説明

配光調整方法、照明装置及び撮像装置

【課題】配光調整方法、照明装置及び撮像装置に関する。
【解決手段】ストロボ光源14の本発光の前に配光変更部15をなす全液晶素子に最大透過率が設定された状態でプリ発光が行われ、プリ発光下の照明範囲が撮像部17により撮像される。プリ発光下の撮像画像は、マトリクス状に配置された配光変更部15をなす複数の液晶素子夫々に対応する複数の部分領域に分割されて夫々の輝度が取得される。取得した輝度に基づいて、本発光における発光量が設定されると共に、飽和輝度を超える輝度を有する部分領域と対応する配光変更部15をなす複数の液晶素子の一部の透過率に、低い透過率が配光制御部16に設定されて本発光におけるストロボ光の一部が減光される。本発光によりストロボ光源14から出射したストロボ光は、配光変更部15により配光が調整されて被照明物に照射される。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、照明範囲に位置する被照明物に応じて照明光の配光を調整する配光調整方法、配光が調整された照明光を照射する照明装置及び当該照明装置を備える撮像装置に関する。
【背景技術】
【0002】
従来から撮像装置等に設けられた照明装置は、照明光の出射面と略平行な平面に対して、均一な光強度分布を有して照射するようレンズ及び反射板等を用いて照明光の配光を調整している。しかし、一般に照明装置の照明範囲には、照明装置からの距離が異なる複数の被照明物が位置することが多い。このような場合、照明光により照明装置から近距離に位置する被照明物は明るく照らされ、遠距離に位置する被照明物は暗く照らされる。よって撮像装置が照明光下で照明範囲に位置する複数の被照明物を撮像した場合、近距離及び遠距離に位置する被照明物が夫々露光過剰及び露光不足となり、一部の被照明物にのみ適正露光が得られることが多い。
【0003】
そこで照明光下の複数の被照明物に発生する明るさの違いを抑制するために、特許文献1には、光源の前面の周辺部に液晶板を配し、液晶板の一部の透過率を減少させることにより、照明装置から近距離に位置する被照明物を照らす照明光の一部を減光する照明装置が記載されている。また、特許文献2には、被照明物までの距離を測距手段により測定し、撮像装置のスリット露光の進行方向と同期して、被照明物までの距離に応じて発光量を調整する照明装置が記載されている。さらに特許文献3には、光源の前側に回動機構を備えた遮蔽板を配し、照明光の一部を遮蔽することにより、測距手段が測定した被照明物までの距離に基づいて照明光の配光を調整する照明装置が記載されている。
【特許文献1】特公昭61−19021号公報
【特許文献2】特開平9−325388号公報
【特許文献3】特開2003−140234号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
しかしながら、特許文献1に記載の照明装置は、光源の前面の周辺部を通過する照明光の一部の光量を減光するのみであり、照明範囲の周辺部に位置する被照明物を照らす照明光の光量のみが調整可能であるという制限があった。特許文献2に記載の照明装置は、照明光の光量を照明光の出射面と略平行な平面に対して、スリット露光の進行方向と平行な一次元分布についてのみ調整するものであり、2次元分布については複数の被照明物夫々の位置に応じて調整することができないという問題があった。
【0005】
また、特許文献2に記載の照明装置は、フォーカルプレーンシャッターによるスリット露光の進行方向の速度、すなわちシャッタースピードと同期して発光量が調整されるため、当該照明装置を備えた撮像装置において被照明物に応じた最適な発光量を設定した場合、手ぶれを防ぐために最適なシャッタースピード、すなわち露光時間に変更することができないという問題もあった。特許文献3に記載の照明装置は、回動機構を備えた遮光板を多数集積させて照明光の配光を緻密に調整することが困難であるという問題があった。
【0006】
本発明は斯かる事情に鑑みてなされたものであり、照明光下の照明範囲の撮像画像から、配光変更部をなす複数の配光変更素子夫々に対応した複数の部分領域の輝度を取得し、夫々の輝度に基づいて複数の配光変更素子夫々の光学パラメータを制御することにより、照明装置から近距離及び遠距離に位置する被照明物が夫々輝度過剰及び輝度不足になることを防ぐ配光調整方法及び照明装置、並びに照明装置から近距離及び遠距離に位置する被撮像物が夫々露光過剰及び露光不足になることを防ぐ当該照明装置を備えた撮像装置を提供することを目的とする。
【課題を解決するための手段】
【0007】
本発明に係る配光調整方法は、光源と、二次元配置された複数の配光変更素子からなり、前記光源が出射する照明光の配光を変更する配光変更部と、前記照明光の照明範囲を撮像する撮像部とを備えた照明装置が照射する照明光の配光調整方法において、前記照明光の照明範囲を前記撮像部により撮像して撮像画像を取得し、該撮像画像から前記複数の配光変更素子夫々に対応した複数の部分領域の輝度を取得し、該輝度に基づいて前記複数の配光変更素子夫々の光学パラメータを制御することを特徴とする。
【0008】
本発明に係る配光調整方法は、光源と、二次元配置された複数の配光変更素子からなり、前記光源が出射する照明光の配光を変更する配光変更部と、前記照明光の照明範囲に位置する被照明物までの距離を測定する測距部とを備えた照明装置が照射する照明光の配光調整方法において、前記光源から照明範囲に位置する被照明物までの距離を前記測距部により測定し、前記距離に基づいて前記複数の配光変更素子夫々の光学パラメータを変更することを特徴とする。
【0009】
本発明に係る配光調整方法は、光源と、二次元配置された複数の配光変更素子からなり、前記光源が出射する照明光の配光を変更する配光変更部と、前記照明光の照明範囲に位置する被照明物までの距離を測定する測距部と、前記照明光の照明範囲の輝度を取得する輝度取得部と、前記照明光の照明範囲を撮像する撮像部とを備えた照明装置が照射する照明光の配光調整方法において、前記光源から照明範囲に位置する被照明物までの距離を前記測距部により測定し、前記輝度及び距離夫々に基づいて前記光源の発光量及び複数の配光変更素子夫々の光学パラメータを各変更することを特徴とする。
【0010】
本発明に係る配光調整方法は、二次元配置された複数の発光素子からなる光源と、前記複数の発光素子と対応する複数の配光変更素子が配置されてなり、前記光源が出射する照明光の配光を変更する配光変更部と、前記照明光の照明範囲を撮像する撮像部とを備えた照明装置が照射する照明光の配光調整方法において、前記照明光の照明範囲を前記撮像部により撮像して撮像画像を取得し、該撮像画像から前記複数の発光素子夫々に対応した複数の部分領域の輝度を取得し、該輝度に基づいて前記複数の配光変更素子夫々の光学パラメータを変更することを特徴とする。
【0011】
本発明に係る配光調整方法は、前記輝度に基づいて前記光源の発光量を変更することを特徴とする。
【0012】
本発明に係る配光調整方法は、前記輝度に基づいて前記複数の発光素子夫々の発光量を変更することを特徴とする。
【0013】
本発明に係る照明装置は、光源と、該光源の前側に配されており、前記光源から後面に入射した照明光の配光を変更する配光変更部とを備え、前記照明光の配光を調整して照射する照明装置において、前記配光変更部は、二次元配置された複数の配光変更素子からなり、前記照明光の照明範囲を撮像する撮像部と、該撮像部が撮像した撮像画像から前記複数の配光変更素子夫々に対応する複数の部分領域の輝度を取得する輝度取得部と、該輝度取得部が取得した夫々の輝度に基づいて前記複数の配光変更素子夫々の光学パラメータを制御する配光制御部とを備えることを特徴とする。
【0014】
本発明に係る照明装置は、閾値が設定されてあり、前記撮像画像から前記閾値を超える輝度を有する高輝度領域を検出する高輝度領域検出部をさらに備え、前記配光制御部は、前記複数の配光変更素子のうち、前記高輝度領域と対応する配光変更素子夫々の光学パラメータを制御するよう構成してあることを特徴とする。
【0015】
本発明に係る照明装置は、前記配光変更素子は、透過率可変の液晶素子からなり、前記配光制御部は、複数の前記液晶素子夫々の透過率を制御するよう構成してあることを特徴とする。
【0016】
本発明に係る照明装置は、前記配光変更素子は、照射角度可変の液晶レンズからなり、 前記配光制御部は、複数の前記液晶レンズ夫々の照射角度を制御するよう構成してあることを特徴とする。
