説明

流通式プラズマ反応器においてIV族ナノ粒子を生成するための方法及び装置

前駆体ガスからIV族半導体ナノ粒子の組を生成するためのプラズマ処理装置が開示される。この装置は、外側チューブ内面と外側チューブ外面とを含み、外側チューブ内面は外側チューブ内面エッチング速度を有する、外側誘電体チューブを含む。この装置はまた、内側チューブ外面を含み、外側チューブ内面及び内側チューブ外面は環状チャネルを定め、さらに内側チューブ外面は内側チューブ外面エッチング速度を有する、内側誘電体チューブも含む。この装置は、外側チューブ外面上に配置された第1の外側電極内面を有する、第1の外側電極をさらに含む。この装置はまた、内側誘電体チューブの内部に配置され、第1のRFエネルギー源が第1の外側電極及び第1の中央電極の一方に加えられたとき、第1の外側電極に結合されるようにさらに構成された第1の中央電極と、第1の外側電極と第1の中央電極との間に定められた第1の反応域とを含む。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、一般に、ナノ粒子に関し、より具体的には、プラズマ反応器を用いるIV族半導体ナノ粒子の生成に関する。
【背景技術】
【0002】
ナノ粒子の研究は、現在のところ、生物医学、光学、及び電子分野における様々な潜在的用途のために、活発な科学的研究領域である。特に、半導体ナノ粒子(シリコン・ナノ粒子のような)は、光電池、フォトルミネッセンス・ベースのデバイス、ドープされたエレクトロルミネッセンス発光体、記憶装置、及び他のマイクロ電子デバイス(例えば、ダイオード及びトランジスタ)におけるそれらの潜在的使用のために、特に興味深いものである。
【0003】
IV族半導体ナノ粒子を生成する一般的な方法には、レーザ熱分解、レーザ・アブレーション、蒸着、ガス放電解離、及びプラズマが含まれる。不幸なことに、これらの現在知られているプラズマ反応器は、通常、連続的な商業規模でのナノ粒子の生成用に最適化されていない。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】米国特許公開第2006/0051505号
【非特許文献】
【0005】
【非特許文献1】A.N.Goldstein著、「The melting of silicon nanocrystals:Submicron thin−film structures derived from nanocrystal precursors」、応用物理学A、1996年
【発明の概要】
【0006】
本発明は、1つの実施形態において、前駆体ガスから、IV族半導体ナノ粒子の組を生成するためのプラズマ処理装置に関する。この装置は、外側チューブ内面と外側チューブ外面とを含み、外側チューブ内面は外側チューブ内面エッチング速度を有する、外側誘電体チューブを含む。この装置はまた、内側チューブ外面を含み、外側チューブ内面及び内側チューブ外面は環状チャネルを定め、さらに内側チューブ外面は内側チューブ外面エッチング速度を有する、内側誘電体チューブも含む。この装置は、外側チューブ外面上に配置された第1の外側電極内面を有する、第1の外側電極をさらに含む。この装置はまた、内側誘電体チューブの内部に配置され、第1のRFエネルギー源が第1の外側電極及び第1の中央電極の一方に接続されたとき、第1の外側電極に結合されるようにさらに構成された第1の中央電極と、第1の外側電極と第1の中央電極との間に定められた第1の反応域とを含む。
【0007】
本発明は、別の実施形態において、1組のIV族半導体ナノ粒子を生成する方法に関する。この方法は、プラズマ・チャンバを通して前駆体ガスを流すことを含む。プラズマ・チャンバは、外側誘電体チューブと、内側誘電体チューブと、外側電極と、中央電極とを含む。この方法はまた、RFエネルギー源を外側電極及び中央電極の一方に接続することを含む。この方法は、IV族半導体ナノ粒子の組を集めることと、外側誘電体チューブ及び内側誘電体チューブによって定められた環状チャネルを通して洗浄ガスを流すことをさらに含む。
【図面の簡単な説明】
【0008】
【図1A】本発明による、プラズマ反応器の簡単化された概略側面図を示す。
【図1B】本発明による、プラズマ反応器の簡単化された概略断面側面図を示す。
【図2】本発明による、2つの反応域を有するプラズマ反応器の簡単化された概略側面図を示す。
【図3】本発明による、入れ子状の同軸電極設計の簡単化された概略図を示す。
【図4A】本発明による、保護誘電体スリーブを有するプラズマ反応器の簡単化された概略側面図を示す。
【図4B】本発明による、保護誘電体スリーブを有するプラズマ反応器の簡単化された概略断面側面図を示す。
【図5】本発明による、プラズマ反応器の誘電体チューブの一部の上に保護層を有するプラズマ反応器の概略断面側面図を示す。
【図6】本発明による、誘電体チューブの上に窒化シリコン・コーティングを有する(点線)及び有しない(実線)プラズマ反応器を用いて形成されたシリコン・ナノ粒子粉末の簡単化されたフーリエ変換赤外線(FTIR)スペクトルを示す。
【図7】本発明による、IV族半導体又は金属ナノ粒子を形成するように構成された簡単化されたプラズマ反応器システムを示す。
【発明を実施するための形態】
【0009】
ここで、本発明が、添付図面に示されるようなその幾つかの好ましい実施形態を参照して詳細に説明される。以下の説明において、本発明の完全な理解を与えるために、多数の特定の細部が述べられる。しかしながら、これらの特定の細部の一部又は全てなしで、本発明を実施できることが、当業者には明らかであろう。他の例では、本発明を不必要に分かりにくくしないように、周知のプロセス・ステップ及び/又は構造体を詳細には説明していない。
【0010】
既述したように、IV族半導体ナノ粒子を生成する現在の方法は、通常、連続的な商業規模での生成用に最適化されていない。有利な方法で、本発明は、プラズマ反応器においてIV族ナノ粒子(例えば、シリコン、ゲルマニウム、αスズ、これらの組み合わせ等)を商業規模の量で連続的に生成することを可能にする。
【0011】
本発明者らは、本発明のプラズマ反応器構成(ここでは「反応器」とも呼ばれる)及びプラズマ反応器システムが、代替的なIV族ナノ粒子生成技術に優る幾つかの重要な利点を有すると考える。例えば、本発明は、環状チャネルにわたる均一な又は実質的に均一な出力密度による、連続的な高生産性のナノ粒子生成を可能にする。つまり、環状に形成された又は環を形成するチャネルである。プラズマ反応域にわたる均一な出力密度は、通常、粒子サイズ分布及び結晶性のようなナノ粒子特性を良好に制御したIV族半導体ナノ粒子の生成を可能にする。
【0012】
有利な方法で、反応域をスケールアップ又は増加させ、その結果、内側電極と外側電極の中間のチャネルの半径(又は間隙)を増加させることによって、生成量を増加させることができる。代替的に、プラズマ反応域の長さを増加させる(例えば、内側電極及び外側電極の両方の長さを増加させる)ことによって、ナノ粒子生成量を増加させることができる。
【0013】
さらに、従来技術のプラズマ反応器は、一般に、チャンバと接触している電極の表面上への導電性膜の堆積に悩まされる。最終的に、この膜は、電極間の導電性ブリッジ(「短絡」)をもたらし、このことがプラズマ生成を妨げ、場合によっては停止させる。従って、このようなプラズマ反応器は、これらを分解し洗浄するまで、限られた時間だけ作働させ得るにすぎない。対照的に、本発明の作動においては、通常、膜(例えば、導電性膜)が内側電極と外側電極との間のチャネルにわたって形成されることはなく、よって、従来技術のプラズマ反応器と関連した問題を、排除されないまでも、減少させる。
【0014】
さらに、本発明は、長時間連続的に作動させて、商業規模の量でのIV族ナノ粒子の生成を可能にすることができる。例えば、好ましいプラズマ反応器は、リン及びホウ素ドープのナノ粒子について、中断することなく少なくとも4−5時間、1時間当たり少なくとも約1gのシリコン・ナノ粒子を生成することができる。対照的に、従来技術の反応器は、同様の反応器条件下で動作させることができるのは、せいぜい0.5−1時間程度である。
【0015】
本発明者らは、プラズマ反応器が使用後に修理のために開けられた場合、ナノ粒子の生成の際に用いられた少なくとも幾らかのナノ粒子前駆体種が、ナノ粒子前駆体ガスにさらされた反応器の壁(又は表面)から脱着されることを確認した。このことは、脱着ガスが有害である場合に、健康及び安全上の問題を引き起こす可能性がある。本発明は、ナノ粒子の生成の際、ナノ粒子前駆体ガスにさらされたプラズマ反応器の表面から、前駆体種を安全に除去することを可能にする。
【0016】
ここで、図1A−図1Bを参照すると、本発明による、プラズマ反応器の1組の簡単化された図が示される。図1Aは、簡単化された概略側面図を示し、図1Bは、簡単化された断面図を示す。
【0017】
一般に、プラズマ反応器は、内側電極と、内側電極の上の内側誘電体層と、内側誘電体層の上の外側誘電体層と、外側誘電体層の少なくとも一部の上の外側電極とを含む。チャネルが、内側電極の外面と、ここでは外側電極の「内面」と呼ばれる、内側電極外面に面する外側電極の表面との間に定められる。チャネルは、プラズマ反応器のプラズマ反応器チャンバを定める。1つの構成において、外側電極は、内側電極の周りに配置され、かつ、内側電極と同軸関係にある。このような場合、環状チャネルが、内側電極の外面と外側電極の内面との間に定められる。
【0018】
有利な方法で、ナノ粒子は、1つ又はそれ以上のIV族ナノ粒子前駆体ガス(ここでは、「ナノ粒子前駆体ガス」とも呼ばれる)をプラズマ反応器チャンバに連続的に流し、RF出力をプラズマ反応器の内側電極又は外側電極のどちらかに加えることで、プラズマ反応器チャンバ内にナノ粒子前駆体ガスのプラズマを形成する(点火する)ことによって生成することができる。
