説明

密閉空間内に形成されたゲッター膜を備えたMEMSデバイス

【課題】密閉空間内に形成されるMEMSデバイスの性能を維持しつつ、その密閉空間の容積の低減と製造プロセスの簡略化を図る。
【解決手段】ガラス基板の凹部34,36a,36b,36cで形成される密閉空間内のMEMSデバイスが、可動部(例えば、リング,サスペンション)と固定部(例えば、一次振動検出用電極)を備えた振動子10であり、かつ前記固定部のみの表面上に形成されたゲッター膜40a,40b,40c,40dを備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、密閉空間内に形成されたゲッター膜を備えたMEMSデバイスに関するものである。
【背景技術】
【0002】
シリコンを用いたMEMS(Micro Electro Mechanical Systems)デバイスが適用される技術分野は日進月歩で拡大しており、近年では、その技術がマイクロタービンやセンサーのみならず情報通信分野や医療分野へも適用されている。このMEMS技術を支える主要な要素技術の一つがゲッターに関する技術である。ゲッターは、密閉空間内に形成されたMEMSデバイスの性能を安定化させるための重要な部材の一つであり、特に小型化が進むセンサー等の分野においては、このゲッターに関連する種々の技術の発展が不可欠となっている。
【0003】
従来から採用されてきたゲッターは、ガラス基板に予め設けられた凹部の底部への蒸着によって形成される。例えば、このガラス基板とシリコンとの陽極接合によって密閉空間が形成され、このゲッターの存在によって陽極接合後に残留するガスが適宜吸収される(例えば、特許文献1参照)。
【0004】
他方、上述の特許文献1には、ゲッターをシリコン基板表面に設けることを示唆する記載は存在する。しかし、その具体的な構成は全く開示ないし示唆されていない。
【特許文献1】特開平10−122869号公報
【発明の開示】
【発明が解決しようとする課題】
【0005】
ところで、密閉空間内においてゲッターが形成される位置は、MEMSデバイスの種々の性能を左右する要因の一つとなる。例えば、仮に密閉空間内にゲッターを形成する位置が不適切であった場合、ゲッターとゲッター領域が形成された基材との熱膨張係数の差や残留応力がMEMSデバイスの動作不良を引き起こす危険性がある。また、ゲッターとMEMSデバイスに形成された電極部との距離が近過ぎると、たとえそれらが接触しなくても、電気的なノイズが容量的に結合したゲッターを介して検出用又は駆動用の電極へ入り込むことによって、MEMSデバイスの動作に悪影響を及ぼしうる。
【0006】
このような問題は、小型化された、例えば、図1に示すような略正方形状の振動ジャイロのチップの正面図における面積が100mm以下のMEMSデバイスにおいて特に顕著に現れる。具体的には、デバイスの小型化が進むと、密閉空間の容積もそれに伴って小さくなるが、その容積が小さくなれば、製造工程中で密閉空間に放出されるガスや残留ガスが密閉空間の内圧に与える影響が大きくなる。その結果、例えばMEMSセンサーの場合は、その検出感度が著しく低下してしまう。従って、特に小型のMEMSデバイスにおいてゲッター領域を設けることの技術的意義は高まるが、既存のガス吸収性能を持つゲッターを採用する限り、上述の問題が解決されたゲッターの形成は非常に難しい。
【課題を解決するための手段】
【0007】
本発明は、そのような技術課題を解決することにより、密閉空間内に形成されたMEMSデバイスとその性能維持に役立つゲッターとの位置的関係の最適化に大きく貢献するものである。発明者らは、まず、密閉空間を形成するために基板に予め凹部を設けて、その底面にゲッター領域を形成する場合の凹部の掘り込み深さに着目した。種々の調査が行われた結果、ゲッター領域の位置と掘り込み深さとの関係に基づく技術上のジレンマが存在することが明らかになった。
【0008】
