説明

真空制御バルブ及び真空制御システム

【課題】本発明は遮断機能を有する真空制御バルブの設計自由度を高める技術を提供する。
【解決手段】本発明は、真空容器と真空ポンプとの間に接続され、作動流体によって弁開度を操作して真空容器内の真空圧力を制御する真空制御バルブ30を提供する。本真空制御バルブ30は、リフト量の調節による弁開度の操作と遮断とを行う弁体33とピストンとを有する動作部と、ピストンを収容するシリンダ31と、リフト量が小さくなる方向に動作部を付勢する付勢部と、ピストンの外周面とシリンダ31の内周面との間の隙間を、ピストンの動作に追従しつつ密閉するベロフラム34と、ベロフラム34によって密閉され、作動流体の作用圧力に応じてリフト量を大きくする方向に荷重を発生させる弁開度操作室と、作動流体の供給に応じて動作部に対してリフト量を小さくする方向に荷重を発生させる遮断荷重発生室と、を備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、半導体製造装置や液晶製造装置といった様々な真空装置に使用される真空容器内の気体を排出する真空制御弁に関する。
【背景技術】
【0002】
真空容器内の気体を排出する流路に装備され、その流路の弁開度を操作することによって真空容器内の真空圧力を制御する真空制御弁が実現されている。真空制御弁には、真空圧力の制御だけでなく流路を完全に遮断する遮断機能を有するものも提案されている。具体的には、付勢バネを使用する単動式のベロフラムシリンダで低ヒステリシスの弁開度操作を実現し、付勢バネによる遮断機能で流路を遮断する真空制御弁も本発明者から提案されている(特許文献1)。単動式のベロフラムシリンダで低ヒステリシスの弁開度操作が実現可能なのは、ピストンパッキンの摺動抵抗に起因するヒステリシスが回避可能だからである。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開平09−72458号公報
【特許文献2】特開平09−89126号公報
【特許文献3】特開2003−56512号公報
【特許文献4】特開2003−322111号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかし、遮断機能を有する単動式のベロフラムシリンダの真空制御弁には、大口径化において設計上の限界があることが本発明者によって見出された。遮断機能は、遮断時の耐圧性の確保のために口径面積に応じた荷重で遮断するので、大口径化が付勢バネの荷重増大の要因となるからである。大荷重を発生させる付勢バネは、バルブの組み立てを極めて困難とするので、製造性が著しく悪化することが本発明者によって見出された。一方、付勢バネを使用せずに、複動式のベロフラムシリンダとすることも本発明者によって検討されたが、ベロフラムシリンダの複動化は2個のベロフラムを対称に装備しなければならず、真空制御弁の大型化の要因となることが本発明者によって見出された。ベロフラムは、一方方向の圧力に対してのみ正常に作動するからである。
【0005】
本発明は、上述の従来の課題の少なくとも一部を解決するために創作されたものであり、遮断機能を有する真空制御バルブの設計自由度を高める技術を提供することを目的とする。
【課題を解決するための手段】
【0006】
以下、上記課題を解決するのに有効な手段等につき、必要に応じて効果等を示しつつ説明する。
【0007】
手段1.真空容器と真空ポンプとの間に接続され、作動流体によって弁開度を操作して前記真空容器内の真空圧力を制御する真空制御バルブであって、前記真空容器と前記真空ポンプとを接続する流路と、前記流路に形成されている弁座とを有する制御バルブ本体と、前記弁座との距離であるリフト量の調節による前記弁開度の操作と、前記弁座への当接による前記流路の遮断とを行う弁体と、ピストンと、前記弁体と前記ピストンとを結合するロッドと、を有する動作部と、前記制御バルブ本体に接続され、前記ピストンを収容するシリンダと、前記リフト量が小さくなる方向に前記動作部を付勢する付勢部と、前記ピストンの外周面と前記シリンダの内周面との間の隙間を、前記ピストンの動作に追従しつつ密閉するベロフラムと、を備え、前記動作部及び前記シリンダは、前記ベロフラムによって密閉され、前記ロッドを囲む筒状の形状を有する空間であって、前記作動流体の作用圧力に応じて前記ピストンに対して前記リフト量を大きくする方向に荷重を発生させる弁開度操作室と、前記弁開度操作室と中心軸線を共有し、前記作動流体の供給に応じて前記動作部に対して前記リフト量を小さくする方向に荷重を発生させる遮断荷重発生室と、を形成している真空制御バルブ。
【0008】
手段1は、真空容器と真空ポンプとの間に接続され、作動流体によって弁開度を操作して真空容器内の真空圧力を制御する真空制御バルブである。本真空制御バルブは、作動流体の圧力によってピストンに対して遮断荷重を印加する遮断荷重発生室を有するので、遮断機能に起因する付勢部に対する要求仕様を緩和することができる。これにより、遮断機能を有する真空制御バルブの設計自由度を高めることができる。
【0009】
遮断機能に起因する付勢部に対する要求仕様は、たとえば想定される最悪の状態として真空ポンプ側の接続口が大気開放状態で、真空容器側の接続口が真空状態となっているケースを想定して設定される。この設定では、真空ポンプ側接続口が大口径となるにしたがって、大きな付勢力が要求されることになる。このような付勢力を発生させる付勢部(たとえばバネ)の装備は、真空制御バルブの大型化の要因の一つとなり、製造時の組み付けの負担も過大となる。本真空制御バルブは、遮断荷重を印加する遮断荷重発生室の装備によって、このような問題を解決し、大型化を抑制するとともに製造性の確保と大口径化を実現することができる。
【0010】
追従性を有するベロフラムによる密閉(封止)は、ベロフラムでシリンダの内周面とピストンの外周面との間の摺動抵抗が小さく低ヒステリシスで高い応答性の作動を実現することができる。このような密閉構造は、付勢部を使用する単動式であれば上述の高性能の作動と、大型化の抑制とを両立させることができる。これにより、真空制御バルブは、リフト量の調節による低ヒステリシスで高い応答性の弁開度の操作を実現して、真空容器内の真空圧力を精密に制御することができる。
【0011】
一方、遮断荷重発生室は、動作部の動作方向に延びる中心線に対し、弁開度操作室の内側に形成されているので、以下の効果を奏することができる。
