電位供給配線は、前記第1の電極の端部に前記第2の方向に沿って形成され、前記第1の電位供給配線と前記複数の第1の電極とは、当該複数の第1の電極を櫛歯とする櫛形形状を有し、
平面視において、前記第2の電位供給配線は、前記第2の電極の端部に前記第2の方向に沿って形成され、前記第2の電位供給配線と前記複数の第2の電極とは、当該複数の第1の電極を櫛歯とする櫛形形状を有する半導体装置。
【請求項8】
請求項1から7いずれかに記載の半導体装置において、
前記第1の電極は、複数の層にそれぞれ形成され、積層された複数の前記第1の高アスペクトビアを含み、
前記第2の電極は、前記複数の層にそれぞれ形成され、積層された複数の前記第2の高アスペクトビアを含む半導体装置。
【請求項9】
請求項1から8いずれかに記載の半導体装置において、
前記他の領域に形成された前記ビアおよび当該ビア上に当該ビアに接続して設けられた配線は、デュアルダマシン配線である半導体装置。
【請求項10】
絶縁膜にビアホールを形成する工程と、前記絶縁膜の当該ビアホールに連通する配線溝を形成する工程とを含む、ビアファースト方式のデュアルダマシン法でデュアルダマシン配線溝を形成する工程と、
前記デュアルダマシン配線溝を形成する工程の後、前記デュアルダマシン配線溝に導電性材料を埋め込みデュアルダマシン配線を形成する工程と、
を含み、
前記デュアルダマシン配線溝を形成する工程の前記ビアホールを形成する工程において、第1のビアホールと第2のビアホールとを形成し、
前記デュアルダマシン配線溝を形成する工程の配線溝を形成する工程において、前記第1のビアホールの少なくとも一部および前記第2のビアホールの少なくとも一部をそれぞれレジスト膜で覆った状態で、前記配線溝を形成し、
前記デュアルダマシン配線を形成する工程において、前記第1のビアホールおよび前記第2のビアホールも前記導電性材料で埋め込み、少なくとも前記第1のビアホールの前記少なくとも一部を埋め込んで形成された第1の電極、および前記第2のビアホールの前記少なくとも一部を埋め込んで形成された第2の電極、および前記絶縁膜により構成されたMIMキャパシタを形成する半導体装置の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate


【公開番号】特開2010−135515(P2010−135515A)
【公開日】平成22年6月17日(2010.6.17)
【国際特許分類】
【出願番号】特願2008−309088(P2008−309088)
【出願日】平成20年12月3日(2008.12.3)
【出願人】(302062931)ルネサスエレクトロニクス株式会社 (8,021)
【Fターム(参考)】