具体的には、この掘り込み深さが浅い場合は、たとえマスクを用いて凹部の底面のみにゲッター膜を形成できたとしても、ゲッター膜の位置がMEMSデバイスの各電極と近づくため、電気的なノイズが容量的に結合したゲッター膜を介して検出用又は駆動用の電極へ入り込むことになる。他方、掘り込み深さを深くした場合の技術的課題を従来のMEMSデバイスを例に挙げて示す。図7は、従来のリング型振動ジャイロ300の一部分の断面図(図2のB−B断面に相当)である。掘り込み深さを深くすると、一見、マスクを用いれば凹部74の底部のみにゲッター膜を形成することが容易であるように見えるが、実際はそうではない。この図に示すように、既存のスパッタリング法等の形成方法を用いると、凹部74の底面のみならず側面にもゲッター膜73が形成されてしまう。従って、ゲッター膜73と一次振動検出用電極75等が相互に影響を及ぼさないような十分な距離を確保することが難しくなるため、結果として掘り込み深さが浅い場合と同様の問題が生じうる。また、掘り込み深さが深ければ、その掘り込み形成のためのプロセス上の不利益(例えば、プロセス時間の増加と歩留まり低下)を生じさせる。
【0009】
発明者らは、上述の事情を踏まえて鋭意研究を重ねた。その結果、基板に設けられた凹部の底面を利用したゲッター領域の確保というこれまでの考え方を捨て、ゲッター領域についての発想を転換させるとともに、新たに見出された技術課題にも配慮することにより、上述の諸問題を一度に解決する構造が創出された。本発明はこのような知見に基づくものである。
【0010】
本発明の一つのMEMSデバイスは、密閉空間内に形成されたMEMSデバイスであって、そのMEMSデバイスが、可動部と固定部を備え、かつその固定部のみの表面上に形成されたゲッター膜を備えている。
【0011】
この構造を採用すれば、MEMSデバイスにおける可動部の表面上を避け、固定部のみの表面上にゲッター膜を形成することにより、MEMSデバイスを形成する母材とゲッター膜との熱膨張係数の差や残留応力によって生じるデバイス性能(例えば、振動ジャイロの場合は振動特性及び/又は温度特性)の劣化を防止することができる。また、密閉空間を形成するためのガラス基板の凹部の掘り込み深さが従来と比べて大幅に浅くなるため、プロセス時間の短縮及び製造工程の簡易化が達成されるとともに製造コストが大幅に削減される。
【0012】
また、本発明のもう一つのMEMSデバイスは、密閉空間内に形成されたMEMSデバイスであって、そのMEMSデバイスが、可動部と固定部を備え、かつその固定部のみの表面上に複数の領域に分割されて形成されたゲッター膜を備え、その各領域のゲッター膜が、そのMEMSデバイスの母材を介してそのMEMSデバイスの任意の一つの電極、又はグラウンド電位に接続している。
【0013】
この構造を採用すれば、密閉空間を形成するための基板の凹部の掘り込み深さを従来よりも大幅に浅くすることができる。また、MEMSデバイスにおける可動部の表面上を避け、固定部のみの表面上に膜状のゲッターが形成されることにより、MEMSデバイスを形成する母材とゲッター膜との間の応力差によって生じるデバイス性能(例えば、振動ジャイロの場合は振動特性及び/又は温度特性)の劣化を防止することができる。また、固定部のみの表面上に分散して膜状のゲッターが形成されることにより、ゲッター膜の形成による固定部の反りを緩和しつつ十分なゲッター膜の表面積の確保が得られやすい。さらに、複数に分割されたゲッター膜の各領域がそのMEMSデバイスの母材を介してそのMEMSデバイスの任意の一つの電極、又はグラウンド電位に接続することによってゲッター膜自身の電位が定められるため、換言すれば、その電位がフローティング状態にならない。その結果、電気的なノイズが容量的に結合したゲッター膜を介して検出用又は駆動用の電極へ入り込むことを防止することができる。
【0014】
