説明

容器用樹脂被覆金属板

【課題】食品缶詰素材に要求される多くの特性に対応可能な、容器用樹脂被覆金属板を提供する。
【解決手段】金属板の少なくとも片面に、ポリエステル樹脂を主成分とする複層構造の樹脂被覆層(A)を有する。前記樹脂被覆層(A)は、前記金属板面と密着し下記(イ)〜(ニ)の成分を含有しポリエステル樹脂を主成分とする樹脂層(a1)を有する。好ましくは、前記樹脂層(a1)の上層に、ポリエステルフィルム(a2)が形成される。
(イ)ポリエステル樹脂、(ロ)フェノール樹脂、(ハ)導電性ポリマー、(ニ)ドーパント

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、例えば、食品缶詰の缶胴および蓋等に用いられる容器用樹脂被覆金属板に関するものである。
【背景技術】
【0002】
従来、食品缶詰に用いられる金属缶用素材であるティンフリースチール(TFS)、アルミニウム等の金属板には、耐食性、耐久性、耐候性などの向上を目的として、塗装が施されていた。しかし、この塗装を施す技術は、焼き付け工程が複雑であるばかりでなく、多大な処理時間を必要とし、さらには多量の溶剤を排出するという問題を抱えていた。
【0003】
そこで、これらの問題を解決するため、塗装鋼板に替わり、熱可塑性樹脂フィルムを加熱した金属板に積層してなるフィルムラミネート金属板が開発され、現在、食品缶詰用素材として工業的に用いられている。なかでも、PETフィルムをTFS表面に熱融着させたフィルムラミネート鋼板は、優れた密着性、加工性、耐食性を有するため、ほんどの食品缶詰に適用可能であり、今後、更なる需要拡大が見込まれている。
【0004】
また、更なる需要拡大地域として注目されているのがBRICs諸国などの経済発展の著しい地域であり、今後の需要増は顕著であろう。そして、このような世界市場を見据えた場合、フィルムラミネート金属板の技術はグローバルスタンダードとなり得る可能性が高く、重要性がますます高まることは確実である。
【0005】
このような状況のもと、フィルムラミネート金属板には、更なる性能改善が必要であることが明らかになってきた。耐食性、なかでも傷部の耐食性を、大幅に向上させる必要がある。以下、その理由を示す。
【0006】
フィルムラミネート金属板の耐食性は、フィルムの絶縁性に依存するため、被覆性の確保が必須である。しかし、フィルムを貫通する傷が生じた場合は、その部分の絶縁性が失われ、耐食性が確保できない。更には、傷部に腐食が集中しやすく、局部腐食を招く可能性が高い。局部腐食が著しく進行すると、缶壁部に穿孔が生じ、缶詰としての機能を失ってしまう。
【0007】
これまで、フィルムラミネート金属板は、日本国内市場を中心に使用され、数多くの種類の缶詰に加工・商品化されてきた。国内の製缶会社では、製造ラインの管理体制および製品の品質管理体制が整っており、例えば、製缶ラインで鋼板に傷をつけるようなトラブル(例えば、ロールのスリップなど)はほとんど発生しない。そのため、フィルムラミネート金属板には、フィルムを貫通するような傷が生ずることは殆どなく、缶成形後も、フィルムが鋼板を被覆し続け、優れた耐食性を維持することができた。また、仮にフィルムを貫通する傷が生じたとしても、製缶後のすべての缶に対して、欠陥検査を実施しており、傷のある缶は、市場へ流通させないシステムとなっている。
【0008】
一方で、国外に目を向けると、多種多様な製缶会社および缶詰製造会社が存在し、その技術レベルも様々である。国内の製缶会社に比べ、品質管理体制が見劣りする製缶会社も数多く存在し、製造ラインでのトラブルが頻発している会社も多い。また、成形後の缶につき全量検査を実施している製缶会社は世界的にみても稀であり、ほとんどが抜き取り検査のみである。したがって、フィルムを貫通する傷のある缶が、検査ラインをパスして市場に流通する危険性があり、傷部耐食性に劣るフィルムラミネート金属缶は、大きな市場クレームを招くおそれがある。世界中の製缶メーカーに対し、日本国内と同レベルの生産管理体制や、全量検査システムの導入を期待することができない以上、フィルムラミネート金属板の傷部耐食性を向上させる術なくして、グローバルスタンダード化は達成できないことになる。
【0009】
上記に対して、傷部耐食性を向上させるための技術としては、例えば、特許文献1、2が挙げられる。
特許文献1は、フッ素樹脂フィルムラミネート鋼板に関する技術であり、フッ素樹脂フィルムの撥水性を利用したものである。これによれば、表面の対水接触角を90°以上とすることで、表面に付着した水が、すべて球状となり、傷部においても球状が維持されることから、水が傷部へ侵入することなく腐食が抑制されると記載されている。しかしながら、傷部にはフッ素樹脂が存在しないので、撥水効果もなく、腐食抑制効果は全く期待できない。
特許文献2は、積層タイプのフッ素樹脂フィルムラミネート鋼板に関する技術であり、フッ素樹脂フィルムの下に100μm以上のポリ塩化樹脂フィルムを積層させたものである。この技術は、傷を鋼板表面に到達させないことを目的としており、いわゆる傷部耐食性を向上させる技術ではない。しかも、単に、膜厚を増加させただけの技術であるため、工業的利用価値も極めて低い。
【0010】
これら特許文献1および2を受けて、発明者らは、傷部において下地金属が露出しても、下地金属の不動態化を促進させることで、腐食因子に対して保護性のある皮膜を形成させ、傷部の耐食性を確保するという、新たなコンセプトを着想した。このコンセプトは、これまでの亜鉛めっきをはじめとする資源消費型の犠牲防食技術とは異なり、下地金属の自発的な不動態化反応を活用するため、省資源型の防食技術である。
【0011】
金属の不動態化を促進させる技術としては、遷移金属であるモリブデンの酸、タングステンの酸などの不動態化剤を利用する技術が特許および論文にて公開されている。しかし、これらは、いわゆるレアメタルであり、半導体産業などの必須素材であるため、需要過多の状況に陥りやすい。特に、BRICsが著しい経済発展をとげた2002年以降、価格は数倍に跳ね上がっており、今後もこの傾向は続くであろう。また、不動態化能に関しても、従来のクロメート処理に及ばないレベルであることが多くの論文にて報告されており、発明者らの要求性能を満たすものではない。
【0012】
さらに、発明者らは、近年、金属防食への適用が検討されている導電性ポリマーに注目し検討した。導電性ポリマーとは、π電子共役系が発達したポリマーであり、ポリアセチレンをはじめ、ポリアニリン、ポリピロール、ポリチオフェンなどが知られている。このうち、ポリアニリンについては、その金属防食能につき、多くの研究がなされている。特許文献3〜5に金属板への適用例が示されている。
【0013】