(1)摺動半径を小さくすることができるので、遮断荷重発生室の装備に起因する摺動抵抗の発生を抑制することができる。
(2)遮断荷重発生室は、ピストンの動作方向に延びる中心線の方向において弁開度操作室と重なる位置に配置することができるので、遮断荷重発生室の装備に起因する真空制御バルブの大型化を抑制することができる。
【0012】
このように、手段1の真空制御バルブは、真空制御バルブの大型化を抑制しつつ低ヒステリシスの制御機能を実現するとともに、遮断機能に起因する付勢部の設計自由度の制限を緩和させることができる。これにより、真空制御バルブの低ヒステリシスの制御性能の向上を実現しつつ、小型化及び製造性の向上をも両立させることができる。
【0013】
手段2.前記シリンダは、前記遮断荷重発生室に収容されている摺動凸部を有するヘッドカバーを備え、前記真空制御バルブは、前記遮断荷重発生室と前記摺動凸部との間を封止する封止面を有し、前記遮断荷重発生室への前記作動流体の供給に応じて前記封止面の面圧が高められる封止部を備える手段1に記載の真空制御バルブ。
【0014】
手段2の真空制御バルブには、遮断荷重発生室への作動流体の供給に応じて封止面の面圧が高められる封止部が遮断荷重発生室に使用されている。これにより、弁開度の操作時、すなわち非遮断時においては、遮断荷重発生室の封止面の面圧を抑制して低摩擦の摺動で動かすことができる。この結果、たとえばベロフラムをしなくても、簡易な構成で低ヒステリシスでの弁開度の操作を実現することができる。
【0015】
手段3.前記摺動凸部は、前記弁開度操作室と中心軸線を共有し、前記弁開度操作室の内径よりも小さな外径の円筒状の形状を有し、前記動作部は、前記摺動凸部の内周面に囲まれた空間において前記動作の方向に延びるガイド部を有し、前記真空制御バルブは、前記ガイド部と前記摺動凸部との間に配置され、前記動作の方向の摺動を可能とし、前記ガイド部と前記摺動凸部の前記動作の方向と垂直な方向の位置関係を相互に拘束する軸受を備える手段2の真空制御バルブ。
【0016】
手段3の真空制御バルブでは、円筒状の摺動凸部の内周面に囲まれた空間において動作の方向に延びるガイド部が動作部に備えられているので、ベロフラムの摺動面よりも軸受に近い位置に摺動凸部の摺動面が配置されることになる。これにより、ベロフラムよりも精度要求が厳しい、遮断荷重発生室と摺動凸部との間の摺動面の隙間の精度を簡易に向上させることができる。
【0017】
手段4.前記遮断荷重発生室は、前記ロッドの内部に形成されている手段1乃至3のいずれか1つに記載の真空制御バルブ。
【0018】
手段4の真空制御バルブでは、遮断荷重発生室が動作部の内部に形成されているので、動作部の占有空間を有効利用して遮断荷重印加部を装備することができる。これにより、遮断荷重発生室の形成に起因する真空制御バルブの大型化を抑制することができる。さらに、動作部の内部に遮断荷重発生室を形成することによって、遮断荷重発生室の直径を小さくする方向に大きな設計自由度を提供することもできる。
【0019】
手段5.手段1乃至4のいずれか一つに記載の真空制御バルブと、前記真空容器内の真空圧力を計測する圧力センサと、作動流体を供給するための作動流体供給部と、前記作動流体を排気するための作動流体排気部とに接続され、前記真空制御バルブに前記作動流体を供給する空気圧回路と、前記空気圧回路から前記真空制御バルブに供給される作動流体を操作して、前記真空容器内の真空圧力を制御する制御部と、を備える真空制御システム。
【0020】
本発明は、真空制御システムとしても具現化することができる。
【0021】
手段6.前記制御部は、前記真空ポンプの停止を表す情報を含む真空ポンプ停止信号の受信に応じて前記弁開度操作室と前記作動流体排気部との間の流路を接続するとともに、前記遮断荷重発生室と前記作動流体供給部との間の流路を接続する手段5に記載の真空制御システム。
【0022】
手段6の真空制御システムでは、真空ポンプ停止信号の受信に応じて遮断荷重が印加される作動モードとなるので、真空ポンプの不測の停止によって真空ポンプ側の圧力が上昇しても遮断状態を確保することができるという利点を有している。なお、「真空ポンプ停止信号の受信」は、たとえば真空ポンプの作動状態を表す真空ポンプ側の内部接点の状態確認や真空ポンプの正常信号の不達といったものも含む広い意味を有している。
【0023】
手段7.前記空気圧回路は、非通電状態で前記弁開度操作室と前記作動流体排気部との間の流路を接続する第1の電磁弁と、非通電状態で前記遮断荷重発生室と前記作動流体供給部との間の流路を接続する第2の電磁弁と、を有する手段5又は6に記載の真空制御システム。
【0024】
手段7の真空制御システムは、非通電状態で前記弁開度操作室と前記作動流体排気部との間の流路を接続する第1の電磁弁と、非通電状態で前記遮断荷重発生室と前記作動流体供給部との間の流路を接続する第2の電磁弁とを有するので、電源オフや停電時においては必ず緊急遮断状態となる。これにより、緊急停止や停電時の安全確保を考慮したシステム設計を簡易に実現することができる。
【0025】
なお、本発明は、真空制御バルブや真空制御システムだけでなく、たとえば真空制御方法やその方法を具現化するコンピュータプログラム、プログラム媒体といった形で具現化することもできる。
【図面の簡単な説明】
【0026】
【図1】非通電時(バルブ全閉)の真空制御バルブ30の構成を示す断面図。
【図2】非通電時の真空制御バルブ30が有するロッドカバー81の構成を示す拡大断面図。
【図3】バルブ全開時の真空制御バルブ30の構成を示す断面図。
【図4】真空制御バルブ30の真空圧力の制御時の作動状態を示す断面図。
【図5】パッキン70と内周面63との間の摩擦面を示す拡大断面図。
【図6】パッキン70の装着状態を示して封止原理を説明する模式図。
【図7】遮断荷重発生室39の非加圧時の状態を示して封止原理を説明する模式図。
【図8】遮断荷重発生室39への加圧時を示して封止原理を説明する模式図。
【図9】実施形態の真空制御システム20の構成を示す模式図。
【図10】実施形態の空気圧回路22の構成と作動内容とを示す模式図。
【図11】実施形態の真空制御システム20の制御ブロック図。
【発明を実施するための形態】
【0027】
(本発明の実施形態)
以下、本発明を具体化した第1の実施形態を図面に従って説明する。本実施形態は、新規な真空制御バルブと、その真空制御バルブを使用する半導体製造装置としてのエッチングプロセスの製造ラインにて使用される真空制御システムについて具体化している。