ところで、上記いずれの発明であっても、密閉空間内への放出ガス又は残留ガスの吸引性能の観点から、ゲッター膜の材質は、非蒸発型である、チタン、ジルコニウム、バナジウム、アルミニウム、タンタル、タングステン、モリブデン、の一群から選ばれる少なくとも一種類の金属であることが好ましい。
【発明の効果】
【0015】
本発明の一つのMEMSデバイスによれば、MEMSデバイスにおける可動部の表面上を避けて、固定部のみの表面上にゲッター膜を形成することにより、MEMSデバイスを形成する母材とゲッター膜との熱膨張係数の差や残留応力によって生じるデバイス性能の劣化を防止することができる。また、密閉空間を形成するためのガラス基板の凹部の掘り込み深さが従来と比較して大幅に浅くなるため、プロセス時間の短縮及び製造工程の簡易化が達成されるとともに製造コストが大幅に削減される。
【発明を実施するための最良の形態】
【0016】
つぎに、本発明の実施形態を、添付する図面に基づいて詳細に述べる。尚、この説明に際し、全図にわたり、特に言及がない限り、共通する部分には共通する参照符号が付されている。また、図中、本実施形態の要素は必ずしもスケール通りに示されていない。
【0017】
<第1の実施形態>
図1は、本実施形態におけるMEMSデバイスの一つであるリング型振動ジャイロ100の中心的役割を果たす構造体の正面図である。図2は、図1に示す構造体のA-A部分拡大図である。また、図3は、図2におけるB−B断面図であり、図4は、パッケージを含めた本実施形態のリング型振動ジャイロ100の分解斜視図である。
【0018】
図1乃至図4示す本実施形態のMEMSデバイスは、リング型振動ジャイロ100である。まず、図3に示すように、このリング型振動ジャイロ100は、予め凹部36a,36b,36cが形成された上側のガラス基板30と凹部34が形成された下側のガラス基板32が、トレンチエッチングプロセス等によって加工されたシリコン製の振動子(以下、単に振動子という)10を挟み込んだ構造を有している。ここで、各ガラス基板30,32と振動子10の対向面が陽極接合されることにより、凹部34,36a,36b,36cを一部とする密閉空間が形成される。
【0019】
図4に示すように、下側のガラス基板32に形成された凹部は環状に形成されており、その中央には凹部が形成されていない柱状構造39が形成されている。この柱状構造39は最終的に振動子10の中央部24と接合することにより、振動子10の一部を支持する。他方、振動子10の中で、この柱状構造39では支持されない他の部分(例えば、固有振動数調整用電極20a,20b,・・・,20s)は、上側のガラス基板30と接合することにより、上側のガラス基板30に吊り下げられる。
【0020】
上側のガラス基板30には、リング型振動ジャイロ100を駆動するために、各電極パッド38a,38b,38c,38d等に接続するワイヤーのための貫通孔37に代表される貫通孔が形成されている。具体的には、図4に示すように、各ガラス基板30,32と振動子10が接合された後、各電極から引き出されたワイヤーによって図示しない振動ジャイロ設置台44の出力ピンに接続される。その後、乾燥窒素雰囲気の下で、蓋部42と振動ジャイロ設置台44が、抵抗溶接によって溶接されることによってリング型振動ジャイロ100が密封される。この接合によってリング型振動ジャイロ100が外気から遮断されるため、水分等の浸入による動作不良の発生を防止することができる。
【0021】
ここで、本実施形態のMEMSデバイスでは、ゲッター膜40a,40b,40c,40dは振動子10における固定部の一方の表面上に形成されている。具体的には、一次振動検出用電極18c,18g、固有振動数調整用電極20a,20b,・・・,20s、及びエッチング残し部22,・・・,22の表面上にゲッター膜40a,40bが形成されている。尚、このエッチング残し部22,・・・,22が振動子10の一部として残されることにより、ゲッター膜の形成領域が広がる。また、本実施形態では、ゲッター膜は0.1μm以上2μm以下の厚みを持つチタン薄膜である。