【0017】
本発明に係る照明装置は、前記配光変更素子は、焦点距離可変の液体レンズからなり、
前記配光制御部は、複数の前記液体レンズ夫々の焦点距離を制御するよう構成してあることを特徴とする。
【0018】
本発明に係る撮像装置は、前述の照明装置を備えることを特徴とする。
【0019】
第1発明及び第7発明にあっては、照明光の本発光を行う前にプリ(予備)発光が行われ、プリ発光による照明光の照明範囲が撮像部により撮像される。照明範囲の撮像画像が配光変更部をなす2次元配置された複数の配光変更素子夫々に対応した複数の部分領域に分割され、夫々の輝度が取得される。高輝度を有する部分領域に対応する照明光の一部を減光すべく配光変更部をなす複数の配光変更素子夫々の光学パラメータが制御された後、照明光の本発光が行われる。
【0020】
第2発明にあっては、照明光の本発光を行う前に照明装置から照明範囲に位置する複数の被照明物までの夫々の距離が測定される。照明装置から近距離にある被照明物を照らす照明光の一部を減光すべく配光変更部をなす複数の配光変更素子夫々の光学パラメータが制御された後、照明光の本発光が行われる。
【0021】
第3発明にあっては、撮像部により撮像されたプリ発光下の照明範囲の撮像画像が複数の部分領域に分割されて夫々の輝度が取得されると共に、輝度取得部により照明範囲の輝度が取得される。高輝度を有する部分領域に対応する照明光の一部を減光すべく複数の配光変更素子夫々の光学パラメータが制御されると共に、本発光下において照明範囲に輝度不足の領域が生じることがないよう輝度取得部により取得した輝度に基づいて光源の発光量が制御された後、照明光の本発光が行われる。
【0022】
第4発明にあっては、照明光の本発光を行う前にプリ発光が行われ、プリ発光による照明光の照明範囲が撮像部により撮像される。照明範囲の撮像画像が光源をなす2次元配置された複数の発光素子夫々に対応した部分領域に分割され、夫々の輝度が取得される。高輝度を有する部分領域に対応する照明光の一部を減光すべく配光変更部をなす複数の配光変更素子夫々の光学パラメータが制御された後、照明光の本発光が行われる。
【0023】
第5発明にあっては、撮像部により撮像されたプリ発光下の照明範囲の撮像画像が複数の部分領域に分割されて夫々の輝度が取得される。高輝度を有する部分領域に対応する照明光の一部を減光すべく複数の配光変更素子夫々の光学パラメータが制御されると共に、本発光において照明範囲に輝度不足の領域が生じることがないよう取得した輝度に基づいて光源の発光量が制御された後、照明光の本発光が行われる。
【0024】
第6発明にあっては、撮像部により撮像されたプリ発光下の照明範囲の撮像画像が複数の部分領域に分割されて夫々の輝度が取得される。高輝度を有する部分領域に対応する照明光の一部を減光すべく複数の配光変更素子夫々の光学パラメータが制御されると共に、低輝度を有する部分領域に対応する照明光の一部を増大すべく光源をなす複数の発光素子夫々の発光量が制御された後、照明光の本発光が行われる。
【0025】
第8発明にあっては、プリ発光下の照明範囲を撮像して取得した撮像画像から分割されて予め設定された閾値を超える輝度を有する部分領域である飽和領域(高輝度領域)が検出される。配光制御部により、飽和領域に対応する照明光の一部を減光すべく配光変更部をなす複数の配光変更素子のうち、飽和領域と対応する配光変更素子の光学パラメータが制御される。
【0026】
第9発明にあっては、照明光の本発光を行う前にプリ発光が行われてプリ発光下の照明範囲が撮像部により撮像される。照明範囲の撮像画像が配光変更部をなす複数の液晶素子夫々に対応した複数の部分領域に分割され、夫々の輝度が取得される。配光制御部により、高輝度を有する部分領域に対応する照明光の一部を減光すべく、配光変更部をなす複数の液晶素子のうち、対応する液晶素子の透過率が減少するよう制御された後、照明光の本発光が行われる。
【0027】
第10発明にあっては、光源が本発光を行う前にプリ発光が行われてプリ発光下の照明範囲が撮像部により撮像される。照明範囲の撮像画像が配光変更部をなす複数の液晶レンズ夫々に対応した複数の部分領域に分割され、夫々の輝度が取得される。複数の部分領域から飽和領域及び低輝度領域が抽出される。配光制御部により、飽和領域を照らす照明光の一部が低輝度領域に向かうべく、配光変更部をなす複数の液晶レンズのうち、飽和領域と対応する液晶レンズの照射角度が制御された後、照明光の本発光が行われる。
【0028】
第11発明にあっては、光源が本発光を行う前にプリ発光が行われてプリ発光下の照明範囲が撮像部により撮像される。照明範囲の撮像画像が配光変更部をなす複数の液体レンズ夫々に対応した複数の部分領域に分割され、夫々の輝度が取得される。配光制御部により、飽和領域に位置する被照明物に照射される照明光の一部を拡散させて減光すべく配光変更部をなす複数の液体レンズのうち、飽和領域に対応する液体レンズの焦点距離が制御された後、照明光の本発光が行われる。
【0029】
第12発明にあっては、前述の照明装置により撮像範囲に位置する被撮像物に応じて配光が調整された照明光が照射され、照明光下の被撮像物が撮像される。
【発明の効果】
【0030】
本発明にあっては、照明光下の照明範囲の撮像画像から、配光変更部をなす複数の配光変更素子夫々に対応した複数の部分領域の輝度を取得し、夫々の輝度に基づいて複数の配光変更素子夫々の光学パラメータを制御することにより、照明装置から近距離及び遠距離に位置する被照明物が夫々輝度過剰及び輝度不足とならない照明光を照射することが可能となる。また、本発明にあっては、配光が調整された照明光下で被撮像物を撮像することにより、露光過剰及び露光不足が生じない撮像画像を得ることが可能となる。
【発明を実施するための最良の形態】
【0031】
実施の形態1
以下、本発明をその実施の形態を示す図面を参照して具体的に説明する。図1は、実施の形態1に係るストロボ照明装置の内部ハードウェア構成を示すブロック図である。図中白抜矢印は、ストロボ光源14から出射し、配光変更部15の後面に向かう光の方向を示している。図中1は、ストロボ照明装置を示しており、ストロボ照明装置1は、後述のキセノンランプが発するストロボ光を出射するストロボ光源14と、ストロボ光源14が出射するストロボ光の配光を変更する配光変更部15、配光変更部15をなす複数の液晶素子(配光変更素子)夫々を設定された透過率(光学パラメータ)となるよう制御する配光制御部16とを備える。
【0032】
本実施の形態においては、ストロボ光源を備えたストロボ照明装置に適用した例について、照明装置及び光源を夫々ストロボ照明装置1及びストロボ光源14に置き換えて説明するが、これに限るものではなく、ハロゲンランプ等の定常光を発光する光源を備えており、定常光を照明光として照射する照明装置に適用してもよい。
【0033】
ストロボ照明装置1は、ストロボ光源14を駆動させる図示しない点灯回路及び電源回路を含む駆動電源13と、駆動電源13を介してストロボ光源14が出射するストロボ光の発光量を設定された発光量に制御する発光量制御部12と、配光変更部15を透過して被照明物に向けて照射されるストロボ光の照明範囲を撮像する撮像部17と、ユーザによる操作を受け付ける操作受付部18と、制御部としてのCPU(Central Processing Unit)11と、RAM(Random Access Memory)19と、ストロボ制御プログラム201を含む後述の各決定表を記憶するROM20とを備えている。撮像部17は、CCD(Charge Coupled Device)イメージセンサ等で構成されている。
【0034】
発光量制御部12は、発光時間により発光量を制御する発光時間制御方式に基づいて構成されており、設定された発光量に基づいて発光時間を決定して駆動電源13に指示する。駆動電源13は、指示された発光時間及び予め設定されているストロボ電圧に従ってストロボ光源14に電力を供給する。配光制御部16は、設定された透過率から配光変更部15をなす複数の液晶素子夫々に印加する電圧を決定して印加することにより、液晶素子夫々の透過率を制御するよう構成されている。ROM20には、ストロボ制御プログラム201と共に、後述の発光量決定表202及び配光決定表203が記憶されている。
【0035】