【0028】
先ず、真空制御バルブの構成を図1乃至8の図面に基づいて説明する。
【0029】
図1は、非通電時(バルブ全閉)の真空制御バルブ30の構成を示す断面図である。図2は、非通電時の真空制御バルブ30が有するロッドカバー81の構成を示す拡大断面図である。図3は、バルブ全開時の真空制御バルブ30の構成を示す断面図である。真空制御バルブ30は、制御バルブ本体43と、シリンダチューブ31と、動作部材32とを備えている。制御バルブ本体43は、動作部材32の移動方向(軸線方向)に延びる円筒状の形状を有している。制御バルブ本体43には、軸線方向においてシリンダチューブ31側に開口する略円柱状の凹部である弁箱45が形成されている。弁箱45の開口部は、動作部材32が摺動可能に貫通している貫通孔82を有するロッドカバー81によって塞がれている。
【0030】
動作部材32は、弁箱45において真空制御バルブ30の弁開度を操作する弁体33と、貫通孔82を貫通するロッド32rと、ロッド32rの端部に接続されているピストン51とを備えている。弁体33は、ロッド32rに接続されており、動作部材32を軸方向に移動させてリフト量Laを変化させることができる。リフト量Laは、本実施形態では、弁開度に相当する。動作部材32は、動作部に相当する。
【0031】
弁体33は、制御バルブ本体43に形成されている弁座42に当接することによって流路を遮断する機能を有している。流路の遮断は、弁箱45の内部において弁体33を弁座42に当接させて二次側ポート44を弁箱45から隔離することによって行われる。遮断時の封止は、弁体33からその一部が突出したOリング75を弁座42に当接させて潰すことによって実現されている。弁座42は、たとえば弁体33に対して軸線方向に対向する環状の領域であって、二次側ポート44との接続口の周囲に形成されている表面粗さが小さな領域である。Oリング75は、弁座42に対して軸線方向に対向する位置に環状の形状を有している。
【0032】
ピストン51は、シリンダチューブ31の内周面53に向かって半径方向に延びる環状の形状を有し、シリンダチューブ31の内周面53において密閉された弁開度操作室36(図3参照)を形成している。ピストン51の外周端部には、軸線方向において弁開度操作室36の反対側に延びる円筒状の形状を有する筒状部材51vが接続されている。ピストン51には、弁開度操作室36を密封するベロフラム34が接続されている。
【0033】
弁開度操作室36は、ベロフラム34と、ロッドカバー81と、ロッド32rと、ピストン51(ベロフラムリテーナ52)と、によって囲まれている容積が可変のドーナツ状の密閉空間として形成されている。ベロフラム34は、その内周側の端部がピストン51とベロフラムリテーナ52の間において螺子54で締結されている。一方、ベロフラム34は、その外周側の端部34aがシリンダチューブ31とロッドカバー81との間で挟まれている。これにより、ベロフラム34とロッドカバー81との間と、ベロフラム34とシリンダチューブ31との間と、が密閉(封止)されている。弁開度操作室36は、ベロフラム34によって内周面53によって形成されている内部空間を区画することによって形成されている。弁開度操作室36には、開弁用空気流路37と接続流路87とを介して操作エアを供給することができる。なお、操作エアの供給方法については後述する。操作エアは作動流体に相当する。
【0034】
ベロフラム34は、シルクハット型の形状を有し、長い行程(ストローク)で追従あるいは転動(折り返し部分の移動)することが可能な可堯性の空間区画部材である。ベロフラム34は、ピストン51の外周面51s(図3参照)とシリンダチューブ31の内周面53との間の隙間を、ピストン51の動作に追従しつつ密閉するベロフラムである。ベロフラム34は、転動型ダイアフラムとも呼ばれ、動作部材32と弁開度操作室36との間に摩擦の要因となる面接触を形成しないので、摺動抵抗が極めて小さく低ヒステリシス特性や微小圧力応答性、高い密封性といった固有の特性を有している。ベロフラム34は、円滑に転動が行えるように、リニアベアリング65によって外周面51sと内周面53との隙間を確保するように構成されている。リニアベアリング65の詳細については後述する。
【0035】
ベロフラム34は、真空制御バルブ30において最も直径の大きなシリンダチューブ31の内周面53とピストン51との間の摺動部を密封しているので、摩擦面を排除して顕著に動作部材32の摺動摩擦抵抗を小さくすることができる。これにより、電空制御弁26から開弁用空気流路37に供給される操作エアの圧力操作によって、低ヒステリシス特性において高い応答性でのリフト量Laの調節が実現される。なお、動作部材32は、電動モータを使用して移動させる構成としても良い。
【0036】
一方、図2に示すように、ロッド32rとロッドカバー81との間の封止は以下のように構成されている。ロッドカバー81の貫通孔82には、弁箱45の側に近い位置に装着凹部83が形成され、装着凹部83よりもシリンダチューブ31側に近い位置に装着溝84が形成されている。装着凹部83には、比較的に耐圧性が低く動摩擦抵抗の小さな第1段軽荷重シール76と第2段軽荷重シール77とが装備されている。装着溝84には、比較的に耐圧性の高いパッキン74が装備されている。一方、ロッドカバー81には、パッキン74と第1段軽荷重シール76との間で装着凹部83に連通し、外部に貫通するリーク検出用ポート85が形成されている。
【0037】
リーク検出用ポート85は、パッキン74における漏洩と、第1段軽荷重シール76及び第2段軽荷重シール77における漏洩とを検知することができる。パッキン74における漏洩は、操作エアの漏洩として検知することができる。第1段軽荷重シール76及び第2段軽荷重シール77における漏洩は、リーク検出用ポート85にヘリウムガスを注入する一方、ヘリウムリークディテクタ(図示省略)に接続されている弁箱45を真空状態とすることによって検出することができる。
【0038】
ピストン51は、付勢バネ55によって付勢されている。付勢バネ55は、動作部材32のピストン51に対して、リフト量Laと弁開度操作室36の容積とがいずれも小さくなる方向に付勢力を印加している。付勢バネ55は、シリンダチューブ31の内周面53と環状の形状を有するヘッドカバー61に囲まれた空間に収容されている。付勢バネ55の一方は、ピストン51に対して弁開度操作室36とは軸線方向に反対側(裏側)において当接している。付勢バネ55の他方は、ヘッドカバー61に当接している。