【0019】
内側電極は、内側誘電体層と接触していてもよく、外側電極は、外側誘電体層の少なくとも一部と接触していてもよい。内側誘電体層と外側誘電体層との間に空間が形成されるように、内側誘電体層が外側誘電体層から分離される。この空間がチャネルを定め、このチャネルは、プラズマ反応器のプラズマ反応器チャンバとも呼ばれる。1つ又はそれ以上のIV族ナノ粒子前駆体ガスが、プラズマ反応器チャンバを通して導かれる。
【0020】
1つの構成において、プラズマ反応器は管状である。すなわち、内側誘電体層及び外側誘電体層は、管状であるか又は管様のものである。内側誘電体チューブは内側電極に外接し、外側誘電体チューブは内側誘電体チューブに外接し、外側電極は外側誘電体チューブに外接する。内側誘電体チューブと外側誘電体チューブとの間の空間は、環状チャネルを定める。
【0021】
ここでは「同心電極」プラズマ反応器とも呼ばれるプラズマ反応器1200は、内側電極1224と、内側電極1224に外接する内側誘電体チューブ1215と、内側誘電体チューブ1215の周りに配置され、かつ、これと同軸関係にある外側誘電体チューブ1214とを含み、環状チャネルが、内側誘電体チューブ1215の外面と外側誘電体チューブ1214の内面との間に定められ、外側電極1225が、外側誘電体チューブの少なくとも一部の周りに配置される(又は外接する)。
【0022】
内側誘電体チューブ1215は、内側電極1224の外面と接触することができる。外側電極1225は、外側誘電体チューブ1214の外面の上に配置される。外側電極1225は、外側誘電体チューブ1214の外面の少なくとも一部と接触することができる。内側電極1224及び外側電極1225が協働して、プラズマ反応器1200の電極アセンブリ1220を定める。下記により詳細に述べられるように、プラズマ反応器1200は、複数の電極アセンブリ1220を含むことができる。
【0023】
環状チャネルは、プラズマ反応器チャンバ1205を定める。1つの構成において、内側電極1224は、棒状のものである。しかしながら、内側電極1224は、種々の幾何学的形状及びサイズを有することができる。例えば、内側電極1224は、矩形とすることができる。内側誘電体チューブ1215及び外側誘電体チューブ1214は、石英などの誘電体材料で形成されることが好ましい。誘電体チューブ1214は、プラズマ反応器1200のプラズマ反応器チャンバ1205の外壁を形成する。プラズマ反応器チャンバ1205は、ナノ粒子前駆体ガスのための流路をもたらす。プラズマ反応器1200の対向する端部のフランジ1218及び1219によって、プラズマ反応器チャンバ1205を周囲雰囲気から封止することができる。プラズマ反応器1200が作動中のとき、誘電体チューブ1215により、内側電極1224のスパッタリングが防止される。有利なことに、このことは、内側電極1224を形成する材料によりナノ粒子が汚染されることを防止する。
【0024】
一般に、プラズマ反応器1200が作動中のとき、ナノ粒子前駆体ガスは、プラズマ反応器1200の上流端からプラズマ反応器1200の下流端に向けて流れる。ナノ粒子前駆体ガスのプラズマは、プラズマ反応器チャンバ1205の反応域において形成される。反応域は、プラズマ反応器チャンバ1205内の領域であり、この領域は、RF出力密度の他に、内側電極1224及び外側電極1225によって定められる。RF出力密度は、内側電極1224表面と外側電極1225表面の間の分離距離、並びに、外側電極1225に対する内側電極1224の配置の関数である。
【0025】
プラズマ形成の際、ナノ粒子前駆体ガス分子が解離して、ナノ粒子前駆体ガス分子のプラズマ励起種を形成する。ナノ粒子前駆体ガス分子のプラズマ励起種の少なくとも幾らかは、核生成し成長して、IV族ナノ粒子になることができる。ナノ粒子前駆体ガスは、キャリアガスとして働く緩衝ガスと混合されることが望ましい。緩衝ガスは、典型的には、低い熱伝導率を有する不活性ガスである。一般に、緩衝ガスは、He、Ne、Ar、Kr、Xe、及びN2からなる群から選択される1つ又はそれ以上の不活性ガスを含む。
【0026】
さらに、ナノ粒子前駆体ガスは、解離して前駆体種をもたらす前駆体分子を含むことができ、この前駆体種は、反応して所望の組成を有するナノ粒子を形成する。プラズマ反応器チャンバ内に導かれるナノ粒子前駆体ガスは、所望のナノ粒子のタイプによって決まる。例えば、IV族半導体ナノ粒子が望まれる場合、IV族半導体元素を有する1つ又はそれ以上のナノ粒子前駆体ガスが用いられる。
【0027】
ドープされたIV族半導体ナノ粒子が望まれる場合、1つ又はそれ以上のナノ粒子前駆体ガスは、1つ又はそれ以上の半導体前駆体ガス(例えば、SiH4、Si26)と、1つ又はそれ以上のドーパント・ガス(例えば、PH3、B26)とを含むことができる。
【0028】
内側電極1224及び外側電極1225がプラズマ反応器チャンバ1205の全体にわたる場合、反応域は、プラズマ反応器チャンバ1205の全長にわたることができる。一般に、反応域は、外側電極1225の幅及びRF出力密度の関数である。大まかに言うと、反応域は、内側電極1224と外側電極1225の中間のプラズマ反応器チャンバ1205の一部にわたり、ほぼ外側電極1225と同じ幅にすることができる。
【0029】
一般に、ナノ粒子前駆体ガスのプラズマは、反応域内で形成され、ナノ粒子は、少なくとも部分的に、反応域内で形成される。1つの構成においては、ナノ粒子は、反応域内でのみ形成される。プラズマ反応器1200が多数の電極アセンブリ1220を含む他の構成においては、プラズマ反応器1200は、多数の反応域を含むことができ、この場合、ナノ粒子前駆体ガスのプラズマは、反応域の各々の中で形成される。このことは、コアシェル・ナノ粒子の形成において有利である。
【0030】
コアシェル構造を生成するための異なる材料によるナノ粒子の表面コーティングは、こうしたコーティングがコア材料の物理的特性及び化学的特性の改質及び調整を可能にすることから、現在のところ活発な研究領域である。例えば、第1の反応域内にナノ粒子が形成されると、それらのナノ粒子は第2の反応域に移動し、そこで、ナノ粒子の上にSiN(又は、他の不動態化剤)を部分的又は全体的にグラフト化(キャップ形成)することができる。このようなグラフト化は、ナノ粒子上に付着する可能性が高い部位の量を減少させることにより、焼結膜内の酸素及び炭素の量を減少させる方法を提供することができる。
【0031】
一般に、接合部のような有用な構造体を生成するために、半導体ナノ粒子は、高密度に結合した領域内に形成されなければならない。1つのこのような方法が焼結である。一般に、粒子を互いに付着させ、ナノ結晶を相互作用させる方法は、サイズに依存する溶融が行われる前に焼結を行なう。非特許文献1。
【0032】
しかしながら、IV族ナノ粒子はまた、これらがバルク固体と比べて実質的に大きい表面積を有するので、非常に汚染されやすい傾向がある。一般に、周囲酸素又は水分子がIV族ナノ粒子と接触するのを完全に防止するのは極めて困難であるため、汚染は、酸化及び/又は加水分解などのこうした化学反応により生じることが多い。従って、少量の汚染でさえも焼結を抑制し(すなわち、IV族ナノ粒子の物理的結合を妨害し)、緻密層の形成を遅らせ(すなわち、材料の気孔率を増加させ、よって、導電率を減少させる)、電子−正孔再結合部位をもたらす(すなわち、結合した接合部における電流の生成を減じる)ことがある。
【0033】
プラズマ反応器1200は、プラズマ反応器1200のかなりの部分に沿って延びることができる内側電極1224をさらに含むことができる。代替的に、内側電極1224は、外側電極1225の長さに等しいか又はこれより短い長さを有することができる。内側電極1224を接地1226することができ、外側電極1225をRF出力源1222に接続することができる。他の構成(図示せず)においては、外側電極1225が接地され、内側電極1224がRF出力源1222に接続される。図1Aにおいて、内側電極は、内側電極1224と電気接触している接地線1226(例えば、銅線)を用いて接地される。接地線は、誘電体材料で覆われたRF遮蔽線とすることができる。接地線1226は、誘電体チューブ1215内に配置してもよい。
【0034】
1つ又はそれ以上のナノ粒子前駆体ガスを、プラズマ反応器1200の入口ポート(図示せず)と流体連通している前駆体ガス源から環状チャネル内に導入することができる。同様に、プラズマ反応器チャンバ内で生成されたナノ粒子は、出口ポート(図示せず)を通って、ナノ粒子収集チャンバ(図示せず)内に出て行くことができる。代替的に、プラズマ反応器チャンバ1205内に配置された基板又はグリッド上に、ナノ粒子を集めることができる。
【0035】
内側電極1224及び外側電極1225は、例えば、金、銅、又はステンレス鋼などの、いずれかの電導性材料で形成することができる。代替的な構成においては、内側電極1224、外側電極1225、又はその両方を、絶縁材料の上に形成された導電性材料で形成することができる。一例として、外側電極1225は、外側誘電体チューブ1214の上にスパッタリングされた金又は銅の膜とすることができる。このような場合、外側電極1225の幅を定めるように、スパッタリングを制御することができる。誘電体チューブ1214及び1215は、例えば、石英、サファイア、ヒュームド・シリカ、ポリカーボネート・アルミナ、窒化シリコン、又はホウケイ酸ガラスのような、いずれかの電気絶縁材料で形成することができる。代替的な構成において、内側電極1224は、内側電極1224上に堆積された絶縁層を用いて、プラズマ反応器チャンバ1205から絶縁することができる。一例として、内側電極1224がプラズマ反応器チャンバ1205の全体にわたる場合、化学気相堆積(CVD)、原子層堆積(ALD)、物理気相堆積(PVD)、又は石英層を形成することができる他のいずれかの方法によって、内側電極1224の上に石英層を形成することができる。