CPU11は、バス21を介してストロボ照明装置1のハードウェア各部と接続されており、ハードウェア各部を制御すると共に、ROM20に記憶されているストロボ制御プログラム201をRAM19に読み出して実行することで、種々のソフトウェア的処理を実行する。ストロボ光源14及び配光変更部15は、ストロボ光出射部22を構成している。また、CPU11は、ストロボ制御プログラム201に従って後述の無発光下及びプリ発光下の撮像画像を複数の部分領域に分割し、夫々の輝度を取得するマルチ測光処理を実行することで輝度取得部として機能すると共に、取得した輝度等に基づいて後述の飽和領域(高輝度領域)を抽出する飽和領域検出部(高輝度領域検出部)としても機能するよう構成されている。
【0036】
図2及び図3は、夫々ストロボ光出射部22を示す模式的斜視図及び図2のIII−III線における模式的構造断面図である。ストロボ光源14は、矩形状開口部を有する直方体の筐体141の内部にストロボ光を発光する直管状のキセノンランプ142と、キセンノンランプ142が発光するストロボ光を筐体141の開口面に向けて反射する樋状の反射部143とを含んで構成されている。樋状の反射部143は、筐体141の矩形状の開口部の長辺に沿って延びるよう底部が筐体141の底面に固定されている。キセノンランプ142は、軸方向が筐体141の矩形状開口部の長辺と平行になるよう両端が筐体141の内側側面に固定されている。
【0037】
配光変更部15は、筐体141の矩形状開口部周縁に設けられた平坦部141aと断面略L字枠状の保持部151とにより、外周縁部が枠状の緩衝部材152、152を介して挟持されることで筐体141の矩形状開口部に覆設されている。保持部151は、平坦部141aに対してネジ止め等で固定されている。キセノンランプ142から出射したストロボ光は、配光変更部15をなすマトリクス状に二次元配置された複数の液晶素子夫々に入射し、各液晶素子に設定された透過率に従って減光されて配光が調整される。
【0038】
図2に示す配光変更部15の例では、横12個及び縦8個並んだマトリクス状に配置された96個の液晶素子からなる。ストロボ照明装置1は、操作受付部18がユーザによりストロボ光の発光を指示する操作を受け付けた場合、操作に応じたストロボ光の発光、すなわち本発光を実行する前に、無発光下及びプリ発光下におけるストロボ光の照明範囲を撮像して取得した撮像画像を複数の部分領域に分割し、夫々の輝度を取得するマルチ測光を行い、続いてストロボ光の本発光量設定及びストロボ光の配光変更を行った後、本発光を行う。ここで、マルチ測光について説明する。
【0039】
ストロボ照明装置1は、無発光下の照明範囲を撮像部17により撮像する。無発光下の撮像画像は、配光変更部15をなす複数の液晶素子夫々に対応した複数の部分領域に分割されて各部分領域の輝度Bnが取得される。部分領域の輝度は、部分領域内の画像データに含まれる複数の輝度データの平均値を求めて、当該部分領域の輝度とするとよい。無発光下の各部分領域の輝度Bnは、自然光により照らされた被照明物の輝度と対応する。配光変更部15を構成する全液晶素子の透過率として最大透過率が配光制御部16に設定されると共に、プリ発光時の消費電力を抑制すべくストロボ光源14の最大発光(フル発光)時の発光量以下であり、予め決められたプリ発光量Ipが発光量制御部12に設定される。
【0040】
ストロボ照明装置1は、均一な配光分布を有しており光量の少ないストロボ光をプリ発光により照明範囲に照射すると共に、プリ発光下の照明範囲を撮像部17により撮像する。プリ発光下の撮像画像は、無発光下の撮像画像と同様に、配光変更部15をなす複数の液晶素子夫々に対応した複数の部分領域に分割されて各部分領域の輝度Bpが取得される。プリ発光下の各部分領域の輝度Bpは、自然光及びプリ発光時のストロボ光により照らされた被照明物の輝度と対応する。
【0041】
図4は、実施の形態1に係るプリ発光下の撮像画像及び分割された撮像画像の例を示す模式図である。図4は、撮像部17が撮像したプリ発光における撮像画像及び複数の部分領域に分割された撮像画像を上下に(a)及び(b)の順に並べて示している。図4(a)に示すプリ発光下における撮像画像171には、手前側すなわちストロボ照明装置1から近距離に位置する人物が明るく照らされた領域171aと、奥側すなわちストロボ照明装置1から遠距離に位置する背景がストロボ光により暗く照らされた領域171bとが撮像されている。図4(b)に示す例では、撮像画像171が配光変更部15をなすマトリクス状に配置された96個の液晶素子夫々と一対一に対応する96個の部分領域に分割されている。次に本発光量設定について説明する。
【0042】
ストロボ照明装置1は、プリ発光下の各部分領域の輝度Bpのうち、最も輝度が低い最低輝度BLpを抽出すると共に、最低輝度BLpを有する部分領域を最低輝度領域として抽出する。ストロボ照明装置1は、無発光下の各部分領域の輝度Bnのうち、最低輝度領域と対応する部分領域が有する輝度BLnを抽出する。ストロボ照明装置1は、ROM20に予め記憶されているプリ発光下の下限輝度Btを読み出し、次式を用いて比率Raを算出する。
Ra=(Bt−BLp)/(BLp−BLn) ・・・(1)
【0043】
図5は、発光量決定表のデータ例を示す表である。発光量決定表202には、比率Raの複数の値夫々に対応付けられた複数の発光量が記憶されており、発光量はフル発光における輝度を100%とした比率で示されている。図5に示す例では、比率Raの1から2までの値夫々に対応付けて発光量50%から発光量100%までが記憶されている。比率Raの値が大きくなるに従い、最低輝度BLpが下限輝度Btに対して大きく下回るため、発光量が増大するよう本発光量決定表202に比率Ra及び発光量が記憶されている。比率Ra及び発光量は、予め経験的に求めて発光量決定表202に記憶しておくとよい。ストロボ照明装置1は、比率Raと対応する発光量を発光量決定表202から読み出して本発光量Ifとして発光量制御部12に設定する。
【0044】
比率Raの値が発光量決定表202に記憶されており、連続する二つの値の間にある場合、前後の比率Raの値及び夫々に対応付けられている発光量から所定の関数に基づいて補完することにより発光量を求めるとよい。発光量決定表202に記憶されている比率Raの最小値未満及び最大値以上の比率Raに対しては、夫々発光量50%及び100%を設定するとよい。発光量決定表202に従って最も遠距離に位置する被照明物と対応する最低輝度領域の輝度が下限輝度Bt未満とならないよう本発光量Ifが設定される。次にストロボ光の配光変更について説明する。
【0045】
ストロボ照明装置1は、配光変更部15をなす全液晶素子に最大透過率を設定した状態で本発光量Ifを有するストロボ光を照射した場合に予測される各部分領域の輝度Bfを次式により算出する。
Bf=k1・(Bp−Bn)・(If/Ip)+Bn ・・・(2)
ここで、k1は、比例定数を示しており、予め経験的に求めてROM20に記憶しておくとよい。ストロボ照明装置1は、各部分領域のうち、ROM20に予め記憶されている飽和輝度(閾値)Bsを読出し、輝度Bsを超える輝度Bfが算出された部分領域、すなわち飽和領域(高輝度領域)を抽出する。ストロボ照明装置1は、無発光下の各部分領域の輝度Bnのうち、飽和領域と対応する部分領域が有する輝度Bnを抽出し、飽和輝度Bs、飽和輝度Bsを超える輝度Bf及び抽出した輝度Bnに基づいて次式を用いて比率Rbを算出する。
Rb=(Bs−Bn)/(Bf-Bn) ・・・(3)
【0046】
図6は、実施の形態1に係る配光決定表203のデータ例を示す表である。配光決定表203には、比率Rbの複数の値夫々に対応付けられた複数の透過率が記憶されている。図6に示す例では、比率Rbの1から0.2までの値夫々に対応付けて100%から20%までの透過率が記憶されている。飽和領域の輝度Bfが飽和輝度Bsに対して大きく上回る場合、比率Rbの値が小さくなるため、ストロボ光を減光させるべく透過率が小さくなるよう配光決定表203に比率Rb及び透過率が記憶されている。比率Rb及び透過率は、予め経験的に求めて配光決定表203に記憶しておくとよい。ストロボ照明装置1は、各部分領域に対して算出された比率Rbと対応する透過率を配光決定表203から読み出す。ストロボ照明装置1は、配光変更部15をなす複数の液晶素子のうち、飽和領域と対応する液晶素子の透過率が、配光決定表203から読み出した透過率となるよう配光制御部16に設定する。
【0047】