【0039】
ヘッドカバー61は、円筒状の形状を有する筒部61bと、筒部61bよりも小さな直径を有する円筒状の形状を有する摺動凸部61aとを有している。ヘッドカバー61は、摺動凸部61a及び筒部61bと中心軸線を共有している。摺動凸部61aと筒部61bの直径差は、行程制限面61eを形成している。行程制限面61eは、ピストン51に形成されている行程制限端部51eに当接することによってピストン51の上昇量を制限する当接面である。これにより、ピストン51の行程は、上昇方向(リフト量La増大方向)が行程制限面61eによって制限される一方、下降方向(リフト量La減少方向)が弁座42によって制限されていることになる。
【0040】
摺動凸部61aは、動作部材32の内部に形成されている遮断荷重発生室39に収容されている。遮断荷重発生室39は、動作部材32の動作方向に延びる中心線に対し、弁開度操作室36の内側に形成されている。これにより、遮断荷重発生室39は、動作部材32の動作方向において弁開度操作室36に対して重なる位置に装備されていることになる。この結果、遮断荷重発生室39の装備に起因する真空制御バルブ30の大型化(特に動作部材32の動作方向の大型化)を抑制することができる。さらに、ヘッドカバー61の摺動半径を小さくすることができるので、遮断荷重発生室39の装備に起因する摺動抵抗の発生を抑制することもできる。
【0041】
遮断荷重発生室39による遮断荷重の印加は、真空制御バルブ30の製造性を向上させることもできる。製造時における付勢バネ55のセット時荷重(弁閉時の荷重)を軽減して製造を容易とすることができるからである。すなわち、付勢バネ55は、従来技術では、遮断時(リフト量Laがゼロの場合)において要請された遮断荷重を発生させるようなバネ係数と初期荷重(プリロード)を発生させる初期たわみ量で装備することが要請される。
【0042】
これにより、真空制御バルブ30の口径の大型化に伴ってバネ係数と初期たわみ量の双方が過大となるので、真空制御バルブ30の大型化だけでなく、製造も困難となることが本発明者によって見出された。しかしながら、本構成では、ヘッドカバー61と遮断荷重発生室39とで遮断荷重を発生させることによって、付勢バネ55の初期荷重を軽減させることができるからである。
【0043】
リニアベアリング65は、ヘッドカバー61とガイドロッド56の間の半径方向(軸線方向に垂直な方向)の位置関係を拘束しつつ、小さな摩擦で軸線方向(動作部材32の移動方向)への相対的な往復動を可能とする軸受である。リニアベアリング65は、円筒状の形状を有する摺動凸部61aの内周面の内側の空間であって、ガイドロッド56の外周面の外側に配置されている。
【0044】
ガイドロッド56は、動作部材32に接続されているので、リニアベアリング65は、ピストン51と内周面53との間の位置関係(隙間)をも維持(拘束)することができる。これにより、ベロフラム34は、その折り返し部分を円滑に移動させることによってほとんど摩擦を生じさせることなく、シリンダチューブ31に対して動作部材32を移動させることができる。
【0045】
ガイドロッド56には、ヘッドカバー61に対するガイドロッド56の動作量を計測するための弁体位置センサ35が装備されている。ガイドロッド56には、弁体位置センサのプローブ35aが挿入される挿入管35bがアダプタ35cを介して接続されている。弁体位置センサ35は、挿入管35bへのプローブ35aの挿入長さに応じた電気信号を発生させることができる。ヘッドカバー61に対するガイドロッド56の動作量は、挿入長さの変動量として図ることができるので、その変動量に応じてリフト量Laを計測することができる。弁体位置センサ35には、たとえばリニアパルスコーダ(登録商標)などが利用可能である。
【0046】
ヘッドカバー61は、中心軸線を共有する2つの筒状の摺動面を有している。第1の摺動面は、摺動凸部61aの外周面61asと内周面63との間の摺動面である。第2の摺動面は、摺動凸部61aの内周面62asとガイドロッド56との間の摺動面である。第1の摺動面及び第2の摺動面のクリアランス(隙間)は、リニアベアリング65によって正確に維持している。
【0047】
リニアベアリング65は、前述のように摺動凸部61aとガイドロッド56との間に配置されているとともに、摺動凸部61aとリニアベアリング65との間の相互の位置関係も動作部材32の動作に関わらず維持されている。これにより、簡易に遮断荷重発生室39と摺動凸部61aとの間の隙間の精度を向上させることができる。一方、リニアベアリング65は、貫通孔82に装備されているパッキン74との位置関係についても動作部材32の動作に関わらず維持され、ベロフラム34で密閉されているピストン51と内周面53との間の摺動面よりも近傍に維持されている。これにより、摺動面の隙間の精度要求が厳しい摺動面がリニアベアリング65の近傍に配置されていることになるので、簡易に封止性能の向上と摺動抵抗の低減の両立を図ることができる。
【0048】
第1の摺動面において、外周面61asには、その外周の全周に渡って凹形状を有する装着溝78(図2参照)が形成され、その装着溝78にV字状のパッキン70bが装着されている。第2の摺動面において、内周面62asには、その内周に渡って凹形状を有する装着溝79が形成され、その装着溝79にV字状のパッキン70aが装着されている。V字状のパッキン70a,70bは、Vパッキンとも呼ばれる。
【0049】
次に、図4を参照して、真空制御バルブ30のリフト量Laを操作する方法について説明する。図4は、真空制御バルブ30の真空圧力の制御時の作動状態を示す断面図である。真空制御バルブ30は、前述のように、弁体33と弁座42との間の距離であるリフト量Laを弁開度として調節することによって一次側ポート41と二次側ポート44との間のコンダクタンスを操作することができる。リフト量Laは、弁座42に対して動作部材32の位置を相対的に移動させることによって調節される。コンダクタンスは、流路における流体の流れやすさを意味している。
【0050】
リフト量Laは、動作部材32への駆動力と、その駆動力に相反する付勢バネ55の付勢力とのバランスによって操作される。動作部材32への駆動力は、弁開度操作室36の内部の操作エアの圧力の作用によって生じる。リフト量Laの制御においては、動作部材32とシリンダチューブ31との間の相対的な移動に起因する摩擦力の低減が望まれる。摩擦力は、ヒステリシスの原因となって精密な制御を阻害する大きな要因となるからである。