特許文献3には、樹脂、ポリアニリン、無機酸化物からなる皮膜を、金属板上に形成することで、従来のクロメート処理を代替可能な密着性、耐食性が得られる旨、記載されている。しかしながら、ベース樹脂として、水溶性または水分散性のアクリル樹脂、エポキシ樹脂、ウレタン樹脂等を用いており、これらでは、発明者らが想定している利用分野への適用は困難である。その理由として、ア)PETフィルムとベース樹脂との相溶性が不十分であることから、層間密着性が確保できない、イ)樹脂の力学特性(伸び特性と強度特性のバランス)が食品缶詰の成形加工に追随するレベルでなく、成形過程で樹脂が破壊されてしまう、ウ)無機酸化物を必須成分として40%未満添加することから、イ)と同様に、成形過程で樹脂が破壊されてしまう、エ)水溶性樹脂を使用した場合は、腐食環境下での樹脂溶解が少なからず生じ、耐食性が得られない、オ)水分散性樹脂を使用した場合でも、親水性官能基を有するモノマーもしくはポリマーとの共重合化が必要であり、本発明が想定する耐食性レベルの確保は困難である、カ)塗装下地処理を想定した技術であり、本発明とは技術的思想自体が異なる、などが挙げられる。
【0014】
特許文献4には、平均分子量20000以上の導電性ポリマーを有機樹脂皮膜中に含有させ、鋼板上に形成する旨、記載されている。この技術の不十分な点は、ア)導電性ポリマーを高分子量化させているが、所詮、分子鎖の骨格は剛直なままであり、加工性改善効果をもたらさないこと、イ)導電性ポリマーの結晶化度を上限なく規定しているが、加工性を妨げる方向であり、本発明が想定する高加工用途への適用が何ら考慮されていないこと、ウ)マトリックス形成高分子、ドーパントに関する規定が、広く一般的な物質の羅列に留まり特定されていないため、その重要性を見出していないこと、エ)塗装下地処理を想定した技術であり、本発明とは技術的思想自体が異なること、などが挙げられる。
【0015】
特許文献5についても同様で、ベース樹脂がエポキシ系、ウレタン系、フッ素系に限定されること等から、本発明の想定する分野への適用は困難である。
【先行技術文献】
【特許文献】
【0016】
【特許文献1】特開平7−256819号公報
【特許文献2】特開平10−264305号公報
【特許文献3】特開平10−251509号公報
【特許文献4】特開2007−190896号公報
【特許文献5】特開2006−326459号公報
【発明の概要】
【発明が解決しようとする課題】
【0017】
本発明は、かかる事情に鑑み、食品缶詰素材に要求される多くの特性に対応可能な、容器用樹脂被覆金属板を提供することを目的とするものである。
【課題を解決するための手段】
【0018】
本発明者らが、課題解決のため鋭意検討した結果、以下の知見を得た。
ポリエステル樹脂を主成分とする複層構造の樹脂被覆層を、金属板の少なくとも片面に有する。そして、(イ)ポリエステル樹脂、(ロ)フェノール樹脂、(ハ)導電性ポリマー、(ニ)ドーパントを含有する樹脂層を金属板との密着層とし、好ましくはその上層にポリエステルフィルムを積層することで、優れた加工性、傷部耐食性など多くの優れた機能を有する容器用樹脂被覆金属板を得ることができる。
【0019】
本発明は、以上の知見に基づきなされたものであり、その要旨は以下の通りである。
[1]金属板の少なくとも片面に、ポリエステル樹脂を主成分とする複層構造の樹脂被覆層(A)を有し、該樹脂被覆層(A)は、前記金属板面と密着し下記(イ)〜(ニ)の成分を含有しポリエステル樹脂を主成分とする樹脂層(a1)を有することを特徴とする容器用樹脂被覆金属板。
(イ)ポリエステル樹脂
(ロ)フェノール樹脂
(ハ)導電性ポリマー
(ニ)ドーパント
[2]前記樹脂被覆層(A)が、前記樹脂層(a1)と、該樹脂層(a1)の上層に形成されるポリエステルフィルム(a2)からなることを特徴とする前記[1]に記載の容器用樹脂被覆金属板。
[3]前記(イ)ポリエステル樹脂の数平均分子量が3000〜100000であり、ガラス転移温度が0℃〜100℃であることを特徴とする前記[1]または[2]に記載の容器用樹脂被覆金属板。
[4]前記(イ)ポリエステル樹脂は、ジフェノール酸を必須の成分とするポリエステル樹脂であることを特徴とする前記[1]〜[3]のいずれか一項に記載の容器用樹脂被覆金属板。
[5]前記(ハ)導電性ポリマーは、ポリアニリン、ポリピロール、ポリチオフェン、ポリアルキルチオフェン、ポリアルキルジオキシチオフェン、ポリイソチアナフテン、ポリフェニレン、ポリフラン、ポリフェニレンビニレン、ポリアセン、アルキレンジオキシチオフェンおよび、これら各ポリマーの誘導体、ならびに、これら各ポリマーを構成する単量体の2種以上の共重合物、の中から選ばれる一種または二種以上であることを特徴とする前記[1]〜[4]のいずれか一項に記載の容器用樹脂被覆金属板。
[6]前記(ニ)ドーパントの添加量は、前記(ハ)導電性ポリマーを形成するモノマー1molに対し、0.01〜1.00mol含有することを特徴とする前記[1]〜[5]のいずれか一項に記載の容器用樹脂被覆金属板。
[7]前記(イ)ポリエステル樹脂と前記(ロ)フェノール樹脂の比率が、60:40〜95:5であることを特徴とする前記[1]〜[6]のいずれか一項に記載の容器用樹脂被覆金属板。
[8]樹脂層(a1)は、さらに、(ホ)エポキシ樹脂を含有することを特徴とする前記9[1]〜[7]のいずれか一項に記載の容器用樹脂被覆金属板。
[9]樹脂層(a1)は、さらに、(ヘ)金属アルコキシド系化合物および/または金属キレート化合物を含有することを特徴とする前記[1]〜[8]のいずれか一項に記載の容器用樹脂被覆金属板。
[10]前記ポリエステルフィルム(a2)が、ポリエステル樹脂の構成単位の85mass%以上がエチレンテレフタレート単位及び/またはエチレンナフタレート単位である二軸延伸ポリエステルフィルムであり、該二軸延伸ポリエステルフィルムは、無機粒子および/または有機粒子を含有することを特徴とする前記[2]〜[9]のいずれか一項に記載の容器用樹脂被覆金属板。
【発明の効果】
【0020】
本発明によれば、食品缶詰用素材に要求される多様な機能への対応が可能であり、かつ、優れた傷部耐食性を有する容器用樹脂被覆金属板が得られる。このような特性を有するため、本発明の容器用樹脂被覆金属板は、日本国内市場に留まらず世界中のあらゆる缶用市場へ適用が可能となり、新たな容器用樹脂被覆金属板として有望である。
【図面の簡単な説明】
【0021】
【図1】金属板のラミネート装置の要部を示す図である。(実施例1)
【図2】フィルムラミネート金属板の断面構造を示す図である。(実施例1)
【図3】缶胴部に付与したクロスカット傷の位置を示す図である。(実施例1)
【図4】人工傷からの最大腐食幅を測定する方法を示す図である。(実施例1)
【発明を実施するための形態】
【0022】
以下、本発明の容器用樹脂被覆金属板について詳細に説明する。
まず、本発明で用いる金属板について説明する。
本発明の金属板としては、缶用材料として広く使用されているアルミニウム板や軟鋼板等を用いることができる。特に、下層が金属クロム、上層がクロム水酸化物からなる二層皮膜を形成させた表面処理鋼板(以下、TFSと称す)等が最適である。
TFSの金属クロム層、クロム水酸化物層の付着量については、特に限定されないが、加工後密着性、耐食性の観点から、何れもCr換算で、金属クロム層は70〜200mg/m、クロム水酸化物層は10〜30mg/mの範囲とすることが望ましい。
そして、本発明の容器用樹脂被覆金属板は、金属板の少なくとも片面に、ポリエステル樹脂を主成分とする複層構造の樹脂被覆層(A)を有する。そして、この樹脂被覆層(A)は、前記金属板面と密着する樹脂層(a1)を有し、さらに、前記樹脂層(a1)は、下記(イ)〜(ニ)の成分を含有する。