比率Rbの値が配光決定表203に記憶されており、連続する二つの値の間にある場合、前後の比率Rbの値及び夫々に対応付けられている透過率から所定の関数に基づいて補完することにより透過率を求めるとよい。飽和領域と対応する液晶素子に対して透過率を変更することにより、近距離に位置する被照明物の輝度が飽和輝度Bsを超えることがないよう対応する液晶素子の透過率が減少されてストロボ光の一部が減光されると共に、その他の被照明物に対しては十分な輝度が得られるよう他の液晶素子の透過率が100%に維持される。ストロボ照明装置1は、発光量制御部12に駆動電源13を介してストロボ光源14に電力を供給させてストロボ光源14を本発光させる。本発光によりストロボ光源14から出射したストロボ光は、透過率が制御された配光変更部15をなす各液晶素子を透過して配光が変更されて照明範囲の被照明物に照射される。
【0048】
図7は、実施の形態1に係るストロボ照明装置1で実行される発光処理の手順を示すフローチャートである。CPU11は、操作受付部18がストロボ光の発光を指示する発光操作を受け付けたか否かを判定する(ステップS11)。CPU11は、発光操作を受け付けていないと判定した場合(ステップS11でNO)、発光操作を受け付けたか否かを判定するステップS11に処理を戻す。CPU11は、発光操作を受け付けたと判定した場合(ステップS11でYES)、無発光下及びプリ発光下の照明範囲を撮像して撮像画像夫々を複数の部分領域に分割し、夫々の輝度Bn及び輝度Bpを各取得する後述のマルチ測光処理を実行する(ステップS12)。
【0049】
CPU11は、マルチ測光処理により取得した各部分領域の輝度Bn及び輝度Bp等に基づいて本発光量を決定し発光量制御部12に設定する後述の本発光量設定処理を実行する(ステップS13)。CPU11は、マルチ測光処理により取得した各部分領域の輝度Bn及び輝度Bp等に基づいて配光変更部15をなす複数の液晶素子夫々の透過率を決定し配光制御部16に設定することでストロボ光の配光を変更する後述の配光変更処理を実行する(ステップS14)。CPU11は、発光量制御部12に駆動電源13を介してストロボ光源14を本発光させる(ステップS15)。
【0050】
CPU11は、ストロボ照明装置1に備えられた図示しない電源スイッチを切断した場合に出力される電源オフ信号を検出することによって、電源がオフにされたか否かを判定する(ステップS16)。CPU11は、電源がオフにされていないと判定した場合(ステップS16でNO)、発光操作を受け付けたか否かを判定するステップS11に処理を戻す。CPU11は、電源がオフにされたと判定した場合(ステップS16でYES)、発光処理を終了する。
【0051】
図8は、マルチ測光処理の手順を示すフローチャートである。CPU11は、無発光下の照明範囲を撮像部17により撮像する(ステップS21)。CPU11は、無発光下の照明範囲の撮像画像を、配光変更部15のマトリクス状に二次元配置された複数の液晶素子夫々と対応する複数の部分領域に分割する(ステップS22)。CPU11は、複数の部分領域夫々の無発光下の輝度Bnを取得する(ステップS23)。CPU11は、ROM20に予め記憶されているプリ発光量Ipを読み出して発光量制御部12に設定する(ステップS24)。CPU11は、配光変更部15をなす全液晶素子の透過率として略同一の最大透過率を配光制御部16に設定する(ステップS25)。
【0052】
CPU11は、発光量制御部12に駆動電源13を介してストロボ光源14をプリ発光させると共に、プリ発光下の照明範囲を撮像部17により撮像する(ステップS26)。CPU11は、プリ発光下の照明範囲の撮像画像を、配光変更部15のマトリクス状に二次元配置された複数の液晶素子夫々と対応する複数の部分領域に分割する(ステップS27)。CPU11は、複数の部分領域夫々のプリ発光下の輝度Bpを取得して(ステップS28)、マルチ測光処理を終了する。
【0053】
図9は、実施の形態1に係る本発光量設定処理の手順を示すフローチャートである。CPU11は、前述のマルチ測光処理により取得した複数のプリ発光下の輝度Bp及び複数の部分領域のうち、夫々最小となる最小輝度BLp及び最小輝度BLpを有する最小輝度領域を抽出する(ステップS31)。CPU11は、マルチ測光処理により取得した複数の無発光下の輝度Bnのうち、最小輝度領域と対応する無発光下の部分領域の輝度BLnを抽出する(ステップS32)。CPU11は、ROM20に予め記憶されている下限輝度Btを読み出す(ステップS33)。CPU11は、式(1)を用いて比率Raを算出する(ステップS34)。CPU11は、ROM20に記憶されている発光量決定表202において、比率Raと対応づけられている発光量を読み出す(ステップS35)。CPU11は、読み出した発光量を本発光量Ifとして発光量制御部12に設定し(ステップS36)、本発光量設定処理を終了する。
【0054】
図10は、実施の形態1に係る配光変更処理の手順を示すフローチャートである。CPU11は、式(2)を用いて本発光下で予測される各部分領域の輝度Bfを算出する(ステップS41)。CPU11は、ROM20に記憶されている飽和輝度Bsを読み出す(ステップS42)。CPU11は、夫々輝度Bfが算出された複数の部分領域のうち、飽和輝度Bsを超える輝度Bfが算出された部分領域、すなわち飽和領域を抽出する(ステップS43)。CPU11は、マルチ測光処理により取得した複数の無発光下の輝度Bnのうち、飽和領域と対応する無発光下の部分領域から取得された輝度Bnを抽出する(ステップS44)。
【0055】
CPU11は、式(3)を用いて各部分領域の比率Rbを算出する(ステップS45)。CPU11は、ROM20に記憶されている配光決定表203において、比率Rbと対応づけられている透過率を読み出す(ステップS46)。CPU11は、読み出した透過率が、配光変更部15をなす複数の液晶素子のうち、飽和領域と対応する液晶素子の透過率となるよう配光制御部16に設定し(ステップS47)、配光変更処理を終了する。
【0056】
本実施の形態1においては、配光変更部15が横12個及び縦8個のマトリクス状に配置された96個の液晶素子からなる場合を示したが、これに限るものではなく96個未満及び97個以上の液晶素子からなる配光変更部15であってもよい。また、マルチ測光処理において、配光変更部15をなす複数の液晶素子夫々と一対一に対応する部分領域に撮像画像を分割する場合を示したが、これに限るものではなく、一対複数に対応する複数の液晶素子からなる部分領域に分割してもよい。この場合、配光変更部15をなす複数の液晶素子をマトリクス状に2次元配置されており、夫々複数の液晶素子からなる複数の配光変更領域に区画分けし、マルチ測光処理において撮像画像を複数の配光変更領域夫々と一対一に対応する複数の部分領域に分割するとよい。さらに、配光制御部16には、複数の配光変更領域夫々に透過率を設定し、配光変更領域をなす複数の液晶素子の透過率には、略同一の透過率を設定するよう構成するとよい。
【0057】
本実施の形態1においては、発光量制御部12は、発光時間制御方式に基づいて構成されている例を示したが、これに限るものではなくストロボ電圧により発光量を制御する電圧制御方式に基づいて構成してもよい。この場合、駆動電源13は、発光量制御部12により、設定された発光量に基づいてストロボ電圧が決定されて指示され、指示されたストロボ電圧及び予め設定されている発光時間に従ってストロボ光源14に電力を供給するように構成するとよい。また、ストロボ電圧又は発光時間は、ストロボ発光時の消費電力と関与するため、駆動電源13に複数種類設定されており、駆動電源13と接続された図示しないバッテリ等の残り容量等に基づいて選択可能に構成してもよい。
【0058】
実施の形態2
図11は、実施の形態2に係るストロボ照明装置の内部ハードウェア構成を示すブロック図である。本実施の形態は、実施の形態1がマルチ測光により取得した各部分領域の輝度に基づいて配光調整を行うのに対して、ストロボ照明装置から被照明物までの距離に基づいて配光調整を行うように構成されている。図中3は、ストロボ照明装置を示しており、照明範囲の輝度を取得する受光センサ31と、照明範囲に位置する被照明物までの距離を取得する測距センサ32とを備えている。測距センサ32は、照明範囲に位置する複数の被照明物までの距離及び画像を同時に検出して、距離分布画像を取得する距離画像センサからなる。ストロボ照明装置3は、本発光を実行する前に、ストロボ光の照明範囲の輝度を取得する測光、ストロボ光の本発光量設定、距離を測定する測距及びストロボ光の配光変更を行ってストロボ光の配光を調整するよう構成されている。