【0036】
プラズマ反応器1200の流量は、プラズマ反応器チャンバ1205を定める環状チャンバの半径に応じて拡大縮小する。プラズマ反応器チャンバ1205に入る1つ又はそれ以上のナノ粒子前駆体ガスの流量及びプラズマ反応器チャンバ1205から出るナノ粒子の生成物を最大にするために、内側電極1224及び外側電極1225の直径(並びに、誘電体チューブ1214及び1215の直径)を調整して、所望の流量を可能にすることができる。しかしながら、環状チャネルにわたって実質的に均一の出力密度をもたらすように、内側電極1224の外面と外側電極1225の内面との間の分離距離を選択すべきである。
【0037】
この分離距離は、少なくとも部分的に、RF出力によって決まる。好ましくは、RF出力は、プラズマ反応器チャンバ1205の反応域における均一な出力密度を可能にするように、分離距離に応じて拡大縮小すべきである。広い分離距離が望まれる場合、比較的高いRF出力を用いて、実質的に均一の出力密度を与える必要がある。幾つかの構成において、内側電極1224の表面と外側電極1225の表面との間の分離距離は、約30mm以下である。幾つかの構成においては、分離距離は、約1mmから約60mmまでの間であることが好ましく、より好ましくは約5mmから約20mmまでの間であり、最も好ましくは約8mmから約15mmまでの間である。幾つかの構成において、商業規模での作働用に構成されたプラズマ反応器は、約40mmから約50mmまでの間の分離距離を有することができる。
【0038】
さらに、電極アセンブリは細長い棒状の(円筒形の)内側電極1224と、より短い円筒形の外側電極1225とを含み、内側電極1224の下流端(すなわち、矢印で示されるような、ナノ粒子前駆体ガス流の下流端)は、外側電極1225の下流端と位置合わせされていないが、他の電極構成も可能である。代替的な構成においては、内側電極1224の下流端は、外側電極1225の下流端と位置合わせされる。この構成は、プラズマの生成を、内側電極1224及び外側電極1225の下流端の範囲に制限し、結果として、より均一な出力密度を、よって、ナノ粒子におけるより高度の結晶性をもたらすことができる。
【0039】
代替的な構成においては、内側電極1224及び外側電極1225が実質的に同じ長さを有し、これらの下流端及び上流端が実質的に位置合わせされる。この構成により、より鋭利な下流縁及び上流縁をもつプラズマ反応域が与えられ、反応域内でもたらされるナノ粒子の結晶性を改善することができる出力密度分布が与えられる。一般に、プラズマ反応器チャンバ1205内の反応域の出力密度に影響を及ぼさないように、内側電極1224の下流端又は上流端に取り付けられたいずれの線も電気的に遮蔽することができる。
【0040】
無線周波数エネルギー源1222は、一般に、電極の一方と電気的に連通(又は電気接触)し、かつ、これに無線周波数出力を供給する。他方の電極は、他方の電極と電気接触している接地線で接地1226されている。さらに、RF出力源が外側電極1225と電気接触し、内側電極1224が接地1226された状態で示されるが、これらの接続を逆にすることもできる。さらに、RF出力源1222は、例えば、約13.56MHzの商業的に利用可能なバンド周波数のような、種々のバンド周波数で動作することができる。
【0041】
代替的な構成において、プラズマ反応器1200は、複数の内側電極及び/又は複数の外側電極を含むことができる。一般に、プラズマ反応器1200は、互いに対して横方向に配置された2つ又はそれ以上の内側電極及び/又は2つ又はそれ以上の外側電極を含むことができる。内側電極及び/又は外側電極は、互いに電気接触(又は電気的に連通)してもよい。
【0042】
ここで図2を参照すると、本発明による、2つの別個の外側電極を含むプラズマ反応器1200の簡単化された図が示される。一般に、第1の外側電極1221及び第2の外側電極1231が、互いに隣接して配置される。外側電極1221、1231は、一般に、RF出力源1222と電気接触している。一般に、プラズマ反応器1200は、プラズマ反応器1200の全長に及ぶ内側電極1224を含む。1つの構成において、外側電極1221、1231は、一般に、プラズマ反応器1200が動作しているとき、それらのプラズマ反応域が重なるように位置決めされる。別の実施形態において、外側電極1221、1231は、それらのプラズマ反応域が重ならないように位置決めされる。別個のナノ粒子前駆体ガスを用いて、例えばコアシェル・ナノ粒子(下記を参照されたい)を形成する場合、このことは有用である。このような場合、1つ又はそれ以上のナノ粒子前駆体ガスは、第1の外側電極1221の下流のプラズマ反応器チャンバ1205内に向けることができ、1つ又はそれ以上のナノ粒子前駆体ガスは、導管1235を介して、第1の外側電極1221の下流及び第2の外側電極1231の上流のプラズマ反応器チャンバ1205内に向けることができる。
【0043】
代案として、プラズマ反応器1200は、1つの外側電極と、複数の内側電極とを含むことができ、内側電極は、電気絶縁線を通して互いに電気接触している。別の代案として、プラズマ反応器1200は、複数の内側電極と、複数の外側電極とを含むことができ、これらの電極は、RF出力が内側電極又は外側電極のいずれかに供給されるときに所望の出力密度分布を有する反応域を生成するように位置決めされる。一例として、プラズマ反応器1200は、2つの外側電極と、2つの内側電極とを含むことができ、これらの電極は実質的に同等の幅を有し、各々の外側電極は、内側電極と実質的に位置合わせされ、内側電極は、互いに電気接触し、かつ、電気絶縁線を介して接地され、外側電極は、RF出力源1222と電気接触している。
【0044】
代替的な構成において、第1の外側電極1221又は第2の外側電極1231のいずれかがRF出力源1222と電気接触し、他方の外側電極は、内側電極1224に加えて接地1226することができる。一例として、第1の外側電極1221をRF出力源1222に接続することができ、第2の外側電極1231及び内側電極1223を接地1226することができる。このようなプラズマ反応器の設計は、反応域を限定し、より多くの結晶性ナノ粒子の形成を可能にする。この代替的な構成は、従来技術のデュアルリング型プラズマ反応器と比べると安定した均一のプラズマを生成する助けとなる。電極及びプラズマ・パラメータの適切な組み合わせを用いる場合、完全なクリーン反応域(すなわち、反応域内に膜の堆積がない)が可能である。このようなプラズマ反応器は、従来技術のデュアルリング型プラズマ反応器よりも長い時間(修理することなく)作動することができる。
【0045】
ここで図3を参照すると、本発明による、入れ子状にされた同軸電極設計の簡単化された概略図が示される。一般に、プラズマ反応器1300は、中心の長手方向軸の周りに同心円状に配置された複数の電極の中間に形成された、複数の同心環状チャネルを含む。これらの電極は、電気絶縁(誘電体)チューブを介して環状チャネルから絶縁されることが好ましい。
【0046】
典型的には、複数の棒状又は円筒形状の電極1301、1302、1303、1304、1305及び1306を、最も内側の電極1301と同軸に配置することができ、最も内側の電極1301が最小の直径を有し、最も外側の電極1306が最大の直径を有する。これらの電極は、交互にRF出力源1320に接続され、接地1326される。電極1301、1303、及び1305は、通常、接地1326と電気接触し、電極1302、1304及び1306は、通常、RF出力源1320と電気接触している。
【0047】
環状チャネル1310、1311、1312、1313及び1314は、各々の電極対間に定められる。この結果、複数の同軸プラズマ反応器チャンバ及びプラズマ反応域を有する電極アセンブリを同時に作働させて、流量を増加させ、ナノ粒子の生成を最大にできるようになる。上述のように、RF出力が電極1302、1304及び1306に供給されたとき、これらの電極は、ナノ粒子の汚染を回避するために、誘電体材料(例えば、石英)を用いて環状チャネル1310、1311、1312、1313及び1314から絶縁される。
【0048】
ナノ粒子生成の際、場合によっては、電極をプラズマ反応器チャンバ1205から分離する誘電体チューブ1214及び1215の少なくとも一方が、エッチングされるか又はスパッタリングされ、ナノ粒子の汚染をもたらす。このようなエッチング又はスパッタリングは、より高いRF出力においてより顕著である。一例として、図1A及び図1Bの誘電体チューブ1214、1215が石英で形成され、シラン(SiH4)がナノ粒子前駆体ガスとして用いられる場合、ナノ粒子を生成するためにRF出力が外側電極1225に供給されたとき、反応域の近くの誘電体チューブ1214、1215の少なくとも一方の表面から、酸化シリコンがエッチング又はスパッタリングされる可能性がある。これにより、シリコン・ナノ粒子の汚染がもたらされる可能性がある。
【0049】
実験データは、プラズマ反応器1200内に準備されたシリコン・ナノ粒子粉末のフーリエ変換赤外線(FTIR)分光スペクトルにおいて顕著な酸化シリコン関連のピークを示す。酸化シリコン関連のピーク強度は、RF出力の増加に伴って増加した。高いRF出力が用いられた場合、約10%もの高いナノ粒子酸素含有量が観察された。デバイスの形成のためにそれらを用い得る前に、ナノ粒子の酸素濃度を減少させる必要があるので、これは望ましくない。酸素濃度を減少させることは、処理コストをより高くする。