(イ)ポリエステル樹脂
(ロ)フェノール樹脂
(ハ)導電性ポリマー
(ニ)ドーパント
次に、金属板面と密着する樹脂層(a1)について説明する。
(イ)ポリエステル樹脂
ポリエステル樹脂としては、数平均分子量3000〜100000であることが好ましく、より好ましくは5000〜30000、更に好ましくは10000〜25000の範囲内である。なお、数平均分子量は、ゲル浸透クロマトグラフィー分析での、ポリスチレンとの比較による換算値である。
数平均分子量が3000より低いと加工性が悪くなり、100000より高いと塗料化時の粘度が高くなり適切な塗装ができなくなる場合がある。特に、数平均分子量が10000〜25000であると、耐食性と加工性のバランスが極めてよい。
ガラス転移温度は、0℃〜100℃であることが好ましく、より好ましくは10℃〜90℃であり、更に好ましくは30〜80℃である。ガラス転移温度が0℃より低いと、水蒸気、酸素等に対するバリア性が劣るために塗膜の耐食性が劣り、またブロッキング性も劣る場合がある。ガラス転移温度が100℃より高いと、塗膜が硬くなり加工性が悪くなる場合がある。更に、ポリエステル樹脂の骨格としては、分岐型よりも直鎖型であることが好ましい。
【0023】
また、ポリエステル樹脂は、ジフェノール酸を必須成分とすることが好ましい。ポリエステル樹脂が、ジフェノール酸をモノマーとして必須の成分とした場合、フェノール樹脂との反応性が高まり硬化速度があがり、結果として耐水性、耐食性が向上する。ポリエステル樹脂中のジフェノール酸の導入量としては、0.1〜10mass%が好ましい。0.1mass%より低いと硬化性、耐水性および耐食性の向上効果が得られず、また10mass%を超えると、硬化が進みすぎ、加工性が劣る場合がある。
【0024】
ポリエステル樹脂(イ)としては、多塩基酸成分と多価アルコール成分とをエステル化反応させたものを用いることができる。
多塩基酸成分としては、たとえば、無水フタル酸、イソフタル酸、テレフタル酸、コハク酸、フマル酸、アジピン酸、アゼライン酸、セバシン酸、ダイマー酸などの1種以上のニ塩基酸およびこれらの酸の低級アルキルエステル化物が用いられ、必要に応じて、安息香酸、クロトン酸、などの一塩基酸、無水トリメリット酸、メチルシクロヘキセントリカルボン酸などの3価以上の多塩基酸などが併用される。
多価アルコール成分としては、エチレングリコール、ジチレングリコール、プロピレングリコール、1、4ブタンジオール、ネオペンチルグリコール、3-メチルペンタンジオール、1、4-ヘキサンジオール、1、6-ヘキサンジオール、シクロヘキサンジメタノールなどの2価アルコールが主に用いられ、さらに必要に応じてグリセリン、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトールなどの3価以上の多価アルコールを併用することができる。これらの多価アルコールは単独で、または2種以上を混合して使用することができる。
【0025】
ポリエステル樹脂(イ)の市販品としては、例えば、東洋紡績(株)製のバイロン300、500、560、600、630、650、670、バイロンGK130、140、150、190、330、590、680、780、810、890、ユニチカ(株)製エリーテルUE-3220、3500、3210、3215、3216、3620、3240、3250、3300、東亞合成(株)製アロンメルトPES-310、318、334などが挙げられる。
【0026】
(ロ)フェノール樹脂
樹脂層(a1)には、さらに成分(ロ)としてフェノール樹脂を添加する。石炭酸、m−クレゾール、m−エチルフェノール、3、5−キシレノール、m−メトキシフェノールなどの3官能のフェノール化合物、もしくは、p−クレゾール、o−クレゾール、p−tert−ブチルフェノール、p−エチルフェノール、2、3−キシレノール、2、5−キシレノール、m−メトキシフェノールなどの各種2官能性フェノールと、ホルムアルデヒドとをアルカリ触媒の存在下で合成したものが挙げられる。これらのフェノール化合物は、1種または2種以上を混合して使用することができる。また、フェノール樹脂に含有されるメチロール基の一部ないしは全部を、炭素数が1〜12なるアルコール類によってエーテル化した形のものを使用することができる。
【0027】
(ハ)導電性ポリマー
ポリエステル樹脂層に、導電性ポリマーを添加することで、下地金属の不動態化を促進させ、フィルムラミネート金属板に傷部耐食性を付与することができる。導電性ポリマーの酸化還元電位は、下地金属の電位に対して貴であるため、下地金属との界面において、下地金属の酸化反応と導電性ポリマーの還元反応が生じ、界面に安定な不動態皮膜を形成する。不動態皮膜は、絶縁体であるとともに緻密であるため、腐食因子に対しバリア層として機能する。そのため、下地金属の耐食性を大幅に向上させることができる。
ここで、導電性ポリマーの酸化還元反応は可逆的であることがわかっており、溶存酸素の還元反応とのカップリング反応によって、元の状態に戻る。すなわち、導電性ポリマーには、その可逆的な酸化還元特性により自身を劣化させることなく、永続的に下地金属を防食する効果が期待できる。
以上の防食プロセスは、腐食環境下における下地金属の自発的な不動態化を促すものであるため、導電性ポリマーには一種の自己補修作用があるものと考えることができる。したがって、フィルムを貫通する傷が生じたとしても、傷部周辺に不動態化皮膜を形成させることで、腐食の進行を著しく抑制することが可能となるのである。
【0028】
使用する導電性ポリマーとしては、π電子共役系ポリマーである、ポリアニリン、ポリピロール、ポリチオフェン、ポリアルキルチオフェン、アルキレンジオキシチオフェン、ポリイソチアナフテン、ポリフェニレン、ポリフラン、ポリフェニレンビニレン、ポリアセンおよびこれらの誘導体、およびこれらの単量体の共重合物から選ばれた1種または2種以上の混合物、アルキレンジオキシチオフェンの重合体であるポリエチレンジオキシチオフェンがあげられる。中でも、ポリアニリン、ポリピロール、ポリエチレンジオキシチオフェンは電気伝導度が高く、下地金属との界面における電子の授受がスムーズであるため、不動態化能が高く、防食効果が大きい。
【0029】
導電性ポリマーの添加量としては、ポリエステル樹脂層(a1)に対し、0.1〜15.0mass%の範囲とする。添加量が0.1mass%未満であると、下地金属との界面における酸化還元反応に寄与するポリマーの絶対量が不足し、界面における不動態化皮膜の形成が不十分となる場合がある。傷部の耐食性は、不動態化皮膜形成能に大きく依存するため、発明者らの期待する性能レベルが得られないこととなる。一方、添加量が15.0mass%超であると、導電性ポリマーの力学物性が密着層全体の物性に影響を及ぼすようになり、剛直な分子構造ゆえ加工性を大きく劣化させる場合がある。よって、導電性ポリマーの添加量としては、密着層を形成するポリエステル樹脂(a1)に対し、0.1〜15.0mass%の範囲に規定する。
【0030】
(ニ)ドーパント