【0059】
ストロボ照明装置3は、後述の測光処理により受光センサ31が測定した無発光下及びプリ発光下夫々の輝度Bn及び輝度Bpを取得する。ストロボ照明装置3は、ROM20に予め記憶されているプリ発光下の下限輝度Btを読み出し、次式を用いて比率Raを算出し、比率Raと対応する発光量を発光量決定表202から読み出して本発光量Ifとして発光量制御部12に設定する。
Ra=(Bt−Bp)/(Bp−Bn) ・・・(4)
【0060】
ストロボ照明装置3は、測距センサ32が取得した距離分布画像を、配光変更部15をなす複数の液晶素子夫々に対応するマトリクス状の複数の部分領域に分割し、各部分領域に位置する被照明物までの距離Dを取得する。1つの部分領域に距離データが複数存在する場合、複数の距離データの平均値を当該部分領域が有する距離Dとするとよい。また、1つの部分領域に存在する複数の距離Dのうち、最小距離又は最大距離を当該部分領域が有する距離Dとしてもよい。取得した複数の部分領域夫々が有する距離Dのうち、最小距離Dmin及び最大距離Dmaxが抽出され、次式に基づいて各部分領域における比率Rcが算出される。
Rc=(D−Dmin)/(Dmax-Dmin) ・・・(5)
【0061】
図12は、実施の形態2に係る配光決定表203のデータ例を示す表である。配光決定表203には、比率Rcの複数の値夫々に対応付けられた複数の透過率が記憶されている。図12に示す例では、比率Rcの1から0.3までの値夫々に対応付けて100%から10%までの透過率が記憶されている。比率Rcの値が小さくなるに従い、ストロボ照明装置3から近距離に位置するため、ストロボ光を減光させるべく透過率が小さくなるよう配光決定表203に比率Rc及び透過率が記憶されている。比率Rc及び透過率は、予め経験的に求めて配光決定表203に記憶しておくとよい。ストロボ照明装置3は、各部分領域に対して算出された比率Rcと対応する透過率を配光決定表203から読み出す。ストロボ照明装置3は、各部分領域と対応する液晶素子の透過率が、配光決定表203から読み出した透過率となるよう配光制御部16に設定する。
【0062】
比率Rcの値が配光決定表203に記憶されており、連続する二つの値の間にある場合、前後の比率Rcの値及び夫々に対応付けられている透過率から所定の関数に基づいて補完することにより透過率を求めるとよい。配光決定表203に記憶されている比率Rcの最小値未満及び最大値以上の比率Rcに対しては、夫々透過率100%及び10%を設定するとよい。これにより、近距離に位置する被照明物の輝度が過剰とならないよう対応する液晶素子の透過率が減少するよう制御されてストロボ光の一部が減光される。ストロボ照明装置3は、発光量制御部12に駆動電源13を介してストロボ光源14に電力を供給させ、ストロボ光源14を本発光させる。本発光によりストロボ光源14から出射したストロボ光は、透過率が制御された配光変更部15をなす各液晶素子を透過して配光が変更され、照明範囲の被照明物に照射される。
【0063】
図13は、実施の形態2に係るストロボ照明装置3で実行される発光処理の手順を示すフローチャートである。CPU11は、操作受付部18がストロボ光の発光を指示する発光操作を受け付けたか否かを判定する(ステップS51)。CPU11は、発光操作を受け付けていないと判定した場合(ステップS51でNO)、発光操作を受け付けたか否かを判定するステップS51に処理を戻す。CPU11は、発光操作を受け付けたと判定した場合(ステップS51でYES)、無発光下及びプリ発光下の照明範囲における夫々の輝度Bn及び輝度Bpを取得する後述の測光処理を実行する(ステップS52)。CPU11は、測光処理により取得した輝度Bn及びBp等に基づいて本発光量を決定し、発光量制御部12に設定する後述の本発光量設定処理を実行する(ステップS53)。CPU11は、照明範囲に位置する被照明物までの距離を取得する後述の測距処理を実行する(ステップS54)。
【0064】
CPU11は、測距処理により取得した距離に基づいて透過率を決定し配光制御部16に設定してストロボ光の配光を変更する後述の配光変更処理を実行する(ステップS55)。CPU11は、発光量制御部12に駆動電源13を介してストロボ光源14を本発光させる(ステップS56)。CPU11は、ストロボ照明装置に備えられた図示しない電源スイッチを切断した場合に出力される電源オフ信号を検出することによって、電源がオフにされたか否かを判定する(ステップS57)。CPU11は、電源がオフにされていないと判定した場合(ステップS57でNO)、発光操作を受け付けたか否かを判定するステップS51に処理を戻す。CPU11は、電源がオフにされたと判定した場合(ステップS57でYES)、発光処理を終了する。
【0065】
図14は、測光処理の手順を示すフローチャートである。CPU11は、無発光下の照明範囲における輝度Bnを受光センサ31から取得する(ステップS61)。CPU11は、ROM20に予め記憶されているプリ発光量Ipを読み出して発光量制御部12に設定する(ステップS62)。CPU11は、配光変更部15をなす全液晶素子の透過率として略同一の最大透過率を配光制御部16に設定する(ステップS63)。CPU11は、発光量制御部12に駆動電源13を介してストロボ光源14をプリ発光させると共に、プリ発光下の照明範囲における輝度Bpを受光センサ31から取得して(ステップS64)、測光処理を終了する。
【0066】
図15は、実施の形態2に係る本発光量設定処理の手順を示すフローチャートである。CPU11は、ROM20に予め記憶されている下限輝度Btを読み出す(ステップS71)。CPU11は、前述のマルチ測光処理により取得した輝度Bn及び輝度Bp並びに式(4)を用いて比率Raを算出する(ステップS72)。CPU11は、ROM20に記憶されている発光量決定表202において、比率Raと対応づけられている発光量を読み出す(ステップS73)。CPU11は、読み出した発光量を本発光量Ifとして発光量制御部12に設定し(ステップS74)、本発光量設定処理を終了する。
【0067】
図16は、測距処理の手順を示すフローチャートである。CPU11は、距離分布画像を測距センサ32から取得する(ステップS81)。CPU11は、距離分布画像を配光変更部15のマトリクス状に二次元配置された複数の液晶素子夫々と対応する複数の部分領域に分割する(ステップS82)。CPU11は、複数の部分領域夫々の距離Dを取得して(ステップS83)、測距処理を終了する。
【0068】
図17は、実施の形態2に係る配光変更処理の手順を示すフローチャートである。CPU11は、前述の測距処理により取得した各部分領域の複数の距離Dのうち、最小となる最小距離Dmin及び最大となる最大距離Dmaxを抽出する(ステップS91)。CPU11は、式(5)を用いて各部分領域の比率Rcを算出する(ステップS92)。CPU11は、ROM20に記憶されている配光決定表203において、比率Rcと対応づけられている透過率を読み出す(ステップS93)。CPU11は、読み出した透過率が、配光変更部15をなす複数の液晶素子のうち、各部分領域と対応する液晶素子の透過率となるよう配光制御部16に設定し(ステップS94)、配光変更処理を終了する。
【0069】
本実施の形態2は以上の如き構成としてあり、その他の構成及び作用は実施の形態1と同様であるので対応する部分には同一の参照番号を付してその詳細な説明を省略する。
【0070】
実施の形態3
本実施の形態は、実施の形態1が複数の液晶素子から配光変更部15を構成し、複数の液晶素子夫々の透過率を制御して配光調整を行うのに対して、複数の液晶レンズから配光変更部15を構成し、複数の液晶レンズ夫々の照射角度を制御して配光調整を行う。配光制御部16は、設定された照射角度に基づいて配光変更部15をなす複数の液晶レンズ夫々に印加する電圧を変更し、各液晶レンズを通過する光束の照射角度を制御するよう構成されている。ストロボ照明装置1は、本発光を実行する前に、マルチ測光処理、ストロボ光の配光変更及びストロボ光の本発光量設定を行ってストロボ光の配光を調整するよう構成されている。
【0071】