【0051】
動作部材32は、図2に示すように、シリンダチューブ31との間に3箇所の摩擦面を有している。第1の摩擦面は、装着溝78に装着されているパッキン70bと、内周面63との間の摩擦面である。第2の摩擦面は、装着溝79に装着されているパッキン70aと、ガイドロッド56との間の摩擦面である。第3の摩擦面は、ロッドカバー81の貫通孔82に装着されているパッキン74とロッド32rの外周面との間の摩擦面である。
【0052】
第3の摩擦面は、主として弁開度操作室36の操作圧力を低減させることによって摺動抵抗が低減されている。弁開度操作室36の操作圧力の低減は、本実施形態では、上述のように付勢バネ55のセット時荷重(弁閉時の荷重)を小さくすることよって実現可能となっている。また、本発明者の実験によれば、ロッド32rの外周面の表面粗さRaを0.2程度とすることによって、摺動抵抗の低減と必要な真空リーク特性の両立が確保できることが確認されている。なお、第3の摩擦面は、ベローズで動作部材32を覆うことによって封止するように構成してもよい。
【0053】
図5は、第1の摩擦面、すなわち、装着溝78に装着されているパッキン70と、内周面63との間の摩擦面を示す拡大断面図である。パッキン70は、ヒール部71と二股に分かれている一対のリップ部72a、72bとを有するV字状のパッキンである。パッキン70bは、一対のリップ部72b側が遮断荷重発生室39に向けられており、遮断荷重発生室39からの圧力を受けて面圧が高くなるように構成されている。第2の摩擦面は、第1の摩擦面と同様に封止されている。
【0054】
摺動部の設計においては、摺動部のクリアランスS2と、装着溝78の深さS1とパッキン70bの一対のリップ部72a、72bの幅方向の大きさの差の関係と、が設計パラメータとなる。本実施形態では、弁体33が弁座42に当接して遮断荷重を発生させるときにのみ遮断荷重発生室39の気密性が要求されるので、後述するようにパッキン70bの潰し量を小さくすることができる。これにより、パッキン70bと内周面63との間の摩擦量を低減させてヒステリシスを低減させることができる。
【0055】
次に、図6乃至図8を参照して、パッキン70bによる封止メカニズムを詳細に説明する。図6は、パッキン70bの装着状態を示して封止原理を説明する模式図である。図7は、遮断荷重発生室39の非加圧時の状態を示して封止原理を説明する模式図である。図8は、遮断荷重発生室39への加圧時を示して封止原理を説明する模式図である。図6及び図8においては、パッキン70bの面圧分布Pd1、Pd2が示されている。真空制御バルブ30は、遮断荷重発生室39への加圧が遮断時にのみ行われるので、リフト量Laの制御が行われている状態では、遮断荷重発生室39への加圧が行われない。
【0056】
図7に示されるように、パッキン70bは、潰し量Qで弾性変形させられた状態で装着溝78に装着されている。非加圧時には、パッキン70bの接触面圧と面圧領域とは、面圧分布Pd1として示されるように極めて小さい。面圧分布Pd1は、一対のリップ部72a、72bの剛性と潰し量Qに起因して発生する面圧分布だからである。これにより、電空制御弁26による真空制御が行われている状態(遮断荷重発生室39の非加圧時)においては、遮断荷重発生室39とヘッドカバー61との間には、極めて小さな動摩擦が発生することになる。
【0057】
一方、図8に示されるように、遮断荷重発生室39は、遮断荷重の印加時には、面圧分布Pd2によって示されるように十分な封止性能を実現することができる。さらに、遮断荷重の印加においては、弁体33が弁座42に当接する遮断状態なので、遮断荷重発生室39とヘッドカバー61との間に相対的な移動は必要なく、制御状態でも無いので動摩擦の発生は何らの問題も生じさせいないことが分る。さらに、本発明者は、摺動時の漏れが許容可能なので、面圧分布Pd1をも低減させることが可能であることをも見出した。これにより、遮断荷重の発生機能を装備するために、遮断荷重発生室39と摺動凸部61aとを設けても、その摺動が新たにヒステリシスの原因とならない設計を実現することができることが見出された。
【0058】
次に、図9乃至11を参照して、真空制御バルブ30を使用する真空制御システム20について説明する。
【0059】
図9は、実施形態の真空制御システム20の構成を示す模式図である。真空制御システム20は、エッチングプロセスを実行するための真空容器90と、真空制御バルブ30と、コントローラ21と、空気圧回路22と、ターボ分子ポンプ300と、ターボ分子ポンプ300に直列に接続されている真空引き用のドライポンプと、を備えている。真空容器90には、一定の供給量で反応性ガスGが供給されつつ、真空制御バルブ30を介してターボ分子ポンプ300によって排気される。真空容器90の真空圧力は、真空制御バルブ30のコンダクタンスを操作することによって制御される。ターボ分子ポンプ300は、真空ポンプに相当する。
【0060】
真空容器90は、反応性ガスGが供給される反応ガス供給孔91と、排気孔93と、真空圧力センサ92と、を備えている。反応ガス供給孔91には、マスフローセンサ(図示省略)で計測された一定量の反応性ガスGが供給される。排気孔93には、真空制御バルブ30の一次側ポート41が接続されている。真空圧力センサ92は、真空容器90の内部の真空圧力を計測して電気信号をコントローラ21に送信する。真空圧力は、コントローラ21による真空制御バルブ30の操作に使用される。
【0061】
弁開度操作室36の内部圧力は、空気圧回路22から開弁用空気流路37を介して操作エアが供給あるいは排気されることによって操作される。空気圧回路22は、操作エアを供給するための高圧側の作動流体供給部95と、操作エアを排気するための低圧側の作動流体排気部96とに接続されている。
【0062】
遮断用荷重は、空気圧回路22から遮断用空気流路38に操作エアが供給されることによって、弁体33を弁座42まで移動させ、その移動後に弁体33を弁座42に押し付ける荷重として機能する。遮断用荷重は、付勢バネ55による付勢荷重との合力として作用する。
【0063】
遮断用荷重は、本実施形態では、たとえばコントローラ21がターボ分子ポンプ300から真空ポンプ停止信号を受信し、真空制御システム20を緊急停止させる際に印加される。以下では、緊急停止を含む各作動モードにおける作動内容について説明する。コントローラ21は、制御部に相当する。真空ポンプ停止信号は、たとえば真空ポンプ停止信号が停止した場合、あるいはターボ分子ポンプ300の回転数が異常に低下した場合に発信される信号である。