本発明で規定する導電性ポリマーは、π電子共役系ポリマーであるため、脱ドープ状態では半導体であり、バンドギャップを有する。よって、導電性を付与するためには、ドーパントを添加し、導電性ポリマーの主鎖の共役系からπ電子を奪って、主鎖上に正孔を生成させる必要がある。正孔が、ポリマーの分子鎖上を移動するため、電流が流れるのである。
したがって、本発明で期待する防食効果を発揮させるためには、導電性ポリマーを含有するポリエステル樹脂中に、ドーパントを添加する必要がある。ドーパントとしては、ハロゲン類、プロトン酸、ルイス酸、遷移金属ハライド、アルカリ金属から選ばれた一種または二種以上の混合物が好適である。なかでも、ハロゲン類、プロトン酸、ルイス酸が安定した防食能を有するため、特に好適である。
ハロゲン類としては、臭素、塩素、ヨウ素などを用いることができ、プロトン酸としては、有機カルボン酸、有機スルホン酸、有機ホスホン酸、リン酸類およびポリ酸などを好適に用いることができる。ルイス酸としては、FeCl 、FeOCl、TiCl 、ZrCl 、SnCl 、MoCl 、WCl 、BF 、BCl 、PF 等の金属ハロゲン化物を用いることができる。
中でも好適であるのがプロトン酸であり、ポリスチレンスルホン酸、ポリビニルスルホン酸、ポリリン酸、などのポリマー酸が、特に好適である。これらは、自身に皮膜形成能があるため、密着層となる樹脂の連続性を高め、密着性、耐食性に対して効果がある。
ドーパントの添加量としては、樹脂中に添加された導電性ポリマーを形成するモノマー1molに対し、0.01〜1.00molの範囲が好ましい。ドーパントの添加量が、導電性ポリマーを形成するモノマー1molに対し、0.01mol未満であると、ポリマー主鎖上に生成するキャリヤーの数が不足し、十分な電気伝導性が得られない場合がある。導電性ポリマーの防食効果は、防食対象となる金属とのスムーズな電子の授受に依存するため、導電性の低下は、不動態化能を低下させ、傷部耐食性が劣ることになる。一方、ドーパントの添加量が、導電性ポリマーに対し1.00mol%超とすると、処理液の不安定化やポリエステル樹脂層の加工性劣化をまねき、傷部耐食性を低下させる懸念がある。したがって、ドーパントの添加量としては、導電性ポリマーを形成するモノマー1molに対し、0.01〜1.00mol%の範囲に規定する。
【0031】
(ホ)エポキシ樹脂(好適条件)
エポキシ樹脂は、主に皮膜の密着性を向上させるものである。ノボラック型エポキシ樹脂の市販品としては、DIC(株)社製のエピクロンN-665、670、673、680、690、695、730、740、770、865、870、ダウケミカル(株)社製のXD-7855、旭化成エポキシ(株)社製のECN-1273、1299などが挙げられる。BPA型エポキシ樹脂の市販品としては、エピコート1001、エピコート1004などが挙げられる。
【0032】
(へ)金属アルコキシド系化合物および/または金属キレート化合物(好適条件)
金属アルコキシド系化合物および/または金属キレート系化合物は、(イ)ポリエステル樹脂、(ロ)フェノール樹脂、(ホ)エポキシ樹脂と反応を起こす。各々の樹脂の官能基と(ヘ)金属アルコキシド系化合物および/または金属キレート系化合物の間で架橋反応が進行する。この架橋反応は、金属アルコキシド系化合物および/または金属キレート系化合物が無い場合と比較して、その皮膜の硬化速度が著しく速いために、結果として極めて少ない熱エネルギーで優れた密着性、加工性、耐レトルト性、耐食性を発現することが可能となる。例えば、既存のラミネート缶はフィルムをラミネートした後に180℃以上で、数秒〜数分間焼付けが施され、その後の後加熱を利用し樹脂皮膜を硬化させ、上記の各種要求性能を確保するものである。しかし、本発明において、金属アルコキシド系化合物および/または金属キレート化合物を含有した場合の樹脂層は、熱融着ラミネートを行う際の、1秒程度の短時間加熱のみで樹脂層が十分に硬化し、後加熱を施したものと同等以上の性能を得ることができる。したがって、製造プロセスにおける後加熱工程が不要となり、製造効率が格段に向上する。加えて、二酸化炭素の排出低減も可能となり、実用上極めて有用な技術となりうる。更に、皮膜中に金属が組み込まれることで、皮膜の強度が向上し結果として耐衝撃性や耐食性が大幅に向上する。以上の理由により、前記樹脂層(a1)は、さらに、金属アルコキシド系化合物および/または金属キレート化合物を含有することが好ましい。
(ヘ)金属アルコキシド系化合物および/または金属キレート系化合物としては、例えば、アルミニウム、チタン、錫、ジルコニウムなどのアルコキシド金属化合物、アセト酢酸が金属に配位した金属キレート化合物などが挙げられる。
【0033】
樹脂層(a1)の組成(mass%)
本発明の樹脂層(a1)の(イ)ポリエステル樹脂と(ロ)フェノール樹脂の比率(質量)は、60:40〜95:5であることが好ましく、より好ましくは70:30〜85:15である。ポリエステル樹脂の比率が60より低いと樹脂層の伸びが不足するために加工性が悪化し、95より高いと硬化性が不足し、耐水性が劣るようになる場合がある。
(ハ)導電性ポリマーの配合比は、全固形分中で、0.1〜15.0mass%を含有することが好ましく、より好ましくは、1〜10.0mass%である。導電性ポリマーの配合比率が、0.1mass%より低いと下地金属との界面における不働態化皮膜の形成が不十分となる場合がある。一方、15.0mass%より高いと下地金属との密着性や加工性が劣る場合がある。
(ホ)エポキシ樹脂の配合比率は、全固形分中で、0.1〜30mass%含有することが好ましい。(ホ)エポキシ樹脂の比率が、0.1mass%より低いと樹脂層の密着性が劣るようになり、30mass%を超えると、耐水性が劣る場合がある。
(ヘ)金属アルコキシド系化合物および又は金属キレート系化合物の配合比率は、全固形分中で、0.01〜10mass%を含有することが好ましい。金属アルコキシドおよびまたは金属キレート化合物の配合比率が、0.01mass%よりも低いと耐衝撃性、耐食性の効果が得られず、10mass%を超えると塗膜が硬くなり加工性が劣るのに加え、塗料が増粘またはゲル化するなどの不具合が生ずる場合がある。
【0034】
樹脂層(a1)の付着量
樹脂層(a1)の付着量は、0.1g/m以上5.0/m以下の範囲に規定するのが好ましい。0.1g/m未満では、金属板表面を均一に被覆することができず、膜厚が不均一になる場合がある。一方、5.0g/m超とすると、樹脂の凝集力が不十分となり、樹脂層の強度が低下してしまう恐れがある。その結果、製缶加工時に、樹脂層が凝集破壊してフィルムが剥離し、そこを起点に缶胴部が断裂してしまうこととなる。
以上より、付着量は、好ましくは0.1g/m以上5.0g/m以下、さらに好ましくは0.1g/m以上3.0g/m以下である。
【0035】
着色剤
更に、樹脂層(a1)に染料、顔料などの着色剤を添加することで、下地の金属板を隠蔽し、樹脂独自の多様な色調を付与できる。例えば、黒色顔料として、カーボンブラックを添加することで、下地の金属色を隠蔽するとともに、黒色のもつ高級感を食品缶詰に付与することができる。
カーボンブラックの粒子径としては、5〜50nmの範囲のものを使用できるが、ポリエステル樹脂中での分散性や発色性を考慮すると、5〜30nmの範囲が好適である。