【0022】
上述の通り、本実施形態のゲッター膜40a,40b,40c,40dは、振動子10における固定部の表面上に形成されているため、たとえシリコンとチタン間の応力差があってもリング型振動ジャイロの動作に影響しない。換言すれば、振動子10の可動部であるリング14やそのリングを中吊り状態で支えるジグザグ状(ドッグレッグ状)サスペンション16,・・・,16の表面上にゲッター膜が形成されると、シリコンとチタンとの熱膨張係数の差や残留応力によってリングの共振時に正常な動作が得られない。
【0023】
また、従来のゲッター膜は、下側のガラス基板32に形成された凹部34の底面上に形成されていた。この場合、ゲッター膜自体がフローティング電極の役割を果たすため、凹部が十分な(例えば、200μm以上)の掘り込み深さを有しなければ、振動子10の各電極との容量的な結合によって、電気的なノイズがいずれかの検出用又は駆動用の電極へ入り込んでしまう。他方、本実施形態のゲッター膜は、振動子10のうち、電位的に定まった固定部の表面上にのみ形成されているため、ゲッター膜は電位的にフローティング状態にはならない。具体的には、固有振動数調整用電極20a,20b,・・・,20s及び一次振動検出用電極18c,18gの表面上に形成されたゲッター膜40c,40dは、それぞれの電極に与えられる電位と実質的に同じ電位が与えられる。他方、トレンチ26により区画されたエッチング残し部22,・・・,22は、トレンチ26,28によってサスペンション16,・・・,16とその固定端である中央部24を含めてリング14と一体に成形されている。つまり、このエッチング残し部22,・・・,22は、中央部24を介して電気的にサスペンション16,・・・,16、及びリング14と接続していることになる。従って、このエッチング残し部22,・・・,22の表面上に形成されたゲッター膜40a,40bは、リング14とともに、図示されていない直流電源から直流電圧を印加される中央部24に与えられる電位を実質的に共有することになるため、フローティング状態とはならない。
【0024】
上述の通り、本実施形態のMEMSデバイスでは、図3に示す凹部34の掘り込み深さ(d)が30μmであっても、容量結合を原因とする電気的なノイズがゲッター膜に入り込まない。尚、可動部が固定部に対して実質的に同一平面上で運動する本実施形態のようなMEMSデバイスでは、上述の掘り込み深さ(d)が5μm以上であればよい。他方、可動部の運動面と固定部の形成面が実質的に垂直となるMEMSデバイスでは、上述の掘り込み深さ(d)が10μm以上であることが好ましい。また、掘り込み深さの上限を特に定めるものではないが、凹部34を形成するためのプロセス負担の低減、さらには、密閉空間の内壁面積に依存すると考えられる放出ガス量の低減を図るため、60μm以下であることが好ましい。このように、従来と比べて掘り込み深さを浅くすることができるため、プロセス時間の短縮及び製造工程の簡易化が達成される。尚、上側のガラス基板30に形成された各凹部の掘り込み深さは、下側のガラス基板32のそれと同じか、振動子10の動作に支障が出ない範囲でそれより浅い。
【0025】
また、密閉空間内の過度の高真空化を防止して振動ジャイロのQ値を調整するため、上述の密閉空間内にはゲッター膜によって吸収されない希ガス(例えば、アルゴンガス)が、圧力1Pa以上20Pa以下となるように封入されている。上述のように、下側のガラス基板32に形成された凹部34の掘り込み深さが従来と比較して格段に浅くなったため、MEMSデバイス全体の強度を考慮しても、ガラス厚を大幅に薄くすることができる。例えば、従来のガラス厚は600μmであったが、本実施形態のガラス厚は450μm厚である。また、よりコンパクトなMEMSデバイスを提供することができる。その結果、従来と比較して、製造コストを大幅に削減することが可能となる。
【0026】