【0050】
さらに、誘電体チューブ1214、1215を長時間エッチング又はスパッタリングすることにより、これらのチューブの少なくとも1つに亀裂(又はひび)が生じる可能性がある。長時間プラズマ反応器1200を使用する場合、これらの亀裂により、内側電極1224及び/又は外側電極1225が、プラズマ反応器チャンバ1205に曝す可能性がある。一例として、RF出力が外側電極1225に供給され(内側電極1224は接地1226され)、ナノ粒子前駆体ガスとしてシランが用いられる場合、亀裂が、内側電極1224に外接する誘電体チューブ1215内に亀裂が形成される形成される可能性がある。長時間のエッチング又はスパッタリングにより、これらの亀裂が、内側電極1224をプラズマ反応器チャンバ1205に曝すことがあり、それにより、内側電極1224を構成する材料によるナノ粒子の汚染がもたらされることがある。従って、誘電体チューブ1214及び1215のエッチング又はスパッタリングを、排除しないにせよ、減少させる方法に対する必要性がある。
【0051】
1つの構成において、RF出力を交互に内側電極1224及び外側電極1225に加えることによって、誘電体チューブ1214、1215における亀裂の形成が減少される。一例として、第1のサイクルにおいて、RF出力を外側電極1225に加える一方で、内側電極1224を接地1226し、ナノ粒子前駆体ガスがプラズマ反応器チャンバ1205に導入されるときに、ナノ粒子が形成される。次に、RF出力源を遮断し、ナノ粒子前駆体ガスの流れを停止することによって、ナノ粒子の生成が終了する。第2のサイクルにおいて、RF出力を内側電極1224に加える一方で、外側電極1225を接地し、ナノ粒子前駆体ガスがプラズマ反応器チャンバ1205に導入されるときに、ナノ粒子が形成される。
【0052】
次に、RF出力源を遮断し、ナノ粒子前駆体ガスの流れを停止することによって、ナノ粒子の生成が終了する。必要に応じてサイクル1及び2を繰り返し、所望のナノ粒子の歩留まりをもたらすことができる。この方法は、誘電体チューブ1214、1215内に亀裂が形成される速度を減少させるが、誘電体チューブ1214、1215のエッチング又はスパッタリングを排除するものではない。一般に、誘電体チューブ1215の上に誘電体スリーブを、及び/又は、誘電体チューブ1214の下方に誘電体スリーブを設けることは、誘電体チューブ1214、1215の一方又は両方の劣化を、排除しないにせよ、減少させるのに役立つ。
【0053】
ここで、図4A−図4Bを参照すると、本発明による、保護誘電体スリーブを有するプラズマ反応器の、1組の簡単化された概略側面図及び断面側面図が示される。すなわち、プラズマ反応器1200は、誘電体チューブ1215上に配置され、かつ、反応域内に位置決めされた管状誘電体スリーブ1216を含む。この誘電体スリーブ1216は、取り外し可能のものであることが好ましい。誘電体スリーブ1216は、約4mmから約10mmまでの間の壁厚を有することができる。RF出力が外側電極1225に加えられ、内側電極1224が接地1226された場合、プラズマ生成の際、誘電体スリーブ1216が誘電体チューブ1215の周り及び反応域内に配置されたとき、誘電体チューブ1215のエッチング又はスパッタリングは、排除されないまでも、減少される。
【0054】
十分に使用した後、誘電体スリーブ1216を取り外し、別のスリーブと交換することができる。有利なことに、このことは休止時間を最小にし、より低い作動コストをもたらす。誘電体スリーブ1216の使用は、誘電体チューブ1215内の亀裂の形成と関連した問題を有利に解決する。誘電体スリーブ1216は、例えば、石英、窒化シリコン、又は炭化シリコンなどの、いずれかの誘電体材料で形成することができる。誘電体スリーブ1216は、下にある誘電体材料のエッチング速度に対して減少したエッチング速度を有する材料層で被覆することができる。一般に、上述のように、このことは、ナノ粒子の汚染を排除する傾向がある。さらに、誘電体スリーブ1216は、誘電体スリーブ1216を含む材料に対して減少したエッチング速度を有するいずれの材料層でも被覆することができる。一例として、窒化シリコン(Sixy、ここで、x>0及びy>0)層又はIV族半導体層を用いることができる。減少したエッチング速度を有する材料層を誘電体スリーブ1216の上に堆積させることができ、この材料層は、約50nmから約2000nmまでの間の厚さを有することができる。
【0055】
プラズマ反応器1200は、誘電体チューブ1214の下方に配置され、かつ、反応域内に横方向に位置決めされた誘電体スリーブ1217を含むことができる。この誘電体スリーブ1217は、ナノ粒子形成の際、反応域内の誘電体チューブ1214の一部をエッチングから保護することができる。RF出力が内側電極1224に加えられ、外側電極1225が接地1226された場合、誘電体スリーブは有用である。誘電体スリーブ1217は、誘電体チューブ1214より小さい半径を有することが好ましい。
【0056】
さらに、プラズマ反応器チャンバ1205と接触している誘電体スリーブ1217の表面は、誘電体スリーブ1217材料のエッチング速度に対して減少したエッチング速度を有する材料で被覆することができる。一例として、誘電体チューブ1214及び誘電体スリーブ1217の両方を石英で形成することができ、プラズマ反応器チャンバ1205と接触している誘電体スリーブ1217の表面を窒化シリコンで被覆することができる。
【0057】
示されるように、プラズマ反応器1200は、誘電体スリーブ1216及び1217の両方を含むことができる。誘電体スリーブ1216及び1217は、誘電体チューブ1214、1215のエッチング速度より低いエッチング速度を有する材料で形成することができる。一例として、図4A−図4Bの誘電体チューブ1214、1215が石英で形成される場合、誘電体スリーブ1216及び1217は、IV族半導体、サファイア、ポリカーボネート・アルミナ、窒化シリコン(Sixy、ここで、x>0、y>0)、炭化シリコン、及びホウケイ酸ガラスからなる群から選択される材料で形成することができる。別の代案として、誘電体スリーブ1216、1217は、第1の材料で形成することができ、プラズマ反応器チャンバ1205に曝される誘電体スリーブ1216、1217の表面は、誘電体スリーブ1216、1217の材料のエッチング速度より低いエッチング速度を有する材料(例えば、窒化シリコン)で被覆することができる。誘電体スリーブ1216、1217の両方を用いることは、例えば、RF出力を交互に内側電極1224及び外側電極1225に加える(上記を参照されたい)場合に有利である。さらに、複数の反応域を有するプラズマ反応器の場合、上述のように、反応域の各々の中に誘電体スリーブを設けることができる。
【0058】
さらに、誘電体チューブ1214、1215のエッチングを減少させるように選択されたRF出力の印加により、誘電体チューブ1214、1215の材料によるナノ粒子の汚染を実質的に減少させることができる。典型的には、RF出力が高くなるほど、エッチング速度が高くなる。従って、低いRF出力でプラズマ反応器1200を作動させることにより、誘電体チューブ1214、1215のエッチングを実質的に減少させることができる。これに応じてナノ粒子前駆体ガスの流速を調整しなければならず、プラズマ反応器1200をより長い時間作動させて、所望のナノ粒子の歩留まりをもたらすことができる。代案として、低いRF出力が用いられる場合、複数のプラズマ反応器を並行して作動させ、所望のナノ粒子の歩留まりをもたらすことができる。幾つかの構成においては、上述のように、RF出力を交互に内側電極及び外側電極に加え、誘電体チューブ1214、1215内の亀裂の形成を減少させることができる。
【0059】
別の構成において、誘電体チューブ1214、1215の一方又は両方を、実質的にエッチングに対して耐性のある材料で形成してもよく、よって、誘電体チューブ1214、1215内の亀裂の形成、及び、ナノ粒子の汚染を実質的に減少させることができる。1つの構成においては、RF出力が外側電極1225に加えられ、内側電極1224が接地1226され、誘電体チューブ1215が、実質的にエッチングに対して耐性のある材料で形成される。別の構成においては、RF出力が内側電極1224に加えられ、外側電極1225が接地され、誘電体チューブ1214が、エッチングに対して実質的に耐性のある材料で形成される。
【0060】
別の構成においては、どちらの電極1224、1225がRF出力源1222と電気接触しているかに関わらず、誘電体チューブ1214、1215の両方が、エッチングに対して実質的に耐性のある材料で形成される。エッチングに対して実質的に耐性のある材料は、酸化シリコンのエッチング(又は、スパッタリング)速度より少なくとも35倍低いエッチング(又はスパッタリング)速度を有する。好ましい構成においては、エッチングに対して実質的に耐性のある材料は、IV族半導体、サファイア、ポリカーボネート・アルミナ、窒化シリコン(Sixy、ここで、x>0、y>0)、炭化シリコン、及びホウケイ酸ガラスからなる群から選択される。
【0061】
ここで図5を参照すると、本発明に従った、プラズマ反応器の誘電体チューブの一部の上に保護層を有するプラズマ反応器の概略断面側面図が示される。誘電体チューブ1214、1215の一方又は両方は、第1の材料で形成することができ、プラズマ反応器チャンバ1205と接触し、かつ、反応域内に横方向に配置された誘電体チューブ1214、1215の一方又は両方の表面を、1つ又はそれ以上の第2の材料層1229で覆うことができ、第2の材料は、第1の材料より低いエッチング速度を有する。
【0062】