黒色顔料以外にも、白色顔料を添加することで下地の金属光沢を隠蔽するとともに、印刷面を鮮映化することができ、良好な外観を得ることができる。添加する顔料としては、容器成形後に優れた意匠性を発揮できることが必要であり、係る観点からは、二酸化チタンなどの無機系顔料を使用できる。着色力が強く、展延性にも富むため、容器成形後も良好な意匠性を確保できるので好適である。
容器表面に光輝色を望む場合には、黄色の有機系顔料の使用が好適である。透明性に優れながら着色力が強く、展延性に富むため、容器成形後も光輝色のある外観が得られる。本発明で使用できる有機系顔料を例示すれば、カラーインデックス(C.I.登録の名称)が、ピグメントイエロー12、13、14、16、17、55、81、83、139、180、181、183、191、214のうちの少なくとも1種類を挙げることができる。特に、色調(光輝色)の鮮映性、耐熱水変色性などの観点から、C.I.ピグメントイエロー180、214がより好ましく用いられる。
このほか、レッド顔料としてC.I.ピグメントレッド101、177、179、187、220、254、ブルー顔料としてC.I.ピグメントブルー15、15:1、15:2、15:3、バイオレット顔料としてC.I.ピグメントバイオレット19、オレンジ顔料としてC.I.ピグメントオレンジ64、グリーン顔料としてC.I.ピグメントグリーン7などが挙げられる。
以上の着色剤の配合比率は、樹脂層(a1)を構成する樹脂層の全固形分中で、0.1〜70mass%を含有することが好ましい。
硬化触媒
樹脂層(a1)には、前記の成分(イ)〜(ヘ)および着色剤に加えて、架橋を促進させる硬化触媒を添加することができる。例えば、リン酸等の無機酸、ドデシルベンゼンスルホン酸、トルエンスルホン酸等の有機酸およびこれらをアミン等でブロックしたものを使用することができる。硬化触媒の配合比率は、樹脂層(a1)を構成する樹脂層の全固形分中で、0.01〜5mass%が好ましい。
また、樹脂層(a1)には、従来公知の滑剤、消泡剤、レベリング剤、顔料、シリカ等のアンチブロッキング剤等を添加することが可能である。また、硬化補助剤として、メラミン樹脂、ベンゾグアナミン樹脂、イソシアネート樹脂等の他の硬化剤を併用しても良く、これらはフィルムの乾燥条件、ラミネート条件により適切なものを併用することが可能である。
【0036】
次いで、樹脂層(a1)の上層に形成される樹脂層(ポリエステルフィルム)(a2)について説明する。
樹脂被覆層(A)は、最上層として、樹脂層(a1)の上層にポリエステル樹脂を主成分とする樹脂層(a2)を形成することが好ましく、より好ましくは樹脂層(a2)としてはポリエステルフィルム(a2)である。
ポリエステルフィルム(a2)組成
本発明で使用するポリエステルフィルムは、レトルト後の味特性を良好とする点、製缶工程での摩耗粉の発生を抑制する点で、エチレンテレフタレートおよび/またはエチレンナフタレートを主たる構成成分とすることが望ましい。エチレンテレフタレートおよび/またはエチレンナフタレートを主たる構成成分とするポリエステルとは、ポリエステルの85mass%以上がエチレンテレフタレートおよび/またはエチレンナフタレートを構成成分とするポリエステルである。さらに好ましくは90mass%以上であると金属缶に飲料を長期充填しても味特性が良好であるので望ましい。
一方、味特性を損ねない範囲で他のジカルボン酸成分、グリコール成分を共重合してもよく、ジカルボン酸成分としては、例えば、ジフェニルカルボン酸、5−ナトリウムスルホイソフタル酸、フタル酸等の芳香族ジカルボン酸、シュウ酸、コハク酸、アジピン酸、セバシン酸、ダイマー酸、マレイン酸、フマル酸等の脂肪族ジカルボン酸、シクロヘキサンジカルボン酸等の脂環族ジカルボン酸、p−オキシ安息香酸等のオキシカルボン酸等を挙げることができる。
グリコール成分としては、例えば、エチレングリコール、プロパンジオール、ブタンジオール、ペンタンジオール、ヘキサンジオール、ネオペンチルグリコール等の脂肪族グリコール、シクロヘキサンジメタノール等の脂環族グリコール、ビスフェノールA、ビスフェノールS等の芳香族グリコール、ジエチレングリコール、ポリエチレングリコール等が挙げられる。なお、これらのジカルボン酸成分、グリコール成分は2種以上を併用してもよい。
また、本発明の効果を阻害しない限りにおいて、トリメリット酸、トリメシン酸、トリメチロールプロパン等の多官能化合物を共重合してもよい。
【0037】
粒子
本発明で用いるポリエステルフィルムは、無機粒子および/または有機粒子を含有することができる。本発明で用いるポリエステルフィルムにおける粒子とは、組成的には有機、無機を問わず特に制限されるものではないが、フィルムに成形したときの突起形状、耐摩耗性、加工性、味特性の観点から体積換算平均粒子径が0.005〜5.0μmであることが好ましく、特に0.01〜3.0μmであることが好ましい。また、耐摩耗性等の点から、下記式に示される相対標準偏差が0.5以下であることが好ましく、さらには0.3以下であることが好ましい。
【0038】
【数1】

【0039】
粒子の長径/短径比としては、1.0〜1.2であることが好ましい。モース硬度としては、突起硬さ、耐摩耗性などの点から7未満であることが好ましい。
また、これらの効果を十分に発現させるには、上記からなる粒子を0.005〜10mass%含有することが好ましい。
【0040】
具体的には、無機粒子としては、湿式および乾式シリカ、コロイダルシリカ、ケイ酸アルミニウム、酸化チタン、炭酸カルシウム、リン酸カルシウム、硫酸バリウム、アルミナ、マイカ、カオリン、クレー等が挙げられる。中でも、粒子表面の官能基とポリエステルとが反応してカルボン酸金属塩を生成するものが好ましく、具体的には、粒子1gに対し、10−5mol以上の官能基を有するものが、ポリエステルとの親和性、耐摩耗性などの点で好ましく、さらには2×10−5mol以上であることが好ましい。
また、有機粒子としては、さまざまな有機高分子粒子を用いることができるが、その種類としては、少なくとも一部がポリエステルに対し不溶の粒子であればいかなる組成の粒子でも構わない。また、このような粒子の素材としては、ポリイミド、ポリアミドイミド、ポリメチルメタクリレート、ホルムアルデヒド樹脂、フェノール樹脂、架橋ポリスチレン、シリコーン樹脂などの種々のものを使用することができる。中でも、耐熱性が高く、かつ粒度分布の均一な粒子が得られやすいビニル系架橋高分子粒子が特に好ましい。
このような無機粒子および有機高分子粒子は、単独で用いても構わないが、2種以上を併用して用いることが好ましく、粒度分布、粒子強度など物性の異なる粒子を組み合わせることにより、さらに機能性の高いポリエステル樹脂を得ることができる。
【0041】
また、本発明の効果を妨げない範囲において、他の粒子、例えば各種不定形の外部添加型粒子、および内部析出型粒子、あるいは各種表面処理剤を用いても構わない。更に、ポリエステルフィルムが二軸延伸ポリエステルフィルムであると、耐熱性、味特性の観点から好ましい。二軸延伸の方法としては、同時二軸延伸、逐次二軸延伸のいずれであってもよいが、延伸条件、熱処理条件を特定化し、フィルムの厚さ方向の屈折率が1.50以上であることが、ラミネート性、成形性を良好とする点で好ましい。さらに、厚さ方向屈折率が1.51以上、特に1.52以上であると、ラミネート時に多少のばらつきがあっても成形性、耐衝撃性を両立させる上で面配向係数を特定の範囲に制御することが可能となるので好ましい。