ところで、本実施形態では、上述の各電極等の表面上にゲッター膜が形成されているが、これに限定されない。その他の固定部である、一次振動駆動用電極18a,18e、二次振動検出用電極18b,18f、又は二次振動打消し用電極18d,18hの表面上にゲッター膜が形成されていてもよい。この場合も、ゲッター膜の電位はある値に定められるため、フローティング状態にはならない。
【0027】
次に、本実施形態のMEMSデバイスの製造方法を図5A乃至図5Fに基づいて説明する。尚、便宜上、図3に相当する箇所を取り上げながら、その製造方法を説明する。
【0028】
まず、上側のガラス基板30及び下側のガラス基板32の凹部は、公知のガラスエッチング溶液を用いたウェットエッチングプロセスにより形成される。具体的には、各ガラス基板30,32に対して公知のフォトリソグラフィ技術によるパターニングがされた後、エッチング深さによって依存するが、各ガラス基板30,32を液温30℃の10%フッ酸溶液中に5〜30分間浸漬することにより、図5A及び図5Bに示すような凹部が形成される。尚、上側のガラス基板30は、密閉空間を形成するために一方の面からエッチングされた後に、他方の面から貫通孔37を形成するためのエッチング又はサンドブラスト加工がなされる。
【0029】
次に、本実施形態のMEMSデバイスの中心的役割を果たす振動子10の元となるシリコン基板(S)と上側のガラス基板30が、公知の条件(例えば、特開2005−16965号公報に記載の条件)を用いた陽極接合により接合される(図5C)。
【0030】
続いて、公知のフォトリソグラフィ技術によってシリコン基板上にレジストマスクが形成される。その後、公知の異方性エッチング技術によって、このシリコン基板(S)に対してトレンチ26,28が形成されることにより、振動子10が上部のガラス基板30上に形成される(図5D)。尚、このエッチング技術及びその関連技術は、本願出願人が先立って出願した複数の特許出願(例えば、特開2007−35929号、特開2002−158214号、特開2004−228556号、又は特開2004−296474号)に記載されている。
【0031】
次に、メタルマスクを利用した公知のスパッタリング法又は真空蒸着法により、チタン膜からなるゲッター膜40a,40b,40c,40dが振動子10の表面上に形成される(図5E)。
【0032】
その後、上記と同様、振動子10は、公知の条件(例えば、特開2005−16965号公報に記載の条件)を用いた陽極接合により、下側のガラス基板32に接合される。最後に、Al、Al合金、又はAu膜からなる各電極パッド38a,38b,38c,38d等が公知のスパッタリング法又は真空蒸着法により形成される(図5F)。
【0033】
このようにして製造されたリング型振動ジャイロ100は、その後、貫通孔37に代表される貫通孔を利用して各電極パッド38a,38b,38c,38d等からワイヤーが引き出されることにより、図示されていない各電源に接続される。さらに、その後、リング型振動ジャイロ100は、上述のとおり、蓋部42と振動ジャイロ設置台44により窒素雰囲気の下で密封される。
【0034】
次に、本実施形態のリング型振動ジャイロ100の動作について説明する。上述のとおり、リング型振動ジャイロ100の中心部24には、図示されていない直流電源から直流電圧が印加され、一次振動駆動用電極18a,18eは、図示されていない交流電源から交流電圧が印加される。また、本実施形態では、一次振動駆動用電極18a,18eの他に、一次振動検出用電極18c,18g、二次振動検出用電極18b,18f、二次振動打消し用電極18d,18h、及び固有振動数調整用電極20a,20b,・・・,20sが設けられている。尚、二次振動打消し用電極18d,18hは交流電源に接続され、固有振動数調整用電極20a,20b,・・・,20sは直流電源に接続されている。また、トレンチ28によってリング14とリング14の外周の各電極18a,・・・,18hから物理的及び電気的に隔てられた周辺部12はグラウンド電位に接続している。