実施の形態1に係るマルチ測光処理においては、配光変更部15をなす複数の液晶素子全てに略同一の最大透過率が配光制御部16に設定されたが、本実施の形態に係るマルチ測光処理においては、配光変更部15をなす複数の液晶レンズ全てに配光変更部15に対して鉛直方向である略同一の照射角度が配光制御部16に設定される。ストロボ照明装置1は、マルチ測光処理により無発光下及びプリ発光下の夫々の輝度Bn及び輝度Bpを取得する。次に、液晶レンズ夫々の照射角度の制御によるストロボ光の配光調整を説明する。
【0072】
図18は、実施の形態3に係る分割された撮像画像及びストロボ光の光束を示す模式図である。図18は、複数の部分領域に分割されたプリ発光下の撮像画像及び液晶レンズにより照射角度が変更されたストロボ光の光束を上下に(a)及び(b)の順に並べて示している。図18(b)の白抜矢印は、配光変更部15の前面に対する鉛直方向を示している。図18(b)のL1c及びL2cは、配光変更部15をなす複数の液晶レンズのうち、1つの液晶レンズ15cを通過するストロボ光の夫々照射角度変更前後における照射方向を示しており、照射方向L1c及びL2cの夫々に従って光束L1及び光束L2が出射する。照射角度θは、照射方向L1c及びL2cがなす角度を示す。配光変更部15の横幅は、撮像画像172の横幅と対応するよう示されており、撮像画像172に撮像されている人物像は、被照明物102と対応する。また、照射角度前の液晶レンズ15cを通過する光束L1及び液晶レンズ15dを通過する図示しない光束は、夫々後述の飽和領域172a及び不飽和領域172bを照らしている。
【0073】
図18(a)に示すプリ発光下の撮像画像の例では、配光変更部15をなす40個の液晶レンズと対応する40個の部分領域に分割されている。飽和領域(高輝度領域)172aは、ストロボ照明装置1から近距離に位置する人物が明るく照らされた領域であり、飽和輝度(閾値)Bsを超える輝度Bpを有する部分領域を示す。不飽和領域(低輝度領域)172bは、ストロボ照明装置1から遠距離に位置した被照射物が暗く照らされた領域であり、飽和輝度Bs以下の輝度Bpを有する部分領域を示す。ストロボ照明装置1は、複数の部分領域から飽和輝度Bsを超える飽和領域及び飽和輝度Bs以下の不飽和領域を夫々抽出し、夫々輝度Bpの降順及び昇順に並べた飽和輝度領域リスト及び不飽和領域リストを各作成する。
【0074】
飽和領域リストに含まれる飽和領域の総数が不飽和領域リストに含まれる不飽和領域の総数よりも少ない場合、夫々の総数が同数となるよう不飽和領域リストに含まれる複数の不飽和領域のうち、輝度Bpが低い不飽和領域が不飽和領域リストの末尾に追加される。飽和領域及び不飽和領域夫々の位置は、マトリクス状に分割された部分領域のうち、撮像画像の左下に位置する部分領域を原点の座標(1,1)とし、X座標及びY座標夫々を原点から横方向に並んだ部分領域の順番及び縦方向に並んだ部分領域の順番で表わされたXY座標で示される。例えば、図18(a)に示す飽和領域172a及び不飽和領域172bの座標は、夫々、座標(4,2)及び座標(1,4)となる。
【0075】
ストロボ照明装置1は、飽和領域リストに含まれる夫々の飽和領域と、不飽和領域リストに含まれる夫々の不飽和領域とを、リスト内の夫々の順番に従い一対一に対応付ける。対応付けられた飽和領域及び不飽和領域の組夫々において、飽和領域の座標(X1,Y1)を基準座標とした不飽和領域の座標(X2,Y2)の相対座標(Xr,Yr)が次式を用いて算出される。
(Xr,Yr)=(X2−X1,Y2-Y1) ・・・(6)
図18(a)に示す例において飽和領域172a及び不飽和領域172bが対応付けられた場合、飽和領域172a及び不飽和領域172b夫々の座標(4,2)及び(1,4)から相対座標(−3,+2)が算出される。
【0076】
図19は、実施の形態3に係る配光決定表203のデータ例を示す表である。配光決定表203には、相対座標(Xr,Yr)のX座標Xr及びY座標Yr夫々に対応付けられた照射角度θのX方向成分及びY方向成分である夫々角度成分θx及び角度成分θyが記憶されている。図19に示す例では、横8個及び縦5個の合計40個の液晶レンズからなる配光変更部15において、X座標Xrの―6から+6までの値及びY座標Yrの−4から+4までの値夫々に対応付けて−30°から+30°までの角度成分θxの値及び−20°から+20°までの角度成分θyの値が記憶されている。配光決定表203は、配光変更部15の構成等により予め求めてROM20に記憶しておくとよい。
【0077】
ストロボ照明装置1は、相対座標(Xr,Yr)と対応する角度成分θx及び角度成分θyを配光決定表203から読み出す。ストロボ照明装置1は、飽和領域と対応する液晶レンズの照射角度θが、配光決定表203から読み出した角度成分θx及び角度成分θyとなるよう配光制御部16に設定する。配光制御部16は、配光変更部15をなす複数の液晶レンズのうち、対応する液晶レンズの照射角度が設定された角度成分θx及び角度成分θyとなるよう電圧を印加して配光を変更する。これにより、対応付けられた飽和領域と不飽和領域の組において高い輝度Bfが算出された飽和領域を照射するストロボ光の光束が、輝度Bs以下であり、低い輝度Bfが算出された不飽和領域に向かうよう飽和領域に対応する液晶レンズの照射角度が変更される。
【0078】
図18(b)に示す例では、プリ発光において液晶レンズ15cを通過し、飽和領域172aに位置する被照明物102の一部に照射されるストロボ光の照射方向L1cが不飽和領域172bに向かう照射方向L2cに変更されている。本発光下においては、不飽和領域172bに、照射角度が変更された液晶レンズ15cを通過する光束と、照射角度が変更されていない液晶レンズ15dを通過する光束とが照射される。
【0079】
飽和領域及び飽和領域と対応する不飽和領域の輝度Bp夫々が次式に従って夫々算出された輝度Bp1及び輝度Bp2に各更新される。
Bp1=Bn―(Bp−Bn)・k2 (7)
Bp2=Bn+(Bp−Bn)・k3 (8)
ここで、k2及びk3は比例定数であり、配光変更部15をなす複数の液晶レンズの光学特性等により予め求めて記憶しておくとよい。ストロボ照明装置1は、無発光下の輝度Bn及び配光変更処理により更新された輝度Bp1、Bp2を含むプリ発光下の輝度Bpに基づいて本発光設定処理を実行し、本発光量Ifを発光量制御部12に設定する。
【0080】
図20は、実施の形態3に係るストロボ照明装置1で実行される発光処理の手順を示すフローチャートである。CPU11は、操作受付部18がストロボ光の発光を指示する発光操作を受け付けたか否かを判定する(ステップS101)。CPU11は、発光操作を受け付けていないと判定した場合(ステップS101でNO)、発光操作を受け付けたか否かを判定するステップS101に処理を戻す。CPU11は、発光操作を受け付けたと判定した場合(ステップS101でYES)、マルチ測光処理を実行する(ステップS102)。CPU11は、配光変更部15をなす複数の液晶レンズ夫々の照射角度を決定し配光制御部16に設定することでストロボ光の配光を変更する後述の配光変更処理を実行する(ステップS103)。
【0081】
CPU11は、配光変更処理により設定された照射角度から更新された各部分領域の輝度Bn及び輝度Bp等に基づいて本発光量を決定し発光量制御部12に設定する本発光量設定処理を実行する(ステップS104)。CPU11は、発光量制御部12に駆動電源13を介してストロボ光源14を本発光させる(ステップS105)。CPU11は、ストロボ照明装置に備えられた図示しない電源スイッチを切断した場合に出力される電源オフ信号を検出することによって、電源がオフにされたか否かを判定する(ステップS106)。CPU11は、電源がオフにされていないと判定した場合(ステップS106でNO)、発光操作を受け付けたか否かを判定するステップS101に処理を戻す。CPU11は、電源がオフにされたと判定した場合(ステップS106でYES)、発光処理を終了する。
【0082】
図21及び図22は、実施の形態3に係る配光変更処理の手順を示すフローチャートである。CPU11は、ROM20に記憶されている飽和輝度Bsを読み出す(ステップS111)。CPU11は、飽和輝度Bsを超える輝度Bpを有する飽和領域を抽出する(ステップS112)。CPU11は、抽出した飽和領域が輝度Bpの降順に並んだ飽和領域リストを作成する(ステップS113)。CPU11は、飽和輝度Bs以下の輝度Bpを有する不飽和領域を抽出する(ステップS114)。CPU11は、抽出した不飽和領域が輝度Bpの昇順に並んだ不飽和領域リストを作成する(ステップS115)。CPU11は、抽出された飽和領域の総数が抽出された不飽和領域の総数より多いか否か判定する(ステップS116)。