【0042】
また、二軸延伸ポリエステルフィルムは、製缶工程で絞り成形後に200〜230℃程度の熱履歴を受けた後にネック部を加工する際の加工性、耐衝撃性の点で固体高分解能NMRによる構造解析におけるカルボニル部の緩和時間が270msec以上であることが好ましい。さらに好ましくは、280msec以上、特に好ましくは300msec以上である。本発明の効果を妨げない範囲において、他の粒子、例えば各種不定形の外部添加粒子、および内部析出型粒子、あるいは各種表面処理剤を用いても構わない。
【0043】
ポリエステルフィルム(a2)の厚み
本発明で用いるポリエステルフィルムの厚さは、5〜100μmが好ましい。ポリエステルフィルムの厚さが5μm未満では、被覆性が不十分であり耐衝撃性と成形性が確保できない。一方、100μmを超えると、上記特性が飽和して何ら改善効果が得られないばかりか、金属表面への熱融着時に必要となる熱エネルギーが増大するため、経済性を損なってしまう。このような観点から、より好ましいポリエステルフィルムの厚さは8〜50μm、さらに好ましくは10〜25μmである。
【0044】
次いで、本発明の容器用樹脂被覆金属板の製造方法について説明する。
ポリエステルを主成分とする樹脂層(a1)の形成方法
一例として、ポリエステル樹脂層(a1)を、ポリエステルフィルム(a2)の表面に形成する方法について述べる。
主成分となるポリエステル樹脂を有機溶媒中に溶解させるとともに、本発明が規定する樹脂層(a1)の添加成分および任意添加成分を有機溶剤中に溶解または分散させてコーティング液を調製する。このコーティング液を、ポリエステルフィルム(a2)製膜時もしくは製膜後に、フィルム表面に塗布し乾燥することで、樹脂層(a1)を形成する。
ポリエステル樹脂を溶解させるための有機溶剤としては、トルエン、キシレンなどの芳香族炭化水素溶剤、メチルエチルケトン、シクロヘキサノンなどのケトン溶剤、酢酸エチル、エチレングリコールモノエチルエーテルアセテートなどのエステル系溶剤などを挙げることができ、これらの1種以上を適宜選定して使用することができる。
前記コーティング液には、従来公知の潤滑剤、消泡剤、レベリング剤、顔料、シリカ等のアンチブロッキング剤等を添加することが可能である。また、硬化補助剤として、メラミン樹脂、ベンゾグアナミン樹脂、イソシアネート樹脂等の他の硬化剤を併用しても良く、これらはフィルムの乾燥条件、ラミネート条件により適切なものを併用することが可能である。
また、本発明で規定する架橋剤、硬化触媒、着色剤としてカーボンブラック、アゾ系顔料などの添加剤も、有機溶剤中に分散させて使用することができる。この際、分散剤を併用すると、添加剤の均一性が付与できるため好適である。
コーティング液をポリエステルフィルムに塗布する方法としては、ロールコーター方式、ダイコーター方式、グラビア方式、グラビアオフセット方式、スプレー塗布方式など、既知の塗装手段が適用できるが、グラビアロールコート法が最も好適である。コーティング液塗布後の乾燥条件としては、80℃〜170℃で1〜30秒間、特に100℃〜130℃で5〜30秒間が好ましい。乾燥後の樹脂層(a1)の付着量は、0.1〜5.0g/mの範囲内が好ましい。0.1〜5.0g/mの範囲内であれば、連続均一塗布性に優れ、意匠性の問題もなく、耐レトルト性、密着性が確保でき、フィルム巻取り時のブロッキング性も解消される。0.1g/m未満の場合、皮膜の連続性に難点が生じやすく、物性と意匠性の発現が困難となる場合がある。また、レトルト殺菌処理において水蒸気に対するバリア性が劣り、樹脂層(a1)/ポリエステルフィルム(a2)の界面に水分が滞留し易く、レトルト白化を引き起こす可能性がある。一方、5.0g/mを超えると、コーティング後の溶剤離脱性が低下し、作業性が著しく低下する上に残留溶剤の問題が生じやすくなることによりフィルム巻取り時のブロッキング性が著しく低下する場合がある。好適な範囲としては、0.5〜2.5g/mの範囲である。
【0045】
樹脂層(a1)をコーティング後のポリエステルフィルム(a2)を金属板表面にラミネートする方法
樹脂層(a1)をコーティングしたポリエステルフィルム(a2)を、樹脂層(a1)が金属板面と密着するように金属板表面にラミネートする。例えば、金属板をフィルムの融点を超える温度で加熱し、その表面に樹脂層(a1)をコーティングしたポリエステルフィルム(a2)を圧着ロール(以下、ラミネートロールと称す)を用いて接触させ熱融着させる方法を用いることができる。なお、このとき、上述したように、樹脂層(a1)をコーティングしたポリエステルフィルム面をラミネートロールを用いて金属板に接触させ熱融着させることが必要である。
ラミネート条件については、本発明に規定する樹脂層が得られるように適宜設定される。例えば、ラミネート開始時の温度を少なくともフィルムの融点以上とし、ラミネート時にフィルムの受ける温度履歴として、フィルムの融点以上の温度で接している時間を1〜35msecの範囲とすることが好適である。このようなラミネート条件を達成するためには、高速でのラミネートに加えて、融着中の冷却も必要である。ラミネート時の加圧は特に規定するものではないが、面圧として9.8〜294N/cm(1〜30kgf/cm)が好ましい。この値が低すぎると、樹脂界面の到達する温度が融点以上であっても時間が短時間であるため溶融が不十分であり、十分な密着性を得難い。また、加圧が大きいとラミネート金属板の性能上は不都合がないものの、ラミネートロールにかかる力が大きく設備的な強度が必要となり装置の大型化を招くため不経済である。
【実施例1】
【0046】
以下、本発明の実施例について説明する。
金属板の製造
金属板として、クロムめっき鋼板を用いた。冷間圧延、焼鈍、調質圧延を施した厚さ0.18mm、幅977mmの鋼板に対して、脱脂、酸洗後、クロムめっき処理を行い、クロムめっき鋼板を製造した。クロムめっき処理は、CrO、F、SO2−を含むクロムめっき浴でクロムめっき、中間リンス後、CrO、Fを含む化成処理液で電解した。その際、電解条件(電流密度・電気量等)を調整して金属クロム付着量とクロム水酸化物付着量を、Cr換算でそれぞれ120mg/m、15mg/mに調整した。
【0047】
缶内面側の樹脂被覆用フィルムの製造
表2に示す酸成分とグリコール成分を表2に示す比率にて重合したポリエステル樹脂に、表2に示す粒子を配合して樹脂組成物とし、この樹脂組成物を常法に従い、乾燥、溶融、押し出して、冷却ドラム上で冷却固化させ、未延伸フィルムを得た後、二軸延伸・熱固定して、二軸配向ポリエステルフィルム(a2)を得た。
次いで、表1に示す各ポリエステル樹脂、フェノール樹脂、導電性ポリマー、ドーパント、エポキシ樹脂、金属アルコキシド系化合物および/または金属キレート化合物を、表1に示す比にてトルエンとメチルエチルケトンの混合溶媒中に溶解してコーティング液を作製した。