【0035】
まず、一次振動駆動用電極18a,18eに交流電圧が印加されることにより、リング14と一次振動駆動用電極18a,18eとの間の静電引力を利用したリング型振動ジャイロ100の一次振動が発生し、これが一次振動検出用電極18c,18gによって検出される。その後、ある角速度が加えられると、コリオリ力が発生して2次振動が発生し、
これが、二次振動検出用電極18b,18fによって検出される。予め固有振動数調整用電極20a,20b,・・・,20sがリング14との間に電位差を与えることにより、1次振動の固有振動数と2次振動の固有振動数を一致させるように調整されている。その後、この加えられた角速度に応じた静電容量の変化によって発生する電流が二次振動検出用電極18b,18fによって検出されるとともに、フィードバック回路によってこれを打ち消すための出力電圧が二次振動打消し用電極18d,18hに印加される。この出力電圧をモニターすることにより、角速度が検出される。
【0036】
<第2の実施形態>
図6は、本実施形態におけるもう一つのリング型振動ジャイロ200の一部の断面図である。この断面図は、第1の実施形態の図3に相当する。本実施形態のリング型振動ジャイロ200は、下側のガラス基板32に形成された凹部60、及びゲッター膜の形成位置を除き、第1の実施形態と同じ構成である。また、その製造方法や動作方法も第1の実施形態と同じである。従って、第1の実施形態と重複する説明は省略される。
【0037】
図6に示すとおり、下側のガラス基板32に形成された凹部60は、第1の実施形態の凹部34よりも周辺方向に広がっている。具体的には、トレンチ28によってリング14とリング14の外周の各電極18a,・・・,18hから物理的及び電気的に隔てられた周辺部12の一部が、凹部60や上部のガラス基板30の凹部36a,36b,36c等によって形成される密閉空間と接している。さらに、その周辺部12の一部の表面上にゲッター膜40mが形成されている。他方、40e,40f,40g,40h,40j,40kは、その他の固定部の表面上に形成されている。
【0038】
その結果、本実施形態の密閉空間の容積は、第1の実施形態のそれと比較して増えていても、ゲッター膜40mに代表される新たなゲッター領域の存在により、密閉空間内に放出されるガス又は残留するガスを吸収してMEMSデバイスの性能を維持するという目的は達成される。
【0039】
また、本実施形態では、第1の実施形態と異なり、ゲッター膜40e,40f,40g,40hは一つのエッチング残し部22,・・・,22の表面上に複数の領域に分割されて形成されている。このように分割して形成されることにより、シリコンとゲッター膜との熱膨張係数の差や残留応力によって生じる固定部の反りを緩和することができる。尚、固定部の表面上であっても、ゲッター膜を一体に形成するよりも複数の領域に分割して形成するほうが上記観点から好ましい。
【0040】
なお、ゲッター膜はその材質や形成条件によってガスの吸収性能が異なり得るため、又は陽極接合条件等によって放出ガスの量が異なり得るため、場合によってはゲッター膜40mが無くても上記目的は達成される。しかしながら、ゲッター膜40mを形成する場所として上記周辺部12の一部の表面上が一つの候補となり得ることは、MEMSデバイスの性能維持のために好ましい。特に本実施形態では、周辺部12は第1の実施形態のそれと同様にグラウンド電位に接続しているため、ゲッター膜40mは電位的にフローティング状態にはならない。従って、電気的なノイズが容量的に結合したゲッター膜40mを介して検出用又は駆動用の電極へ入り込むことを防止することが可能となる。
【0041】