第2の材料層1229は、プラズマ反応器チャンバ1205の反応域内の誘電体チューブ1214、1215の一方又は両方の一部を実質的に覆う。第1の材料は、例えば、石英(SiOx)などの低コスト材料とすることができ、第2の材料は、IV族半導体、サファイア、ポリカーボネート・アルミナ、窒化シリコン(Sixy、ここで、x>0、y>0)、炭化シリコン、及びホウケイ酸ガラスからなる群から選択することができる。反応域内の誘電体チューブ1214、1215の一方又は両方の一部の上にある1つ又はそれ以上の第2の材料層1229は、約50nmから約2000nmまでの間の厚さを有することが好ましい。
【0063】
さらに、反応域内の誘電体チューブ1214、1215は、どちらも第2の材料層1229で覆われているが、第2の材料層1229を誘電体チューブ1214、1215の一方の上だけに設けてもよいことが認識されるであろう。上述のように、ナノ粒子形成の際、誘電体チューブ1214、1215の一方又は両方のエッチングを防止するように、第2の材料層1229に保護コーティングが設けられる。
【0064】
1つの構成において、第2の材料層1229は、プラズマ反応器チャンバ1205を通して第2の材料の前駆体ガスを導き、内側電極1224、外側電極1225、又はその両方にRF出力を順に加えることによって、形成することができる。第2の材料層1229が窒化シリコンで形成される構成では、誘電体チューブ1214、1215の一方又は両方の上にある第2の材料層1229は、プラズマ反応器チャンバ1205を通してN2(又は、アンモニア)及びシリコン前駆体(例えば、SiH4)を流し、内側電極1224、外側電極1225、又はその両方のいずれかにRF出力を順に加えることによって、形成することができる。一般に、窒化シリコン層が、反応域において誘電体チューブ1215(又は、図4A−図4Bに示されるような誘電体スリーブ1216)の一部に塗布される場合、RF出力が外側電極1225に加えられ、内側電極1224が接地1226されることが好ましい。窒化シリコン層が、反応域において誘電体チューブ1214(又は、図4A−図4Bに示されるような誘電体スリーブ1217)の一部に塗布される場合、RF出力が内側電極1224に加えられ、外側電極1225が接地1226されることが好ましい。
【0065】
さらに、窒化シリコン層が、反応域において誘電体チューブ1214、1215(又は誘電体スリーブ1216、1217)の両方の一部に塗布される場合、両方の電極にRF出力を順に加えることができる。すなわち、窒化シリコン前駆体ガスを流しながら、RF出力を一方の電極(例えば、内側電極1224)に加え、他方の電極(例えば、外側電極1225)を接地1226することができ、所定時間の後(下記を参照されたい)、RF出力を他方の電極(例えば、外側電極1225)に加え、RF出力源1222に既に接続されている電極を接地する1226ことができる。
【0066】
第2の材料層1229が窒化シリコンで形成される場合、所定の時間、RF出力を内側電極1224又は外側電極1225のいずれかに加えながら、窒化シリコン前駆体ガス(例えば、N2又はNH3、及びSiH4)が与えられる。窒化シリコン・コーティング(又は層)を形成するために用いられるRF出力は、約1Wから50Wまでの間であり、より好ましくは、約1Wから30Wまでの間であり、最も好ましくは、約1Wから25Wまでの間である。窒化シリコン層を形成するための時間は、好ましくは、約1分から約20分までの間であり、より好ましくは、約1分から約15分までの間であり、最も好ましくは、約1分から約10分までの間である。窒化シリコン・コーティングを塗布している間、反応器1200の全体をアニールすることが好ましい。例えば、反応器1200を耐性加熱テープで包み、出力を加熱テープに加えることによって、反応器1200をアニールすることができる。
【0067】
代案として、加熱テープを用いて、反応器1200をアニールすることができる。反応器1200は、好ましくは約100℃から約500℃までの間、より好ましくは約150℃から約400℃までの間、最も好ましくは約200℃から約300℃までの間の温度でアニールされる。窒化シリコン層は、これが誘電体チューブ1214又は1215(或いは、使用される場合、誘電体スリーブ1216又は1217)に塗布された後にアニールされることが好ましい。窒化シリコン・コーティングは、好ましくは約250℃から約700℃までの間、より好ましくは約350℃から約600℃までの間、最も好ましくは、約450℃から約550℃までの間の温度でアニールされ、かつ、好ましくは約1分から約60分までの間、より好ましくは約10分から約50分までの間、最も好ましくは約20分から約35分までの間の時間アニールされる。
【0068】
次に、誘電体チューブ1214又は1215(或いは、誘電体スリーブ1216又は1217)に塗布された窒化シリコン層を有するプラズマ反応器1200を用いて、IV族半導体ナノ粒子のようなIV族ナノ粒子を生成することができる。好ましい方法は、反応域において誘電体チューブの一部の上に窒化シリコン層を形成することを可能にすることが認識されるであろう。すなわち、RF出力が内側電極1224又は外側電極1225のいずれかに与えられた場合、窒化シリコン前駆体ガスの励起種が反応域内に形成され、反応して反応域内の誘電体チューブ1214、1215の一方又は両方の一部の上に窒化シリコン層を形成する。場合によっては、均一な窒化シリコン層が望まれる場合には、RF及び接地構成を(上述のように)交互させることができる。1つの構成においては、RF出力を外側電極1225に加え、内部電極1224を接地することにより、誘電体チューブ1214及び1215の上に窒化シリコン層が生成される。RFパラメータを調整して、所望の厚さを有する窒化シリコン層をもたらすことができる。
【0069】
代替的な構成においては、第2の材料層1229を、例えば、ホウケイ酸ガラスなどの他の材料で形成することができる。さらに、第2の材料層1229が誘電体チューブ1214、1215(又は、誘電体スリーブ1216、1217)の両方に塗布されることになる場合、各々の誘電体チューブ(又はスリーブ)の上に異なる材料を塗布してもよい。一例として、誘電体チューブ1215の上の第2の材料層が窒化シリコンで形成される場合には、誘電体チューブ1214の上の第2の材料層を、ホウケイ酸ガラスで形成することができる。さらに、誘電体チューブの上に第2の材料層を形成する上述の方法は、複数の反応域を有するプラズマ反応器に適用することもできる。
【0070】
ここで図6を参照すると、本発明に従った、誘電体チューブの上に窒化シリコン・コーティングを有する(点線)及び有しない(実線)プラズマ反応器を用いて形成されたシリコン・ナノ粒子粉末の、簡単化されたフーリエ変換赤外線(FTIR)スペクトルが示される。反応域内の誘電体チューブ1214、1215の一部の上に窒化シリコン層を有する(点線)及び窒化シリコン層を有しない(実線)プラズマ反応器1200を用いて、シリコン・ナノ粒子粉末のFTIRスペクトルが生成された。
【0071】
誘電体チューブ1214、1215が、石英(SiOx)で形成された。窒化シリコン・コーティングを有さずに、ナノ粒子粉末のFTIRスペクトルは、1000cm-1を僅かに上回る広範な酸化シリコン関連のピークを表示した。このことは、ナノ粒子の生成の際、誘電体チューブ1214、1215の一方又は両方の一部がエッチング又はスパッタリングされて気相になり、ナノ粒子内に組み込まれたことを示す。しかしながら、窒化シリコン・コーティングを有する(すなわち、反応域内の誘電体チューブ1214、1215の一部が窒化シリコンで被覆された)反応器を用いて形成されたナノ粒子粉末のFTIRスペクトルは、酸化シリコン関連のピークを示さず、ナノ粒子の汚染と関連した問題が排除されたことを示した。
【0072】
図7は、本発明に従った、IV族半導体又は金属ナノ粒子を形成するように構成された簡単化されたプラズマ反応システムを示す。一般に、プラズマ反応システム100は、ナノ粒子前駆体ガス・マニホルド150を定める複数のナノ粒子前駆体ガスラインを含む。ガスライン130は、ガス源131、ガスから酸素と水をガス洗浄するためのガスライン・トラップ132、酸素と水の濃度を監視して、これらが所望のレベルの範囲内にあることを確実にするためのガスライン分析器134、ガスライン流量調整器135、及びガスライン弁137から成る。ガスライン130を構成する全ての要素が、ガスライン導管133を通して互いに流体連通している。ガスライン130は、例えば、ナノ粒子前駆体ガスラインとして用いることができる。
【0073】
下記により詳細に説明されるように、ナノ粒子前駆体ガス・パスは、主ナノ粒子前駆体ガス、ナノ粒子ドーパント・ガス、ナノ粒子コア前駆体ガス、ナノ粒子シェル前駆体ガス、緩衝ガス、及びこれらの組み合わせを含むことができる。ガスラインを用いてナノ粒子ドーパント前駆体ガスを運ぶとき、ドーパント・ガスの反応性が高くなく、ドーパント・ガスを有効にフィルタ処理できる場合には、ドーパント・ガスから酸素と水をガス洗浄するためのガスライン・トラップ132は随意的である。同様に、ドーパント・ガスの反応しえが高くない場合には、ガスライン分析器134を用いることができる。ドーパント・ガスの反応性が高い場合には、ガスライン・トラップ132及びガスライン分析器134を省くことができる。このことは、それぞれガス源111及び121、導管113及び123、ガスライン流量調整器115及び125、及びガスライン弁117及び127を含むガスライン110及び120に示される。
【0074】