【0083】
CPU11は、多いと判定した場合(ステップS116でYES)、飽和領域の総数と同数となるように不飽和領域リストの上位に位置する低い輝度Bpを有する不飽和領域を不飽和領域リストの末尾に追加する(ステップS117)。CPU11は、カウンタCに1をセットする(ステップS118)。CPU11は、飽和領域リストのC番目の飽和領域に対する不飽和領域リストのC番目の不飽和領域の相対座標(Xr,Yr)を式(6)により算出する(ステップS119)。CPU11は、算出した相対座標(Xr,Yr)と対応する照射角度(θx,θy)を配光決定表203から読み出す(ステップS120)。CPU11は、配光変更部15をなす複数の液晶レンズのうち、C番目の飽和領域と対応する液晶レンズの照射角度が、読み出した照射角度(θx,θy)となるよう配光制御部16に設定する(ステップS121)。
【0084】
CPU11は、C番目の飽和領域及びC番目の不飽和領域夫々の輝度Bpを式(7)及び式(8)を用いて夫々算出した輝度Bp1及び輝度Bp2の値に各更新する(ステップS122)。CPU11は、カウンタCをインクリメントする(ステップS123)。CPU11は、カウンタCが飽和領域リストに含まれる飽和領域の総数を超えているか否かを判定する(ステップS124)。CPU11は、超えていないと判定した場合(ステップS124でNO)、飽和領域リストのC番目の飽和領域に対する不飽和領域リストのC番目の不飽和領域の相対座標(Xr,Yr)を式(6)により算出するステップS119に処理を戻す。CPU11は、超えていると判定した場合(ステップS124でYES)、配光変更処理を終了する。CPU11は、抽出された飽和領域の総数が抽出された不飽和領域の総数より多いか否か判定するステップS116において、多くないと判定した場合(ステップS116でNO)、カウンタCに1をセットするステップS118に処理を移す。
【0085】
ストロボ照明装置1は、ストロボ光をプリ発光において抽出した飽和領域から不飽和領域に配光を変更して飽和領域を照らすストロボ光の一部を輝度の低い不飽和領域に割り当てることにより、ストロボ光源14が出射するストロボ光に損失を生じさせることなく配光調整する。本実施の形態においては、配光変更部15をなす複数の液晶レンズがマトリクス状、すなわち四方格子状に配置される場合を示したが、六方格子状等でも良く2次元配置されておればよい。また、飽和領域に向かう光束を不飽和領域に向かうよう変更する場合を示したが、これに限らず、予め設定された上限閾値を超える輝度を有する高輝度領域に向かう光束を予め設定された下限閾値を下回る輝度を有する低輝度領域に向かうよう変更するようにしてもよい。
【0086】
本実施の形態3においては、配光変更部15が横8個及び縦5個のマトリクス状に配置された40個の液晶レンズからなる場合を示したが、これに限るものではなく40個未満及び40個以上の液晶レンズからなる配光変更部15であってもよい。
【0087】
本実施の形態3は以上の如き構成としてあり、その他の構成及び作用は実施の形態1と同様であるので対応する部分には同一の参照番号及び処理名を付してその詳細な説明を省略する。
【0088】
実施の形態4
本実施の形態は、実施の形態1が複数の液晶素子から配光変更部15を構成し、複数の液晶素子夫々の透過率を制御して配光調整を行うのに対して、複数の液体レンズから配光変更部15を構成し、複数の液体レンズ夫々の焦点距離を制御して配光調整を行うように構成されている。配光制御部16は、設定された焦点距離に基づいて配光変更部15をなす複数の液体レンズ夫々に印加する電圧を変更し、液体レンズ夫々の焦点距離を制御して配光を調整するよう構成されている。ストロボ照明装置1は、本発光を実行する前に、マルチ測光処理、ストロボ光の本発光設定及びストロボ光の配光変更を行ってストロボ光の配光を調整するよう構成されている。
【0089】
実施の形態1に係るマルチ測光処理においては、配光変更部15をなす複数の液晶素子全てに略同一の最大透過率が配光制御部16に設定されたが、本実施の形態に係るマルチ測光処理においては、配光変更部15をなす複数の液体レンズ全てに略同一の所定の焦点距離が配光制御部16に設定される。マルチ測光処理により無発光下及びプリ発光下の夫々の輝度Bn及び輝度Bpを取得する。ストロボ照明装置1は、ROM20に予め記憶されているプリ発光下の下限輝度Btを読み出し、式(1)を用いて算出した比率Raと対応する発光量を発光量決定表202から読み出し、本発光量Ifとして発光量制御部12に設定する。次に、液体レンズの焦点距離の制御によるストロボ光の配光調整を説明する。
【0090】
図23は、実施の形態4に係る分割された撮像画像及びストロボ光の光束を示す模式図である。図23は、複数の部分領域に分割されたプリ発光下の撮像画像及び液体レンズにより焦点距離が変更されたストロボ光の光束を上下に(a)及び(b)の順に並べて示している。図23(b)の白抜矢印は、配光変更部15の前面に対する鉛直方向を示している。図23(b)のL3及びL4は、配光変更部15をなす複数の液体レンズのうち、1つの液体レンズ15eを通過するストロボ光の夫々焦点距離変更前後における光束を示している。配光変更部15の横幅は、撮像画像173の横幅と対応するよう示されており、撮像画像173に撮像されている人物像は、被照明物103と対応する。また、液体レンズ15eを通過する光束L3は、飽和領域173aを照らす。
【0091】
図23(a)に示す例では、配光変更部15をなす横8個及び縦5個のマトリクス状に配置された40個の液体レンズと対応する40個の部分領域となるよう撮像画像173が分割されている。ストロボ照明装置1は、配光変更部15をなす全液体レンズに略同一の所定の焦点距離を設定した状態で本発光量Ifを有するストロボ光を照射した場合に予測される各部分領域の輝度Bfを式(2)により算出する。ストロボ照明装置1は、飽和輝度Bs以上の輝度Bfが算出された飽和領域を抽出する。ストロボ照明装置1は、飽和領域と対応する部分領域の輝度Bnを抽出し、飽和輝度Bs、飽和輝度Bs以上である輝度Bf及び抽出した輝度Bnに基づいて式(3)を用いて比率Rbを算出する。
【0092】
ストロボ照明装置1は、配光決定表203において比率Rbと対応づけられている焦点距離を読み出して、配光変更部15をなす複数の液体レンズのうち、飽和領域と対応する液体レンズの焦点距離が、配光決定表203から読み出した焦点距離となるよう配光制御部16に設定する。図23(b)に示す例では、プリ発光において液体レンズ15eを通過し、飽和領域173aに位置する被照明物103の一部に照射されるストロボ光の光束L3が、液体レンズ15eの焦点距離がΔZ変位されて光束が広がり、照射面における光量密度が低下した光束L4に変更されている。ストロボ照明装置1は、焦点距離を変更して飽和領域を照射するストロボ光の光量密度を制御することでストロボ光源14が出射するストロボ光に損失を生じさせることなく配光調整する。
【0093】
図24は、実施の形態4に係る配光決定表203のデータ例を示す表である。配光決定表203には、比率Rbの複数の値夫々に対応付けられた複数の焦点距離の変位量ΔZが記憶されている。図24に示す例では、比率Rbの1から0.2までの値夫々に対応付けて0mから0.6mまでの焦点距離の変位量ΔZが記憶されている。比率Rbの値が小さくなるに従い、飽和領域の輝度Bpが飽和輝度Bsに対して大きく上回るため、長い焦点距離を設定してストロボ光を広げ、光量密度を減少させるべく焦点距離の変位量ΔZが大きくなるよう配光決定表203に比率Rb及び焦点距離の変位量ΔZが記憶されている。比率Rb及び焦点距離の変位量ΔZは、予め経験的に求めて配光決定表203に記憶しておくとよい。ストロボ照明装置1は、各部分領域に対して算出された比率Rbと対応する焦点距離の変位量ΔZを配光決定表203から読み出す。ストロボ照明装置1は、配光変更部15をなす複数の液体レンズのうち、飽和領域と対応する液体レンズの焦点距離を、配光決定表203から読み出した焦点距離の変位量ΔZに従って変更するよう配光制御部16に設定する。
【0094】