従って、本実施形態においては、図6に示す凹部60の掘り込み深さ(d)が20μmであっても、容量結合を原因とする電気的なノイズがゲッター膜へ入り込まない。尚、可動部が固定部に対して実質的に同一平面上で運動する本実施形態のようなMEMSデバイスでは、上述の掘り込み深さ(d)が5μm以上であればよい。他方、可動部の運動面と固定部の形成面が実質的に垂直となるMEMSデバイスでは、上述の掘り込み深さ(d)が10μm以上であることが好ましい。また、掘り込み深さの上限を特に定めるものではないが、凹部60を形成するためのプロセス負担の低減、さらには、密閉空間の内壁面積に依存すると考えられる放出ガス量の低減を図るため、60μm以下であることが好ましい。尚、本実施形態においても、上側のガラス基板30に形成された各凹部の掘り込み深さは、下側のガラス基板32のそれと同じか、振動子10の動作に支障が出ない範囲でそれより浅い。
【0042】
これまでに述べたとおり、各実施形態のMEMSデバイスでは、MEMSデバイスの可動部の表面を避けてゲッター膜を形成しているため、MEMSデバイスを形成する母材であるシリコンとゲッター膜との間の応力差によって生じるデバイス性能の劣化が防止される。より具体的には、シリコンとゲッター膜との間の熱膨張係数差により発生した残留応力や、MEMSデバイスの使用環境の温度変化に伴って生ずる各部材の応力状態の変化に起因すると考えられる振動特性の劣化を防止することができる。さらに、上述の各実施形態のMEMSデバイスは、密閉空間を形成するためのガラス基板の凹部の掘り込み深さが従来と比べて大幅に浅くなるため、プロセス時間の短縮及び製造工程の簡易化が達成されるとともに製造コストが大幅に削減される。また、パッケージも含めた密閉空間内に形成されるMEMSデバイスの全体を更に小型化することが可能になる。
【0043】
尚、上述の各実施形態では、MEMSデバイスの一例としてリング型振動ジャイロが取り上げられたが、本発明が適用できるMEMSデバイスはこれに限定されない。密閉空間内に形成されることが好ましいその他のMEMSデバイスにも本発明が適用される。具体的には、マイクロミラー、又はRFスイッチは、本発明が適用しうるMEMSデバイスの代表的な例である。
【0044】
加えて、ゲッター膜が形成される固定部表面の領域の面積は、様々なMEMSデバイスの仕様に合わせて増減される。従って、上述の各実施形態のように、常に各電極又はエッチング残し部の表面上にゲッター膜が形成される必要は無く、それらの一部のみの表面上にゲッター膜が形成されてもよい。尚、電位的な安定性を考慮すれば、MEMSデバイスにおけるグラウンド電位となる領域(上述の各実施形態においては、周辺部12の領域)にゲッター膜が形成されることが好ましい。
【0045】
また、本実施形態では、ゲッター膜の材料としてチタンが採用されているが、これに限定されない。例えば、ゲッター膜が、ジルコニウム、バナジウム、アルミニウム、タンタル、タングステン、及びモリブデンの一群から選ばれる少なくとも一種類の金属から構成されていてもよい。さらに、本実施形態では、シリコンを母材とするリング型振動ジャイロが採用されているが、これにも限定されない。例えば、MEMSデバイスの母材がゲルマニウム又はシリコンゲルマニウムであってもよい。以上、述べたとおり、本発明の範囲内に存在する変形例もまた、特許請求の範囲に含まれるものである。
【産業上の利用可能性】
【0046】
本発明は、密閉空間内に形成される加速度センサ、角速度センサ、マイクロミラー、又はRFスイッチ等のMEMSデバイスに適している。
【図面の簡単な説明】
【0047】
【図1】本発明の1つの実施形態におけるMEMSデバイスの正面図である。
【図2】図1に示すMEMSデバイスのA-A部分拡大図である。
【図3】図2におけるB−B断面図である。
【図4】本発明の1つの実施形態におけるパッケージを含めたMEMSデバイスの分解斜視図である。
【図5A】本発明の1つの実施形態におけるMEMSデバイスの製造工程の一過程を示す断面図である。
【図5B】本発明の1つの実施形態におけるMEMSデバイスの製造工程の一過程を示す断面図である。