一般に、ライン110、120、130からのガスは、入口ライン弁212を含む入口ライン210を介してプラズマ反応器500と流体連通している。ナノ粒子前駆体ガス及び緩衝ガスは、プラズマ反応器500の入口ポートを通してプラズマ反応器500に導入され、電極アセンブリ520によって部分的に定められたプラズマ反応器500のプラズマ反応器チャンバ及び反応域を通して連続的に流れ、そこでナノ粒子が形成される。RF出力は、RF出力源522により供給される。次に、結果として生じるナノ粒子が、ナノ粒子収集チャンバ330内に集められる。
【0075】
収集チャンバ330は、プラズマ反応器500の下流に配置することができる。ナノ粒子収集チャンバ330は、例えば、ナノ粒子を集めるように構成されたグリッド又はメッシュを含むことができる。プラズマ反応器500の出口ポートを介して、ナノ粒子をナノ粒子収集チャンバ330に向けることができる。一般に、ナノ粒子はプラズマ反応器500を出て、出口ライン310に流入する。ナノ粒子は、弁312によりプラズマ反応器500から分離されたナノ粒子収集チャンバ330内に集めることができる。排ガス(例えば、未反応のナノ粒子前駆体ガス、ドーパント・ガス、キャリアガス)は、出口ライン331を通してナノ粒子収集チャンバ330から流出する。弁332は、ナノ粒子収集チャンバ330の下流に配置される。
【0076】
1つの構成において、収集チャンバ330は、約10ミリトールの圧力範囲まで周囲空気を排除するように構成された気密収集チャンバからなることができる。一般に、プログラム可能な自動制御装置(PAC)を介して、収集チャンバ330により行なわれる収集作業に固有の自動装置を制御することができる。収集チャンバ330は、入口及び出口ポートを有するようにさらに構成することができる。全てのガス及び粒子が入口ポートを介して入り、出口ポートを介して出て行く前にフィルタ膜を通過するように、振動装置を有するフィルタ膜をチャンバ内に対角線上に取り付けることができる。
【0077】
所定の圧力において、圧力センサは、フィルタ媒体に取り付けられた振動装置を作動させ、捕捉された粒子状物質を除去することができる。さらに、チャンバの下部は、膜から除去された粒子を集める収集ホッパーとすることができる。ホッパーはまた、振動装置と、ホッパーがいっぱいになったときに開き、集められた材料がホッパーの底部を通って固定された処理容器内に落ちることを可能にする二重弁アセンブリとを有することもできる。チャンバは、安全装置の一部として機能する1つ又はそれ以上の酸素センサをさらに有することができる。一般に、収集チャンバ内の酸素レベルが所定の安全限度値を上回った場合、制御装置は、チャンバを分離し、チャンバを不活性ガスで満たし、チャンバ内の有害反応を防止するためのシーケンスを開始する。
【0078】
プラズマ反応器500は、IV族ナノ粒子を形成できる任意のプラズマ反応器とすることができる。一例として、パルス反応器500は、図1−図5に関連して上述されたプラズマ反応器のいずれか1つとすることができる。別の例として、プラズマ反応器500は、特許文献1に記載されたデュアルリング型プラズマ反応器のような、デュアルリング型プラズマ反応器とすることができる。
【0079】
ナノ粒子収集チャンバ330内の圧力は、圧力センサ320、制御装置322、スロットル弁324、及び排出アセンブリ400から成る圧力制御システムによって調整することができる。例えば、スロットル弁324は、バタフライ弁とすることができる。作動においては、入口弁312及び出口弁332は開いており、スロットル弁324は部分的に開いている。一般に、ナノ粒子がナノ粒子収集チャンバ330内に集められるに従い、ナノ粒子収集チャンバ330内の圧力が増大する。この圧力の増大が、圧力センサ320によって検知される。制御装置322は、バタフライ弁324を開けてナノ粒子収集チャンバ330から出るガスの流量を増加させることによって、ナノ粒子収集チャンバ330内の圧力を減少させる。排出ライン410と、粒子トラップ414と、ミスト・トラップ434を有するポンプ430とを含む排出アセンブリ400が、ナノ粒子収集チャンバ330の下流にある。
【0080】
ナノ粒子の純度を保証するために、プラズマ反応器500、並びに、随意的に前駆体ガス・マニホルド150及びナノ粒子収集チャンバ330は、例えば、グローブボックスのような封止された不活性環境内に配置することができる。ここで用いられる「不活性環境」とは、他のガス及びプラズマ反応器500内に形成されたナノ粒子と反応可能なガス、溶媒、及び/又は溶液がない、化学的に未反応のバックグラウンド環境を記述する。不活性環境は、ナノ粒子の電気的特性、光電特性、及び発光特性に悪影響を及ぼさないことが好ましい。不活性ガス、溶媒、及び溶液は、ナノ粒子の物理特性に悪影響を及ぼさないように、ナノ粒子と反応しないことが好ましい。1つの構成において、不活性環境は、不活性ガス(例えば、N2、Ar、He)で、ナノ粒子反応チャンバ及びナノ粒子収集チャンバを有するエンクロージャを埋め戻すことによって確立される。不活性ガスの圧力を調整して、エンクロージャ内の不活性ガスの圧力が所望のレベルに維持されることを確実にすることができる。別の構成においては、エンクロージャを真空下に保持することによって、不活性環境が確立される。
【0081】
不活性環境を与えるために用いることができる不活性ガスの例として、窒素、並びに、例えばAr及びHeなどの希ガスが挙げられる。幾つかの構成において、不活性環境には、実質的に酸素がない。ここで用いられる「実質的に酸素がない」とは、環境と接触するナノ粒子の酸化を、排除されないにせよ、最小にするために酸素含有量が減少された、ガス、溶媒、及び/又は溶液を有する環境を指す。
【0082】
本発明者らは、場合によっては、使用後に反応器500を開けた場合、ナノ粒子の生成の際に用いられたナノ粒子前駆体種の少なくとも一部が、ナノ粒子前駆体ガスに曝された反応器500の壁(又は表面)から脱着することを観察した。脱着ガスが有害である場合、このことは、健康及び安全問題をもたらす可能性がある。一例として、ドーパント前駆体ガスとしてPH3を用いてn型ナノ粒子を形成した後、反応器500が空気に曝された後に、反応器500付近のPH3の濃度が、検知不能レベルから約13百万分率(parts per million、「ppm」)に増加した。従って、ナノ粒子生成の際にナノ粒子前駆体ガスに曝された反応器500の表面から、ナノ粒子前駆体種を除去する方法に対する必要性がある。
【0083】
一般に、ナノ粒子の形成に続いて、プラズマ反応器500を通して洗浄ガスを流す(又は導く)ことによって、ナノ粒子前駆体種をプラズマ反応器500から除去することができる。洗浄ガスは、プラズマ反応器500の上流に与えられるキャリアガス及び/又はプラズマ反応器500の下流にもたらされる真空の助けにより、プラズマ反応器500を通して導くことができる。洗浄ガスは、ナノ粒子前駆体種と反応して、ナノ粒子形成の際にナノ粒子前駆体ガスに曝されたラズマ反応器500の表面から、ナノ粒子前駆体ガスを除去することができる。しかしながら、洗浄ガスがナノ粒子前駆体種と反応する必要はない。
【0084】
プラズマ反応器500を通して洗浄ガスを流すことにより、後でプラズマ反応器500の下流の収集容器内に捕捉される排ガスが生成される。排ガスは、洗浄ガス、ナノ粒子前駆体種、キャリアガス、及びこれらの組み合わせを含むことができる。場合によっては、排ガスは、ナノ粒子前駆体種と洗浄ガスの間の反応時に形成される種を含むことができる。一般に、収集容器は、排ガスが凝縮して、排ガス内に種の少なくとも一部を有する液体及び/又は固体を形成する、例えば冷却トラップなどのトラップである。一般的に、洗浄ガスは、1つ又はそれ以上の有機化学物質を含む。
【0085】
代替的に、洗浄ガスは、アルコール、カルボン酸、アルデヒド、及びケトンからなる群から選択される。例えば、洗浄ガスは、キャリアガスが与えられたイソプロパノール蒸気とすることができる。キャリアガスの例には、希ガス(例えば、He、Ar等)、酸素、窒素、水素、又は周囲空気が含まれる。洗浄ガスは、プラズマ反応器の下流に真空を適用したとき及び/又はプラズマ反応器500の上流に加圧キャリアガスを適用したときに、プラズマ反応器500を通して導くことができる。
【0086】
ナノ粒子前駆体種は、一般に、ナノ粒子生成(又は形成)の際にナノ粒子前駆体ガスに曝されたプラズマ反応器500の壁上に吸着した原子及び分子を指す。一例として、ナノ粒子形成の際にPH3が用いられた場合、ナノ粒子前駆体種は、ナノ粒子形成の際にPH3に曝されたプラズマ反応器500の壁上に吸着したPH3を含む。ナノ粒子前駆体種はまた、ナノ粒子形成の際にナノ粒子に曝されたプラズマ反応器500の表面上に堆積されたナノ粒子上にも吸着することがある。
【0087】
上述のように、プラズマ反応器500は、ナノ粒子を形成するように構成された任意のプラズマ反応器とすることができる。プラズマ反応器500が、(図1A−図1Bに示されるような)説明されたプラズマ反応器1200のような同心電極プラズマ反応器である場合、ナノ粒子前駆体種は、プラズマ反応器1200の内側誘電体チューブ1214及び外側誘電体チューブ1215の表面上に吸着することがある。さらに、ナノ粒子前駆体種は、ナノ粒子形成の際にナノ粒子前駆体ガスに曝されるプラズマ反応器500の壁(又は表面)上に堆積されたナノ粒子上に吸着することがある。
【0088】
さらに、プラズマ反応器500と流体連通しているバブラー600を含むナノ粒子前駆体ガス回収システムが示される。弁605は、プラズマ反応器500内に向けられるガスラインから、バブラー600を分離する。バブラー600は、ライン610を介して、不活性ガス供給部、又は代替的に周囲環境(例えば空気)と流体連通している。1つの構成において、バブラー600は、プロトン性溶媒特性を有する液体で満たされることが好ましい。この液体は、水、イソプロパノール又は他のアルコール、カルボン酸、ケトン、第一級及び第二級アミン、アンモニアとすることができる。