【0064】
次に、図10を参照して空気圧回路22と真空制御バルブ30の作動内容を説明する。図10は、実施形態の空気圧回路22の構成と作動内容とを示す模式図である。空気圧回路22は、コントローラ21からの指令に応じて操作エアを供給し、これにより真空制御バルブ30を操作する回路である。空気圧回路22は、電空制御弁26と、3個の電磁弁SV1,SV2,SV3とを備えている。電空制御弁26は、操作エアの高圧側に接続されている給気弁26aと、操作エアの排気側に接続されている排気弁26bとを有している。
【0065】
コントローラ21は、本実施形態では、2個のPID制御回路24a,24bを内蔵するプログラマブルロジックコントローラ(PLC)として構成されている。プログラマブルロジックコントローラ21は、たとえばラダー・ロジックを使用して高い信頼性を有する制御を実現することができる論理回路である。2個のPID制御回路24a,24bは、詳細については後述するが、真空容器90の真空圧力のフィードバック制御に使用される。コントローラ21は、3個の電磁弁SV1,SV2,SV3の各々へのオンオフ指令と、電空制御弁26へのパルス幅変調信号と、を空気圧回路22に送信する。電磁弁SV2と電磁弁SV3とは、それぞれ第1の電磁弁と第2の電磁弁とも呼ばれる。
【0066】
電空制御弁26は、たとえば周知のパルス幅変調方式で給気弁26aと排気弁26bの開弁時間(デューティ)を操作することによって、外部から供給される圧縮空気の開弁用空気流路37への供給圧力を操作することができる。電空制御弁26は、給気弁26aの開弁時間(デューティ)を大きくし、排気弁26bの開弁時間を小さくすることによって弁開度操作室36で動作部材32に作用するエア圧力を高くすることができる。これにより、弁体33のリフト量Laを大きくすることが可能となる。
【0067】
一方、電空制御弁26は、給気弁26aの開弁時間(デューティ)を小さくし、排気弁26bの開弁時間を大きくすることによって弁開度操作室36で動作部材32に作用するエア圧力を低くすることができる、これにより、付勢バネ55からの荷重によって弁体33のリフト量Laを小さくすることができる。
【0068】
電磁弁SV1は、電磁弁SV2に接続される流路を、電空制御弁26と作動流体供給部95のいずれかに切り替える電磁弁であり、非通電時には、電空制御弁26に接続される。電磁弁SV2は、開弁用空気流路37に接続される流路を、電磁弁SV1と作動流体排気部96のいずれかに切り替える電磁で弁であり、非通電時には、作動流体排気部96に接続される。電磁弁SV3は、遮断用空気流路38に接続される流路を、作動流体供給部95と作動流体排気部96のいずれかに切り替える電磁で弁であり、非通電時には、作動流体供給部95に接続される。
【0069】
次に、表Tを参照して、空気圧回路22の各作動モードの内容を説明する。表Tは、各作動モードにおける3個の電磁弁SV1,SV2,SV3の通電状態を示す表である。表Tでは、オンとオフをそれぞれ「ON」と「OFF」で表記している。
【0070】
真空制御システム20の緊急停止時の作動モードでは、電空制御弁26及び3個の電磁弁SV1,SV2,SV3が全てオフとなる。緊急停止は、真空制御システム20のシステム設計で定義されるワーストケースとしての作動モードであって、たとえばコントローラ21がドライポンプ(図示省略)から真空ポンプ停止信号を受信した場合の作動モードである。ドライポンプは、ターボ分子ポンプ300に直列に接続され、真空引き使用されるポンプである。本作動モードでは、大気開放状態の二次側ポート44と、真空側の一次側ポート41との間には、大気圧の全てが差圧として印加されることになる。この差圧荷重は、弁体33に対してリフト量Laを増大させる方向に印加され、弁体33を弁座42から離して真空容器90に大気を逆流させる方向に働くことになる。本実施形態の緊急停止では、遮断荷重によって上述の差圧に対抗して逆流を防止することができる。
【0071】
このように、高圧側の作動流体供給部95が遮断用空気流路38に接続されるとともに、排気側の作動流体排気部96が開弁用空気流路37に接続されることになる。これにより、遮断荷重を印加する遮断荷重発生室39の空気圧が上昇し、開弁側(リフト量La増大)の荷重を印加する弁開度操作室36の室内が大気圧まで低下することになる。この結果、動作部材32に接続されている弁体33が弁座42の方向に急速に移動して、真空制御バルブ30を閉状態(遮断)とするとともに遮断荷重の印加を継続する。
【0072】
なお、電磁弁SV3は、非通電時には、遮断用空気流路38に接続される流路を作動流体排気部96に接続されるように構成しても良い。ただし、上述のように、非通電時において作動流体供給部95に接続されるように構成すれば、停電時において、空気圧回路22への電力供給が停止されるので、表Tの矢印に示されるように、緊急停止時と同一の作動内容の作動モードとすることができる。
【0073】
このように、真空制御システム20の停電あるいは緊急停止においては、いずれの作動モードにおいても、真空制御バルブ30を閉弁するとともに遮断荷重を印加することができる。この結果、本実施形態の真空制御システム20では、空気圧回路22への電力供給が停止された状態においては、付勢バネ55の付勢力と遮断荷重発生室39の加圧とによって弁体33が弁座42に移動し、遮断荷重が印加されるように空気回路が構成されていることになる。
【0074】
このような構成では、電源オフや停電時においても必ず遮断状態となることが確保されているので、緊急停止や停電時の安全確保を考慮したシステム設計を簡易に実現することができるという利点がある。さらに、本実施形態では、コントローラ21は、真空ポンプ停止信号の受信に応じて、緊急停止の作動モードとなるので、ターボ分子ポンプ300の不測の停止によって仮に二次側ポート44の圧力が上昇しても遮断状態を確保することができるという利点をも有している。
【0075】
次に、真空制御バルブ30を閉状態とする作動モードでは、2個の電磁弁SV1,SV2,SV3がオンとなる一方、電磁弁SV3がオフとなっている。この作動モードは、ターボ分子ポンプ300が正常な運転状態において、真空制御バルブ30を閉状態とする。この作動モードでは、正常な運転状態において真空制御バルブ30を閉状態するために適切な潰し量でOリング75を潰す程度の荷重が付勢バネ55によって印加されるように設定されている。これにより、Oリング75の耐久性を高めることができる。