【図5C】本発明の1つの実施形態におけるMEMSデバイスの製造工程の一過程を示す断面図である。
【図5D】本発明の1つの実施形態におけるMEMSデバイスの製造工程の一過程を示す断面図である。
【図5E】本発明の1つの実施形態におけるMEMSデバイスの製造工程の一過程を示す断面図である。
【図5F】本発明の1つの実施形態におけるMEMSデバイスの製造工程の一過程を示す断面図である。
【図6】本発明の他の実施形態におけるMEMSデバイスの一部の断面図である。
【図7】従来のMEMSデバイスの一部分の断面図である。
【符号の説明】
【0048】
10 振動子
14 リング
16 サスペンション
18a,18e 一次振動駆動用電極
18b,18f 二次振動検出用電極
18c,18g,75 一次振動検出用電極
18d,18h 二次振動打消し用電極
22 エッチング残し部
24 中央部
26,28 トレンチ
30,71 上側のガラス基板
32,72 下側のガラス基板
34,36a,36b,36c,60,74 凹部
37 貫通孔
38a,38b,38c,38d 電極パッド
40a,40b,40c,40d,40e,40f,40g,40h,40j,40k,40m,73 ゲッター膜
42 蓋部
44 振動ジャイロ設置台
100,200,300 リング型振動ジャイロ

【特許請求の範囲】
【請求項1】
密閉空間内に形成されたMEMSデバイスであって、
前記MEMSデバイスが、可動部と固定部を備え、かつ前記固定部のみの表面上に形成されたゲッター膜を備える
MEMSデバイス。
【請求項2】
前記ゲッター膜が、前記MEMSデバイスの母材を介して前記MEMSデバイスの任意の一つの電極、又はグラウンド電位に接続している
請求項1に記載のMEMSデバイス。
【請求項3】
密閉空間内に形成されたMEMSデバイスであって、
前記MEMSデバイスが、可動部と固定部を備え、かつ前記固定部のみの表面上に複数の領域に分割されて形成されたゲッター膜を備え、
前記各領域のゲッター膜が、前記MEMSデバイスの母材を介して前記MEMSデバイスの任意の一つの電極、又はグラウンド電位に接続している
MEMSデバイス。
【請求項4】
前記可動部が前記固定部に対して実質的に同一平面上で運動し、かつ前記MEMSデバイスの表面から前記表面と対向する前記密閉空間の壁面までの距離が5μm以上60μm以下である
請求項1又は請求項3に記載のMEMSデバイス。
【請求項5】
前記可動部の運動面と固定部の形成面が実質的に垂直であり、かつ前記MEMSデバイスの表面から前記表面と対向する前記密閉空間の壁面までの距離が10μm以上60μm以下である
請求項1又は請求項3に記載のMEMSデバイス。
【請求項6】
前記可動部と前記固定部の少なくとも一部が前記可動部の固定端を介して一体に形成されている、
請求項1又は請求項3に記載のMEMSデバイス。
【請求項7】
前記ゲッター膜が、チタン、ジルコニウム、バナジウム、アルミニウム、タンタル、タングステン、及びモリブデンの一群から選ばれる少なくとも一種類の金属から構成される
請求項1又は請求項3に記載のMEMSデバイス。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5A】
image rotate

【図5B】
image rotate

【図5C】
image rotate

【図5D】
image rotate

【図5E】
image rotate

【図5F】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2009−6428(P2009−6428A)
【公開日】平成21年1月15日(2009.1.15)
【国際特許分類】
【出願番号】特願2007−168965(P2007−168965)
【出願日】平成19年6月27日(2007.6.27)
【出願人】(000183369)住友精密工業株式会社 (336)
【Fターム(参考)】