ここで、ジフェノール酸を必須成分としたポリエステル樹脂(イ−1)の合成例を示す。酸成分として、テレフタル酸50質量部、イソフタル酸112質量部、ジフェノール酸、4.9質量部、多価アルコール成分として2−エチル−2−ブチル−1、3−ブタンジオール50質量部、1、4−ブタンジオール99質量部、1、4−シクロヘキサンジメタノール48質量部、チタンテトラブトキシド0.07質量部を2Lフラスコに仕込み、4時間かけて220℃まで徐々に昇温し、水を留出させエステル化を行った。所定量の水を留出させた後、30分かけて10mmHgまで減圧重合行うとともに温度を250℃まで昇温し、更にこのまま1mmHg以下で50分間後期重合を行った。ついで減圧重合を止めて、窒素気流下で220℃まで冷却し、無水トリメリット酸1.9質量部を添加し、220℃で30分攪拌しカルボキシ基変性(後付加)を行った後、樹脂を取り出し数平均分子量22、000、酸価5(mgKOH/g)、ガラス転移温度30℃のポリエステル樹脂(イ−1)を得た。この後、60℃以下まで冷却し、メチルエチルケトン/トルエン=50/50の混合溶液で希釈し、不揮発分40%のポリエステル樹脂(イ−1)溶液を得た。
【0048】
ポリエステル樹脂(イ−2)については、例えば市販のポリエステル樹脂であるバイロンGK−360(数平均分子量:16000、ガラス転移温度:56℃、東洋紡績製)を用いることができる。シクロヘキサン/ソルベッソ150=50/50の混合溶剤中に、バイロンGK−360を混合させ、不揮発分40%のポリエステル樹脂(イ−2)溶液を得た。
【0049】
また、フェノール樹脂については、市販品であるTD2495(パラクレゾール型フェノール樹脂、50%ノルマルブタノール溶液、DIC(株)製)などを用いた。
導電性ポリマーとしては、ポリアニリン(6%トルエン溶液、日本カーリツト(株)製)を用い、ドーパントとしては、ドデシルベンゼンスルホン酸(TAケミカル(株)製)を用いた。
エポキシ樹脂としては、市販のエピクロンN−660(クレゾールノボラック型エポキシ樹脂、50%メチルエチルケトン溶液、DIC(株)製)を用いた。金属キレート化合物としては、市販のTC−200(チタンオクチレングリコールキレート、マツモトファインケミカル(株))などを用い、金属アルコキシド化合物(ホ)としては、市販のZA−65(ジルコニウムブトキシド、マツモトファインケミカル(株))を用いた。
このコーティング液を上記にて得られた二軸配向ポリエステルフィルム(a2)の片側の面に、グラビアロールコーターにより所定の乾燥膜厚となるように塗布・乾燥し、乾燥後の樹脂層(a1)の膜厚を調整した。乾燥温度は、80〜120℃の範囲とした。
【0050】
【表1】

【0051】
【表2】

【0052】
缶外面側の樹脂被覆用フィルムの製造
表4に示す酸成分とグリコール成分を表4に示す比率にて重合したポリエステル樹脂に、表4に示す粒子を配合して樹脂組成物とし、この樹脂組成物を常法に従い、乾燥、溶融、押し出して、冷却ドラム上で冷却固化させ、未延伸フィルムを得た後、二軸延伸・熱固定して、二軸配向ポリエステルフィルム(a2)を得た。
次いで、表3に示す各ポリエステル樹脂、フェノール樹脂、、導電性ポリマー、ドーパント、エポキシ樹脂、金属アルコキシド系化合物および/または金属キレート化合物を、表3に示す比にてトルエンとメチルエチルケトンの混合溶媒中に溶解してコーティング液を作製した。
ここで、ジフェノール酸を必須成分としたポリエステル樹脂(イ−1)の合成例を示す。酸成分として、テレフタル酸50質量部、イソフタル酸112質量部、ジフェノール酸、4.9質量部、多価アルコール成分として2−エチル−2−ブチル−1、3−ブタンジオール50質量部、1、4−ブタンジオール99質量部、1、4−シクロヘキサンジメタノール48質量部、チタンテトラブトキシド0.07質量部を2Lフラスコに仕込み、4時間かけて220℃まで徐々に昇温し、水を留出させエステル化を行った。所定量の水を留出させた後、30分かけて10mmHgまで減圧重合行うとともに温度を250℃まで昇温し、更にこのまま1mmHg以下で50分間後期重合を行った。ついで減圧重合を止めて、窒素気流下で220℃まで冷却し、無水トリメリット酸1.9質量部を添加し、220℃で30分攪拌しカルボキシ基変性(後付加)を行った後、樹脂を取り出し数平均分子量22、000、酸価5(mgKOH/g)、ガラス転移温度30℃のポリエステル樹脂(イ−1)を得た。この後、60℃以下まで冷却し、メチルエチルケトン/トルエン=50/50の混合溶液で希釈し、不揮発分40%のポリエステル樹脂(イ−1)溶液を得た。
【0053】
ポリエステル樹脂(イ−2)については、例えば市販のポリエステル樹脂であるバイロンGK−360(数平均分子量:16000、ガラス転移温度:56℃、東洋紡績製)を用いることができる。シクロヘキサン/ソルベッソ150=50/50の混合溶剤中に、バイロンGK−360を混合させ、不揮発分40%のポリエステル樹脂(イ−2)溶液を得た。
また、フェノール樹脂については、市販品であるTD2495(パラクレゾール型フェノール樹脂、50%ノルマルブタノール溶液、DIC(株)製)などを用いた。
導電性ポリマーとしては、ポリアニリン(6%トルエン溶液、日本カーリツト(株)製)を用い、ドーパントとしては、ドデシルベンゼンスルホン酸(TAケミカル(株)製)を用いた。
エポキシ樹脂としては、市販のエピクロンN−660(クレゾールノボラック型エポキシ樹脂、50%メチルエチルケトン溶液、DIC(株)製)を用いた。金属キレート化合物としては、市販のTC−200(チタンオクチレングリコールキレート、マツモトファインケミカル(株))などを用い、金属アルコキシド化合物(ホ)としては、市販のZA−65(ジルコニウムブトキシド、マツモトファインケミカル(株))を用いた。
このコーティング液を上記にて得られた二軸配向ポリエステルフィルム(a2)の片側の面に、グラビアロールコーターにより所定の乾燥膜厚となるように塗布・乾燥し、乾燥後の樹脂層(a1)の膜厚を調整した。乾燥温度は、80〜120℃の範囲とした。
【0054】
【表3】

【0055】
【表4】

【0056】
容器用樹脂被覆金属板の製造
図1に示す金属帯のラミネート装置を用い、前記で得たクロムめっき鋼板1を金属帯加熱装置2で加熱し、ラミネートロール3により、クロムめっき鋼板1の一方の面に、缶内面側の樹脂被覆層(A)をラミネート(熱融着)するとともに、他方の面に缶外面側の樹脂被覆層(A)をラミネート(熱融着)した。その後、金属帯冷却装置5にて水冷を行い、ポリエステル樹脂被覆金属板を製造した。上記ラミネートロール3は内部水冷式とし、ラミネート中に冷却水を強制循環し、フィルム接着中の冷却を行った。樹脂フィルムを金属板にラミネートする際に、金属板に接する界面のフィルム温度がフィルムの融点以上になる時間を1〜35msecの範囲内にした。
以上より製造された容器用樹脂被覆金属板(本発明例)の片面側の被膜断面構造を図2に示す。
【0057】
容器用樹脂被覆金属板の評価
以上より製造された容器用樹脂被覆金属板の特性について、下記の(1)〜(7)の方法によりそれぞれ測定、評価した。
(1)成形性