【0076】
このように、本実施形態は、緊急時に対応するための遮断荷重を発生させる機構を備えているので、通常の運転に適した潰し量でOリング75を潰す程度に付勢バネ55の付勢力を設定することができるという設計自由度を提供することもできる。
【0077】
一方、真空制御バルブ30を開状態とする作動モードでは、3個の電磁弁SV1,SV2,SV3の全てがオンとなる。これにより、高圧側の作動流体供給部95は、オン状態の2個の電磁弁SV1,SV2を経由して開弁用空気流路37に流路が接続される。一方、排気側の作動流体排気部96は、オン状態の電磁弁SV3を経由して遮断用空気流路38に流路が接続される。一方、電空制御弁26は、オン状態の電磁弁SV1によって開弁用空気流路37から流路が切り離された状態となっている。これにより、電空制御弁26の作動状態に関わらず、真空制御バルブ30を急速に開状態(リフト量Laが最大の状態)とすることができる。
【0078】
最後に、真空制御バルブ30で真空圧力を制御する作動モードでは、電磁弁SV1がオフとなる一方、2個の電磁弁SV2,SV3がいずれもオンとなる。これにより、高圧側の作動流体供給部95は、電空制御弁26とオフ状態の電磁弁SV1とオン状態の電磁弁SV2とを順に経由して開弁用空気流路37に流路が接続される。一方、排気側の作動流体排気部96は、オン状態の電磁弁SV3を通過して、遮断用空気流路38に流路が接続される。これにより、電空制御弁26は、開弁用空気流路37から操作エアを供給して弁開度操作室36の内部圧力を操作し、リフト量Laを調節することができる。
【0079】
次に、図11を参照して真空制御システム20の制御内容を説明する。図11は、実施形態の真空制御システム20の制御ブロック図である。この制御系は、真空制御バルブ30の弁体33のリフト量Laを制御するスレーブループSLと、真空容器90の内部圧力を制御するマスターループMLとを有する二重ループ構造のカスケード制御として構成されている。スレーブループSLとマスターループMLの各制御ループは、たとえば周知のPID制御系として構成することができる。
【0080】
スレーブループSLは、電空制御弁26によって弁開度操作室36の内部圧力を操作して、弁体33のリフト量Laを弁開度指令値Vpに近づけることを目的とする制御ループである。スレーブループSLでは、PID制御回路24bは、弁開度指令値Vp(目標値)とリフト量La(計測値)の偏差δmに応じて制御信号を生成し、パルス幅変調信号を電空制御弁26に送信する。電空制御弁26は、パルス幅変調信号に応じて弁開度操作室36の内部圧力を操作して弁体33が装着されている動作部材32への駆動力を調節する。
【0081】
リフト量Laは、弁体位置センサ35によって計測され、PID制御回路24bによってフィードバック量として使用される。これにより、真空制御バルブ30は、リフト量Laをフィードバック制御することができる。これにより、真空容器90とターボ分子ポンプ300との間の流路のコンダクタンスを調節することができる。
【0082】
マスターループMLでは、PID制御回路24aは、予め設定された目標圧力値Ptと計測圧力値Pmとの偏差δpに応じて、弁開度指令値Vpを決定してPID制御回路24bに送信する。計測圧力値Pmは、真空圧力センサ92によって計測される真空容器90の内部の圧力である。PID制御回路24aは、計測圧力値Pmが目標圧力値Ptに近づくように弁開度指令値Vpを調節する。
【0083】
なお、リフト量Laのフィードバックループを削除し、偏差δpをゼロに近づけるように弁開度操作室36の内部圧力を操作する簡易なシングルループ制御として構成してもよい。ただし、リフト量Laをフィードバックする二重ループ構成とすれば、マスターループMLからの指令値(制御入力)とリフト量(開度)の非線形性に起因する精度の低下を抑制することができる。この精度の低下は、オフセット値によって各真空制御バルブの開度範囲が相互にシフトすることによって発生する。本構成は、開度の実測によって開度と制御入力の線形性を確保することによって、いずれの開度範囲においても真空制御バルブの特性がフラットとなるように構成されている。
【0084】
真空制御システム20は、さらに、動作部材32を介して弁体33に対して遮断用荷重を印加するオープンループALを有している。プログラマブルロジックコントローラ21は、2個の電磁弁SV2,SV3をいずれもオフ状態とすることによって、遮断荷重発生室39(図2参照)に空気圧を印加することによって遮断用荷重を発生させる。遮断用荷重の大きさは、電磁弁SV1のオンオフに関わらず、遮断荷重発生室39の内径やヘッドカバー61の外形を適切に設定することによって予め設定することができる。
【0085】
以上詳述した本実施形態は以下の利点を有する。
【0086】
本実施形態の真空制御バルブ30では、最も直径が大きな主シリンダの内周面と主ピストンの外周面との間がベロフラムによって封止されているので、摺動抵抗を低減させてヒステリシスを緩和させることができる。
【0087】
さらに、本実施形態の真空制御バルブ30では、作動流体の供給によって遮断荷重を発生させる遮断荷重発生室39が動作部に形成されているので、動作部材32の占有空間を有効利用して遮断荷重発生室39を装備することができる。さらに、動作部の内部に遮断荷重発生室を形成することによって、遮断荷重発生室39の直径を小さくする方向の設計自由度を提供することができる。これにより、遮断荷重発生室39の装備に起因する真空制御バルブの大型化を抑制するとともに、遮断荷重発生室39の摺動面積を小さくして遮断荷重発生室39の摩擦に起因するヒステリシスを低減させることができる。
【0088】
本実施形態の真空制御システム20では、全ての電磁弁への電力供給が停止された状態においては、直ちに弁体33が弁座42に移動し、遮断荷重が印加されるように空気回路が構成されている。これにより、緊急停止や停電時の安全確保を考慮したシステム設計を簡易に実現することができる。
【0089】
(他の実施形態)
本発明は上記実施形態に限らず、例えば次のように実施されてもよい。
【0090】