【0089】
ライン610は、ナノ粒子前駆体ガス回収システムが使用されていないときにバブラー600を周囲環境から封止するための弁612を含むことができる。バブラー600は、通常、洗浄ガスを提供する。ナノ粒子前駆体ガス回収システムは、プラズマ反応器500からの排ガスを捕捉するように構成されたナノ粒子前駆体ガス・トラップ615(「トラップ」)をさらに含む。1つの構成において、トラップ615は、例えば、液体窒素冷却トラップのような冷却トラップである。弁620は、ナノ粒子収集チャンバ330をトラップ615から分離する。プラズマ反応器500の作動の際、弁625は、トラップ615をプラズマ反応器500及びナノ粒子収集チャンバ330から分離する。トラップ615は、例えば機械式ポンプのような真空源630と流体連通している。ナノ粒子を形成するためにプラズマ反応器500を作動させる際、弁620は通常開いており、弁605及び625は通常閉じており、バブラー600及びトラップ615をプラズマ反応器500から分離する。
【0090】
一般に、ナノ粒子を生成するためのプラズマ反応器500の作動に続いて、弁212及び620を閉じ、弁605、612及び625を開け、真空源630を介して真空をトラップ615に適用することによって、プラズマ反応器500から、1つ又はそれ以上のナノ粒子前駆体種(例えば、ドーパント前駆体種)を除去することができる。バブラー600がライン610を介して不活性ガス源と流体連通している場合には、不活性ガス流を開始することができる。ライン610を介して与えられる不活性ガス又は空気は、バブラー600内の液体を通って導かれ(又はバブリングされ)、液体の分子を含む洗浄ガスを形成する。
【0091】
洗浄ガスをプラズマ反応器500内に導くことができ、そこで、洗浄ガスは、ナノ粒子形成の際に1つ又はそれ以上のナノ粒子前駆体ガスに曝されるプラズマ反応器500の壁から、1つ又はそれ以上のナノ粒子前駆体種を除去する。結果として生じる排ガスは、引き続きトラップ615内に導かれ、そこで捕捉される。所定時間の後、弁605、612及び625が閉じられ、トラップ615が除去されて、排ガスからのトラップ615内に集められた種を処分するために処理される。これは、グローブボックス(又は、不活性環境)内で実行することができる。
【0092】
ナノ粒子前駆体ガス回収システムの使用を実証する例として、バブラー600が、イソプロパノールで満たされ、ライン610が、周囲環境(すなわち、空気)と流体連通し、トラップ615が液体窒素の冷却トラップであり、真空630が機械式ポンプ(図示せず)により供給された。弁212及び620が開けられ、弁605、612及び625が閉じられた。プラズマ反応器は、図1A−図1Bに関連して上述された同心電極プラズマ反応器であった。最初にプラズマ反応器を用いて、特にPH3をドーパント前駆体ガスとして用いてn型ナノ粒子を形成した。RF出力供給522を止め、ナノ粒子前駆体ガスの供給を終了させることによって、プラズマ反応器500内でのナノ粒子の形成を終了した。その後、弁212及び620が閉じられ、弁605、612及び625が開けられた。
【0093】
バブラー600内でイソプロパノールを通して空気をバブリングし、空気−イソプロパノール・ガスの混合物を含む洗浄ガスを形成し、この洗浄ガスは、真空630によりプラズマ反応器500内に導かれた。空気−イソプロパノール・ガスの混合物が、プラズマ反応器からPH3を除去し、結果として生じる排ガスが、真空630により液体窒素冷却トラップ615内に導かれ、そこで、排ガスが凝縮された。約3時間、プラズマ反応器500を通して洗浄ガスを流した後、弁605、612及び625が閉じられ、液体窒素冷却トラップ615が除去された。トラップ615は、グローブボックスに運ばれ、そこで排ガスから捕捉された種が処分された。次に、プラズマ反応器500が、周囲環境に曝された。反応器500付近で測定されたPH3の濃度は、1ppm未満であった。
【0094】
一般に、ナノ粒子前駆体ガス回収システムは、洗浄ガスを提供するためのバブラー600を含むが、他の手段によっても洗浄ガスを提供することができる。一例として、ナノ粒子形成の際にナノ粒子前駆体ガスに曝されるプラズマ反応器500の表面からナノ粒子前駆体種を除去することができる1つ又はそれ以上の化学物質を有する加圧キャニスタによって、洗浄ガスを提供することができる。
【実施例1】
【0095】
誘電体チューブ1215の窒化シリコン層の形成を示す例として、石英で形成された、内側誘電体チューブ1215及び外側誘電体チューブ1214を有する反応器1200が使用された。外側誘電体チューブ1214は、約51mmの外径と、約48mmの内径とを有していた。内側誘電体チューブ1215は、約19mmの外径と、約17mmの内径とを有していた。内側電極1224及び外側電極1225は、それぞれ銅で形成された。外側電極1225は、約75mmの長さと、約54mmの外径とを有していた。内側電極1224は、約16mmの外径と、約75mmの長さとを有していた。RF出力は外側電極1225に加えられ、内側電極1224は接地1226された。
【0096】
シランは、約7.5標準立法センチメートル毎分(sccm)の流速でプラズマ反応器1200内に導かれ、N2(g)は、約100sccmの流速でプラズマ反応器内に導かれ、プラズマ反応器1200は、約0.48トールのプラズマ反応器圧力(又はプラズマ・チャンバ圧力)を有していた。窒化シリコン層を形成するために、RF出力が、約13.56MHzのRF周波数において、約15WのRF出力で加えられた。RF出力が、約10分から15分までの間加えられた。内側誘電体チューブ1215の上に形成された窒化シリコン層(又は膜)が、約30分間、約500℃でアニールされた。
【実施例2】
【0097】
別の例において、p型シリコン・ナノ粒子の粒子が、実施例1に説明されたプラズマ反応器内に準備された。p型シリコン・ナノ粒子は、反応器を通して、ジボランを含むドーパント・ガス及びシランを含むIV族半導体前駆体ガスを流し、RF出力を外側電極に加えることによって準備された。ジボランは、アルゴン・キャリアガスの助けにより、プラズマ反応器を通して導かれた。ジボランの濃度は、約1000ppmであった。
【0098】
ドーパント・ガスの流速は、約160sccmであり、IV族半導体前駆体ガスの流速は、約16sccmであり、これにより、プラズマ反応器における約2.0%のホウ素対シリコン比が与えられた。外側電極に供給されたRF出力は、約78Wであった。プラズマ反応器チャンバ内の圧力は、約8トールであった。
【実施例3】
【0099】
別の例において、ドープされたIV族半導体の薄膜が、p型シリコン・ナノ粒子から形成された。p型シリコン薄膜のために用いられた基板は、1インチ×1インチ×0.04インチの石英基板であった。石英基板が、アルゴン・プラズマを用いて洗浄された。実施例1に説明されたプラズマ反応器を用いて、p型シリコン・ナノ粒子が準備された。p型シリコン・ナノ粒子を用いて、薄膜の形成に用いられたシリコン・ナノ粒子インク(又は、コロイド分散)が、不活性環境内に準備された。インクは、クロロホルム及びクロロベンゼンの4:1の混合物(体積で)の20mg/ml溶液として調合され、これは、15分間、35%の出力の超音波処理ホーンを用いて超音波処理された。
【0100】
インクが、石英基板の表面を実質的に覆うために使用され、60秒間、1000rpmで基板上のインクを回転成形することによって、シリコン・ナノ粒子の多孔質体が形成された。約650nmから約700nmまでの間の厚さを有する、シリコン・ナノ粒子多孔質体を形成した後、15分の加熱勾配を用いて、約5×10-6トールから約7×10-6トールまでの間の圧力で、約15分間100℃で多孔質体を焼成することを含むコンディショニング・ステップを用いて、p型シリコン薄膜が製造された。これに続いて、製造温度までの15分の加熱勾配を用いて、約6分間、約5×10-6トールから約7×10-6トールまでの間の圧力、765℃の製造温度で、熱処理が行なわれた。シリコン基板上に、高密度にドープされたIV族半導体薄膜が形成された。ドープされたIV族半導体薄膜は、約300nmから約350nmまでの間の厚さを有していた。
【0101】
一般に、上述の電極アセンブリ及びプラズマ反応器チャンバは、前駆体ガス入口マニホルド、ナノ粒子収集マニホルド、及び圧力制御システムのような付加的な外部コンポーネントを含むことができるより大きいプラズマ反応システム内に容易に組み込まれる。コンピュータ制御システムを用いて、ナノ粒子前駆体ガスの流速、プラズマ反応器内の圧力、及びRF出力源を調整することができる。
【0102】
この開示の目的のため、特に指定のない限り、「a」又は「an」は、「1つ又はそれ以上」を意味する。本明細書で引用される全ての特許、出願、参考文献、及び刊行物は、それらが引用により別個に組み入れられる場合と同じ程度まで、全体が引用により組み入れられる。
【0103】
例示的な実施形態及び最良の形態を開示した場合、当業者であれば、本発明の主題及び精神の範囲内に留まりながら、開示された実施形態に対して種々の省略、付加、及び修正をなし得ることを認識するであろう。このような修正及び変更は、添付の特許請求の範囲により定められるような、本発明の範囲内に含まれることが意図される。
【符号の説明】
【0104】
212、605、612、620、625:弁
330:ナノ粒子収集チャンバ
500、1200、1300:プラズマ反応器
600:バブラー
615:トラップ
630:真空源
1205:プラズマ反応器チャンバ
1214、1215:誘電体チューブ
1216、1217:誘電体スリーブ