容器用樹脂被覆金属板にワックスを塗布後、直径200mmの円板を打ち抜き、絞り比2.00で浅絞り缶を得た。次いで、この絞り缶に対し、絞り比2.50で再絞り加工を行った。この後、常法に従いドーミング成形を行った後、トリミングし、次いでネックイン−フランジ加工を施し深絞り缶を成形した。このようにして得た深絞り缶のネックイン部に着目し、フィルムの損傷程度を目視観察した。評価対象は、缶の内外面である。
(評点について)
◎:成形後フィルムに損傷も白化も認められない状態
○:成形後フィルムに損傷が認められないが、部分的に白化が認められる状態
×:缶が破胴し、成形不可能
(2)成形後密着性1
上記(1)の成形性評価で成形可能(○以上)であった缶を対象とした。缶胴部よりピール試験用のサンプル(幅15mm、長さ120mm)を切り出した。切り出したサンプルの長辺側端部からフィルムの一部を剥離する。剥離したフィルムを、剥離された方向とは逆方向(角度:180°)に開き、引張試験機を用いて、引張速度30mm/min.でピール試験を行い、幅15mmあたりの密着力を評価した。評価対象は、缶外面の缶胴部である。
(評点)
◎:10.0(N)/15(mm)以上
○:5.0(N)/15(mm)以上、10.0(N)/15(mm)未満
×:5.0(N)/15(mm)未満
(3)成形後密着性2
上記(1)の成形性評価で成形可能(○以上)であった缶を対象とした。缶の内部に水道水を充填した後、蓋を巻き締めて密閉した。続いて、レトルト殺菌処理を130℃、90分間の条件で実施し、缶胴部よりピール試験用のサンプル(幅15mm、長さ120mm)を切り出した。切り出したサンプルの長辺側端部からフィルムの一部を剥離する。剥離したフィルムを、剥離された方向とは逆方向(角度:180°)に開き、引張試験機を用いて、引張速度30mm/min.でピール試験を行い、幅15mmあたりの密着力を評価した。評価対象は、缶内面の缶胴部である。
(評点)
◎:10.0(N)/15(mm)以上
○:5.0(N)/15(mm)以上、10.0(N)/15(mm)未満
×:5.0(N)/15(mm)未満
(4)傷部耐食性評価1
上記(1)の成形性評価で成形可能(○以上)であった缶を対象とした。図3に示すように、缶外面の缶胴部2箇所に、下地鋼板に達するクロスカット傷を入れた。続いて、クロスカット傷を付与した缶に対し、JISZ2371に準拠した塩水噴霧テストを500時間行い、傷部からの片側最大腐食幅を測定した。測定方法を図4に示す。評価対象は、缶外面の缶胴部である。
(評点について)
◎:片側最大腐食幅0.5mm未満
○:片側最大腐食幅0.5mm以上〜1.0mm未満
×:片側最大腐食幅1.0mm以上
(5)傷部耐食性評価2
上記(1)の成形性評価で成形可能(○以上)であった缶を対象とした。図3に示すように、缶内面の缶胴部2箇所に、下地鋼板に達するクロスカット傷を入れた。続いて、缶の内部に、1.5%NaCl+1.5%クエン酸ナトリウム混合液を充填した後、蓋を巻き締めて密閉した。続いて、レトルト殺菌処理を130℃、90分間の条件で実施した後、温度50℃の恒温槽内で、40日間経時させた。その後、缶を切り開き、ク0ロスカット傷部からの片側最大腐食幅を測定した。測定方法は、(4)傷部耐食性評価1と同様である。また、評価対象は、缶内面の缶胴部である。
(評点について)
◎:片側最大腐食幅1.0mm未満
○:片側最大腐食幅1.0mm以上〜3.0mm未満
×:片側最大腐食幅3.0mm以上
以上により得られた結果を表5および表6に示す。
【0058】
【表5】

【0059】
【表6】

【0060】
表5、表6より、本発明例は、食品缶詰素材に要求される成形性、成形後密着性、傷部耐食性について、良好な性能を有することがわかる。これに対し、本発明の範囲を外れる比較例は、いずれかの特性が劣っている。
【産業上の利用可能性】
【0061】
食品缶詰素材として、食品缶詰の缶胴および蓋等を中心に、世界のあらゆる市場で使用可能である。
【符号の説明】
【0062】
1 金属板(クロムめっき鋼板)
2 金属帯加熱装置
3 ラミネートロール
4a、4b フィルム
5 金属帯冷却装置

【特許請求の範囲】
【請求項1】
金属板の少なくとも片面に、ポリエステル樹脂を主成分とする複層構造の樹脂被覆層(A)を有し、該樹脂被覆層(A)は、前記金属板面と密着し下記(イ)〜(ニ)の成分を含有しポリエステル樹脂を主成分とする樹脂層(a1)を有することを特徴とする容器用樹脂被覆金属板。
(イ)ポリエステル樹脂
(ロ)フェノール樹脂
(ハ)導電性ポリマー
(ニ)ドーパント
【請求項2】
前記樹脂被覆層(A)が、前記樹脂層(a1)と、該樹脂層(a1)の上層に形成されるポリエステルフィルム(a2)からなることを特徴とする請求項1に記載の容器用樹脂被覆金属板。
【請求項3】
前記(イ)ポリエステル樹脂の数平均分子量が3000〜100000であり、ガラス転移温度が0℃〜100℃であることを特徴とする請求項1または2に記載の容器用樹脂被覆金属板。
【請求項4】
前記(イ)ポリエステル樹脂は、ジフェノール酸を必須の成分とするポリエステル樹脂であることを特徴とする請求項1〜3のいずれか一項に記載の容器用樹脂被覆金属板。
【請求項5】
前記(ハ)導電性ポリマーは、ポリアニリン、ポリピロール、ポリチオフェン、ポリアルキルチオフェン、ポリアルキルジオキシチオフェン、ポリイソチアナフテン、ポリフェニレン、ポリフラン、ポリフェニレンビニレン、ポリアセン、アルキレンジオキシチオフェンおよび、これら各ポリマーの誘導体、ならびに、これら各ポリマーを構成する単量体の2種以上の共重合物、の中から選ばれる一種または二種以上であることを特徴とする請求項1〜4のいずれか一項に記載の容器用樹脂被覆金属板。
【請求項6】
前記(ニ)ドーパントの添加量は、前記(ハ)導電性ポリマーを形成するモノマー1molに対し、0.01〜1.00mol含有することを特徴とする請求項1〜5のいずれか一項に記載の容器用樹脂被覆金属板。
【請求項7】
前記(イ)ポリエステル樹脂と前記(ロ)フェノール樹脂の比率が、60:40〜95:5であることを特徴とする請求項1〜6のいずれか一項に記載の容器用樹脂被覆金属板。
【請求項8】
樹脂層(a1)は、さらに、(ホ)エポキシ樹脂を含有することを特徴とする請求項1〜7のいずれか一項に記載の容器用樹脂被覆金属板。
【請求項9】
樹脂層(a1)は、さらに、(ヘ)金属アルコキシド系化合物および/または金属キレート化合物を含有することを特徴とする請求項1〜8のいずれか一項に記載の容器用樹脂被覆金属板。
【請求項10】
前記ポリエステルフィルム(a2)が、ポリエステル樹脂の構成単位の85mass%以上がエチレンテレフタレート単位及び/またはエチレンナフタレート単位である二軸延伸ポリエステルフィルムであり、該二軸延伸ポリエステルフィルムは、無機粒子および/または有機粒子を含有することを特徴とする請求項2〜9のいずれか一項に記載の容器用樹脂被覆金属板。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2013−71329(P2013−71329A)
【公開日】平成25年4月22日(2013.4.22)
【国際特許分類】
【出願番号】特願2011−212462(P2011−212462)
【出願日】平成23年9月28日(2011.9.28)
【出願人】(000001258)JFEスチール株式会社 (8,589)
【Fターム(参考)】