(1)上記実施形態では、遮断荷重発生室39とヘッドカバー61との間がパッキンで封止されているが、遮断荷重発生室39とヘッドカバー61との間をベロフラムで封止するように構成しても良い。ただし、遮断荷重発生室39とヘッドカバー61との間をパッキンで封止すれば、真空制御バルブの構成を簡易とすることができるとともに小型化を図ることもできる。
【0091】
(2)上記実施形態では、遮断荷重発生室39とヘッドカバー61との間を封止する封止面には、V字状のパッキンが使用されているが、たとえばOリングでもよい。Oリングも遮断荷重発生室39への作動流体の供給に応じて接触面圧が高くなる性質を有しているからである。遮断荷重発生室39とヘッドカバー61との間の封止には、一般に、遮断荷重発生室39への作動流体の供給に応じて封止面の面圧が高められる封止部を使用すれば真空制御バルブのヒステリシスを低下させることができる。ただし、V字状のパッキンを使用すれば、非加圧時の動摩擦力を小さくすることができる。
【0092】
(3)上記実施形態では、動作部材32の内側に遮断荷重発生室39が形成され、付勢バネの内側にヘッドカバー61が配置されているが、遮断荷重発生室39とヘッドカバー61とが逆転された配置としてもよい。ただし、遮断荷重発生室39を動作部材32ヘッドカバー61の内部に形成する構成とすれば、動作部材32の内部空間を利用して遮断荷重発生室39を形成することができるので、真空制御バルブの小型化を図ることができる。
【0093】
(4)上記実施形態では、半導体製造装置用(エッチングやCVD装置用)の真空制御システムを例示して本発明が説明されているが、これに限られず液晶製造装置や減圧乾燥炉、真空焼結装置といった様々な真空装置に使用される真空容器内の真空圧力の制御に利用可能である。
【0094】
(5)上記実施形態では、一次側ポート(真空容器側接続口)を低圧側として二次側ポート(真空ポンプ側接続口)を高圧側として真空制御バルブが接続され、その差圧荷重に対抗する遮断荷重によって遮断状態を維持する形態として構成されている。しかし、高圧側と低圧側とを逆方向としても良い。こうすれば、遮断状態を維持する方向の差圧荷重に対抗して開状態することができる。さらに、真空容器だけでなく高圧容器の圧力制御にも利用可能である。
【符号の説明】
【0095】
20…真空制御システム、21…コントローラ、22…空気圧回路、24…PID制御回路、26…電空制御弁、30…真空制御バルブ、31…シリンダ、32…動作部材、33…弁体、34…ベロフラム、35…弁体位置センサ、55…付勢バネ、56…ガイド部材、92…真空圧力センサ、300…ターボ分子ポンプ。

【特許請求の範囲】
【請求項1】
真空容器と真空ポンプとの間に接続され、作動流体によって弁開度を操作して前記真空容器内の真空圧力を制御する真空制御バルブであって、
前記真空容器と前記真空ポンプとを接続する流路と、前記流路に形成されている弁座とを有する制御バルブ本体と、
前記弁座との距離であるリフト量の調節による前記弁開度の操作と、前記弁座への当接による前記流路の遮断とを行う弁体と、ピストンと、前記弁体と前記ピストンとを結合するロッドと、を有する動作部と、
前記制御バルブ本体に接続され、前記ピストンを収容するシリンダと、
前記リフト量が小さくなる方向に前記動作部を付勢する付勢部と、
前記ピストンの外周面と前記シリンダの内周面との間の隙間を、前記ピストンの動作に追従しつつ密閉するベロフラムと、
を備え、
前記動作部及び前記シリンダは、
前記ベロフラムによって密閉され、前記ロッドを囲む筒状の形状を有する空間であって、前記作動流体の作用圧力に応じて前記ピストンに対して前記リフト量を大きくする方向に荷重を発生させる弁開度操作室と、
前記弁開度操作室と中心軸線を共有し、前記作動流体の供給に応じて前記動作部に対して前記リフト量を小さくする方向に荷重を発生させる遮断荷重発生室と、
を形成している真空制御バルブ。
【請求項2】
前記シリンダは、前記遮断荷重発生室に収容されている摺動凸部を有するヘッドカバーを備え、
前記真空制御バルブは、前記遮断荷重発生室と前記摺動凸部との間を封止する封止面を有し、前記遮断荷重発生室への前記作動流体の供給に応じて前記封止面の面圧が高められる封止部を備える請求項1に記載の真空制御バルブ。
【請求項3】
前記摺動凸部は、前記弁開度操作室と中心軸線を共有し、前記弁開度操作室の内径よりも小さな外径の円筒状の形状を有し、
前記動作部は、前記摺動凸部の内周面に囲まれた空間において前記動作の方向に延びるガイド部を有し、
前記真空制御バルブは、前記ガイド部と前記摺動凸部との間に配置され、前記動作の方向の摺動を可能とし、前記ガイド部と前記摺動凸部の前記動作の方向と垂直な方向の位置関係を相互に拘束する軸受を備える請求項2に記載の真空制御バルブ。
【請求項4】
前記遮断荷重発生室は、前記ロッドの内部に形成されている請求項1乃至3のいずれか一項に記載の真空制御バルブ。
【請求項5】
請求項1乃至4のいずれか一項に記載の真空制御バルブと、
前記真空容器内の真空圧力を計測する圧力センサと、
作動流体を供給するための作動流体供給部と、前記作動流体を排気するための作動流体排気部とに接続され、前記真空制御バルブに前記作動流体を供給する空気圧回路と、
前記空気圧回路から前記真空制御バルブに供給される作動流体を操作して、前記真空容器内の真空圧力を制御する制御部と、
を備える真空制御システム。
【請求項6】
前記制御部は、前記真空ポンプの停止を表す情報を含む真空ポンプ停止信号の受信に応じて前記弁開度操作室と前記作動流体排気部との間の流路を接続するとともに、前記遮断荷重発生室と前記作動流体供給部との間の流路を接続する請求項5に記載の真空制御システム。
【請求項7】
前記空気圧回路は、非通電状態で前記弁開度操作室と前記作動流体排気部との間の流路を接続する第1の電磁弁と、非通電状態で前記遮断荷重発生室と前記作動流体供給部との間の流路を接続する第2の電磁弁と、を有する請求項5又は6に記載の真空制御システム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate


【公開番号】特開2011−243217(P2011−243217A)
【公開日】平成23年12月1日(2011.12.1)
【国際特許分類】
【出願番号】特願2011−159147(P2011−159147)
【出願日】平成23年7月20日(2011.7.20)
【分割の表示】特願2010−113694(P2010−113694)の分割
【原出願日】平成22年5月17日(2010.5.17)
【出願人】(000106760)シーケーディ株式会社 (627)
【Fターム(参考)】