1222、1320:RF出力源
1224、1223:内側電極
1221、1231:外側電極
1226、1326:接地
1310、1311、1312、1313、1314:環状チャネル

【特許請求の範囲】
【請求項1】
外側チューブ内面と外側チューブ外面とを含み、前記外側チューブ内面は外側チューブ内面エッチング速度を有する、外側誘電体チューブと、
内側チューブ外面を含み、前記外側チューブ内面及び前記内側チューブ外面は環状チャネルを定め、さらに該内側チューブ外面は内側チューブ外面エッチング速度を有する、内側誘電体チューブと、
前記外側チューブ外面上に配置された第1の外側電極内面を有する第1の外側電極と、
前記内側誘電体チューブの内部に配置され、かつ、第1のRFエネルギー源が前記第1の外側電極及び第1の中央電極の一方に加えられたとき、該第1の外側電極に結合されるようにさらに構成された、第1の中央電極と、
前記第1の外側電極と前記第1の中央電極との間に定められた第1の反応域と、
を備えることを特徴とするプラズマ処理装置。
【請求項2】
誘電体スリーブは、前記内側誘電体チューブの周りに長手方向に配置されたことを特徴とする、請求項1に記載の装置。
【請求項3】
前記内側誘電体チューブの少なくとも一部は、前記内側チューブ外面エッチング速度より実質的に低い材料エッチング速度を有する材料で被覆されたことを特徴とする、請求項1に記載の装置。
【請求項4】
前記材料は、IV族半導体、サファイア、ポリカーボネート・アルミナ、窒化シリコン(Sixy、ここで、x>0、y>0)、炭化シリコン、及びホウケイ酸ガラスからなる群から選択されることを特徴とする、請求項3に記載の装置。
【請求項5】
前記外側誘電体チューブの少なくとも一部は、前記外側チューブ内面エッチング速度より実質的に低い材料エッチング速度を有する材料で被覆されたことを特徴とする、請求項1に記載の装置。
【請求項6】
前記材料は、IV族半導体、サファイア、ポリカーボネート・アルミナ、窒化シリコン(Sixy、ここで、x>0、y>0)、炭化シリコン、及びホウケイ酸ガラスからなる群から選択されることを特徴とする、請求項5に記載の装置。
【請求項7】
ナノ粒子収集チャンバが、前記第1の反応域の下流でIV族半導体ナノ粒子の前記組を捕捉するように構成されたことを特徴とする、請求項1に記載の装置。
【請求項8】
第2の外側電極及び第2の中央電極によって定められた第2の反応域をさらに含み、前記第2の外側電極は、前記外側チューブ外面上、及び、前記第1の外側電極の下流に配置された第2の外側電極内面を有し、前記第2の中央電極は、前記第1の中央電極の下流の前記内側誘電体チューブの内部に配置され、該第2の中央電極は、第2のRFエネルギー源が該第2の外側電極及び該第2の中央電極の一方に加えられるとき、該第2の外側電極に結合されるようにさらに構成されることを特徴とする、請求項1に記載の装置。
【請求項9】
ナノ粒子収集チャンバが、前記第2の反応域の下流でナノ粒子の組を捕捉するように構成されたことを特徴とする、請求項8に記載の装置。
【請求項10】
前記環状チャネルに結合され、かつ、前記第1の反応域の下流にさらに配置された、ナノ粒子前駆体ガス回収システムをさらに含むことを特徴とする、請求項1に記載の装置。
【請求項11】
前駆体ガスのかなりの部分を除去するように構成された前駆体ガス・トラップをさらに含み、前記前駆体ガス・トラップは、前記第1の反応域の下流に配置されたことを特徴とする、請求項1に記載の装置。
【請求項12】
外側誘電体チューブ内面と外側誘電体チューブ外面とを含み、前記外側誘電体チューブ内面は外側チューブ内面エッチング速度を有する、外側誘電体チューブと、
内側誘電体チューブ外面を含み、前記外側誘電体チューブ内面及び前記内側誘電体チューブ外面は環状チャネルを定め、さらに前記内側誘電体チューブ外面は内側誘電体チューブ外面エッチング速度を有する、内側誘電体チューブと、
前記外側誘電体チューブ外面上に配置された第1の外側電極内面を有する第1の外側電極と、
前記内側誘電体チューブの内部に配置され、かつ、第1のRFエネルギー源が前記第1の外側電極及び第1の中央電極の一方に加えられたとき、該第1の外側電極に結合されるようにさらに構成された、第1の中央電極と、
前記第1の外側電極と前記第1の中央電極との間に定められた第1の反応域と、
前記第1の外側電極の下流の前記外側誘電体チューブ外面上に配置された第2の外側電極内面を有する第2の外側電極と、
前記第1の中央電極の下流の前記内側誘電体チューブの内部に配置され、かつ、第2のRFエネルギー源が前記第2の外側電極及び第2の中央電極の一方に加えられたとき、該第2の外側電極に結合されるようにさらに構成された、第2の中央電極と、
前記第2の外側電極と前記第2の中央電極との間に定められた第2の反応域と、
を備えることを特徴とするプラズマ処理装置。
【請求項13】
誘電体スリーブは、前記内側誘電体チューブの周りに長手方向に配置されたことを特徴とする、請求項12に記載の装置。
【請求項14】
前記内側誘電体チューブの少なくとも一部は、前記内側誘電体チューブ外面エッチング速度より実質的に低い材料エッチング速度を有する材料で被覆されたことを特徴とする、請求項12に記載の装置。
【請求項15】
前記材料は、IV族半導体、サファイア、ポリカーボネート・アルミナ、窒化シリコン(Sixy、ここで、x>0、y>0)、炭化シリコン、及びホウケイ酸ガラスからなる群から選択されることを特徴とする、請求項14に記載の装置。
【請求項16】
前記外側誘電体チューブの少なくとも一部は、前記外側誘電体チューブ内面エッチング速度より実質的に低い材料エッチング速度を有する材料で被覆されたことを特徴とする、請求項12に記載の装置。
【請求項17】
前記材料は、IV族半導体、サファイア、ポリカーボネート・アルミナ、窒化シリコン(Sixy、ここで、x>0、y>0)、炭化シリコン、及びホウケイ酸ガラスからなる群から選択されることを特徴とする、請求項16に記載の装置。
【請求項18】
ナノ粒子収集チャンバが、前記第1の反応域の下流でIV族半導体ナノ粒子の組を捕捉するように構成されたことを特徴とする、請求項12に記載の装置。
【請求項19】
前駆体ガスのかなりの部分を除去するように構成された前駆体ガス・トラップをさらに含み、前記前駆体ガス・トラップは、前記第1の反応域の下流に配置されたことを特徴とする、請求項12に記載の装置。
【請求項20】
IV族半導体ナノ粒子の組を生成する方法であって、
外側誘電体チューブ内面と外側誘電体チューブ外面とを有する、外側誘電体チューブと、
内側誘電体チューブ外面を含み、前記外側誘電体チューブ内面及び前記内側誘電体チューブ外面は環状チャネルを定める、内側誘電体チューブと、
前記外側誘電体チューブ外面上に配置された外側電極内面を有する、外側電極と、
前記第1の内側誘電体チューブの内部に配置され、かつ、前記第1の外側電極に電気的に接続するようにさらに構成された、第1の中央電極と、
を含むプラズマ装置のプラズマ・チャンバを通して前駆体ガスを流し、
RFエネルギー源を前記第1の外側電極及び前記第1の中央電極の一方に加え、それにより前記IV族半導体ナノ粒子の組を生成し、
前記IV族半導体ナノ粒子の組を集め、
前記環状チャネルを通して洗浄ガスを流す、
ステップを含むことを特徴とする方法。
【請求項21】
前記洗浄ガスは、アルコール、カルボン酸、アルデヒド、及びケトンからなる群から選択されることを特徴とする、請求項20に記載の方法。
【請求項22】
前記洗浄ガスは、イソプロパノールであることを特徴とする、請求項20に記載の方法。
【請求項23】
前記洗浄ガスは、キャリアガスと共に前記環状チャネルを通して導かれることを特徴とする、請求項21に記載の方法。
【請求項24】
前記キャリアガスは、希ガス及び空気の一方であることを特徴とする、請求項23に記載の方法。
【請求項25】
前記IV族半導体ナノ粒子の組はドープされていることを特徴とする、請求項20に記載の方法。
【請求項26】
第1の反応域は、前記第1の外側電極と前記第1の中央電極との間に定められ、さらに前記プラズマ装置は、第2の外側電極及び第2の中央電極によって定められた第2の反応域をさらに含み、前記第2の外側電極は、前記外側チューブ外面上、及び、該第1の外側電極の下流に配置された外側電極内面を有し、前記第2の中央電極は、該第1の中央電極の下流の前記内側誘電体チューブの内部に配置され、該第2の中央電極は、第2のRFエネルギー源が該第2の外側電極及び該第2の中央電極の一方に加えられるとき、該第2の外側電極に結合されるようにさらに構成されたことを特徴とする、請求項20に記載の方法。
【請求項27】
前記IV族半導体ナノ粒子の組は、前記第1の反応域内で生成され、かつ、前記第2の反応域内で不動態化剤により不動態化されることを特徴とする、請求項26に記載の方法。

【図1A】
image rotate

【図1B】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4A】
image rotate

【図4B】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公表番号】特表2010−533066(P2010−533066A)
【公表日】平成22年10月21日(2010.10.21)
【国際特許分類】
【出願番号】特願2010−516082(P2010−516082)
【出願日】平成20年5月1日(2008.5.1)
【国際出願番号】PCT/US2008/062182
【国際公開番号】WO2009/009212
【国際公開日】平成21年1月15日(2009.1.15)
【出願人】(506418921)イノヴァライト インコーポレイテッド (11)
【Fターム(参考)】