比率Rbと同一の値が配光決定表203に記録されていない場合、前後の値に夫々対応付けられている焦点距離の変位量ΔZから所定の関数に基づいて補完することにより焦点距離の変位量ΔZを求めるとよい。本発光量及び焦点距離を設定して配光調整をした後、ストロボ照明装置1は、発光量制御部12に駆動電源13を介してストロボ光源14に電力を供給させてストロボ光源を本発光させる。本発光によりストロボ光源14から出射したストロボ光は、焦点距離が制御された配光変更部15をなす各液体レンズを透過して配光が調整されて照明範囲の被照明物に照射される。
【0095】
図25は、実施の形態4に係る配光変更処理の手順を示すフローチャートである。CPU11は、式(2)を用いて本発光下で予測される各部分領域の輝度Bfを算出する(ステップS131)。CPU11は、ROM20に記憶されている飽和輝度Bsを読み出す(ステップS132)。CPU11は、夫々輝度Bfが算出された各部分領域のうち、飽和輝度Bsを超える輝度Bfが算出された部分領域、すなわち飽和領域を抽出する(ステップS133)。CPU11は、マルチ測光処理により取得した複数の無発光下の輝度Bnのうち、飽和領域と対応する部分領域から取得された輝度Bnを抽出する(ステップS134)。
【0096】
CPU11は、式(3)を用いて各部分領域の比率Rbを算出する(ステップS135)。CPU11は、ROM20に記憶されている配光決定表203において、比率Rbと対応づけられている焦点距離の変位量ΔZを読み出す(ステップS136)。CPU11は、配光変更部15をなす複数の液体レンズのうち、飽和領域と対応する液体レンズが、読み出した焦点距離の変位量ΔZとなる焦点距離を配光制御部16に設定し(ステップS137)、ストロボ光の配光を変更して配光変更処理を終了する。
【0097】
本実施の形態において、配光変更部15をなす複数の液体レンズ夫々の焦点距離を制御して配光調整を行う場合を示したが、複数の液晶レンズから配光変更部15を構成し、複数の液晶レンズ夫々の焦点距離を制御して配光調整を行ってもよい。また、配光変更部15が横8個及び縦5個のマトリクス状に配置された40個の液体レンズからなる場合を示したが、これに限るものではなく40個未満及び40個以上の液体レンズからなる配光変更部15であってもよい。
【0098】
本実施の形態4は以上の如き構成としてあり、その他の構成及び作用は実施の形態1と同様であるので対応する部分には同一の参照番号及び処理名を付してその詳細な説明を省略する。
【0099】
実施の形態5
図26及び図27は、夫々実施の形態5に係るストロボ光出射部の外観を示す模式的斜視図及び図26のXXVII−XXVII線における構造断面図である。本実施の形態は、実施の形態1に係るストロボ光出射部22がキセノンランプから出射するストロボ光を配光調整するのに対して、マトリクス状に二次元配置された複数のLEDから出射するストロボ光を配光調整するよう構成されている。ストロボ光源14は、矩形状開口部を有する直方体の筐体141の内部にマトリクス状に配置されており、ストロボ光を発光する複数のLED144、144、…と、LED144、144、…が取り付けられた基板145と、基板145の背面に設けられた放熱板146とを含んで構成されている。
【0100】
配光変更部15は、マトリクス状に配置された複数のLED144、144、…の夫々に対応する複数の液晶素子から構成されている。LED144が発生する熱は、基板145を介して放熱板146により大気中に放熱される。LED144、144、…が出射したストロボ光は、配光変更部15をなすマトリクス状に2次元配置された複数の液晶素子の夫々に入射し、各液晶素子に設定された透過率に従って減光されて配光が調整される。ストロボ照明装置1は、操作受付部18がユーザによりストロボ光の調整を指示する調整操作を受け付けた場合、ストロボ光の本発光を実行する前に、マルチ測光処理を行い、続いてストロボ光の本発光量の設定およびストロボ光の変更を行ってストロボ光の配光を調整する。ストロボ照明装置1は、操作受付部18が配光調整されたストロボ光の本発光を指示する本発光操作を受け付けるまで、ストロボ光の配光調整を繰り返すよう構成されている。
【0101】
図28は、実施の形態5に係るストロボ照明装置で実行される発光処理の手順を示すフローチャートである。CPU11は、操作受付部18がストロボ光の配光調整を指示する調整操作を受け付けたか否かを判定する(ステップS141)。CPU11は、調整操作を受け付けていないと判定した場合(ステップS141でNO)、調整操作を受け付けたか否かを判定するステップS141に処理を戻す。CPU11は、調整操作を受け付けたと判定した場合(ステップS141でYES)、輝度Bn及び輝度Bpを取得するマルチ測光処理を実行する(ステップS142)。CPU11は、取得した輝度Bn及び輝度Bp等に基づいて本発光量を決定し発光量制御部12に設定する本発光量設定処理を実行する(ステップS143)。CPU11は、輝度Bn及び輝度Bp等に基づいて透過率を決定し配光制御部16に設定してストロボ光の配光を変更する配光変更処理を実行する(ステップS144)。
【0102】
CPU11は、ストロボ光源14の本発光を指示する本発光操作を受け付けたか否かを判定する(ステップS145)。CPU11は、本発光操作を受け付けていないと判定した場合(ステップS145でNO)、マルチ測光処理を実行するステップS142に処理を戻す。CPU11は、本発光操作を受け付けたと判定した場合(ステップS145でYES)、発光量制御部12に駆動電源13を介してストロボ光源14を本発光させる(ステップS146)。CPU11は、ストロボ照明装置1に備えられた図示しない電源スイッチを切断した場合に出力される電源オフ信号を検出することによって、電源がオフにされたか否かを判定する(ステップS147)。CPU11は、電源がオフにされていないと判定した場合(ステップS147でNO)、発光操作を受け付けたか否かを判定するステップS141に処理を戻す。CPU11は、電源がオフにされたと判定した場合(ステップS147でYES)、発光処理を終了する。
【0103】
本実施の形態において、配光変更部15は、LED144、144、…の夫々に対応した複数の液晶素子からなる場合を示したが、これに限るものではなく、配光変更部15をLED144、144、…の夫々に対応しており、夫々複数の液晶素子からなる複数の配光変更領域に区画分けし、マルチ測光処理において撮像画像を複数の配光変更領域夫々と一対一に対応する複数の部分領域に分割してもよい。この場合、配光制御部16には、複数の配光変更領域夫々に透過率を設定し、配光変更領域をなす複数の液晶素子の透過率には、略同一の透過率を設定するよう構成するとよい。また、配光変更部15が複数の液晶素子からなる場合を示したが、LED144、144、…の夫々に対応した複数の液晶レンズ又は液体レンズからなる場合でもよい。
【0104】
本実施の形態5は以上の如き構成としてあり、その他の構成及び作用は実施の形態1から実施の形態4までと同様であるので対応する部分には同一の参照番号及び処理名を付してその詳細な説明を省略する。
【0105】
実施の形態6
図29は、実施の形態6に係る本発光量設定処理の手順を示すフローチャートである。本実施の形態は、実施の形態5に係る複数のLED夫々が略同一の発光量に調整されるのに対し、複数のLED夫々の発光量が調整される。発光量制御部12は、ストロボ光源14をなす複数のLED144、144、…を夫々に設定された発光量となるよう駆動電源13を介して制御するよう構成されている。
【0106】
CPU11は、前述のマルチ測光処理により取得した各部分領域のプリ発光下の輝度Bpを抽出する(ステップS151)。CPU11は、マルチ測光処理により取得した各部分領域の無発光下の輝度Bnを抽出する(ステップS152)。CPU11は、ROM20に予め記憶されている下限輝度Btを読み出す(ステップS153)。CPU11は、式(1)を用いて各部分領域の比率Raを算出する(ステップS154)。CPU11は、ROM20に記憶されている発光量決定表202において、各部分領域の比率Raと対応づけられている発光量を夫々読み出す(ステップS155)。CPU11は、各部分領域の比率Raと対応して読み出した発光量を各部分領域に対応するLED144、144、…の夫々の本発光量Ifとして発光量制御部12に設定し(ステップS156)、本発光量設定処理を終了する。
【0107】
本実施の形態6は以上の如き構成としてあり、その他の構成及び作用は実施の形態1から実施の形態5までと同様であるので対応する部分には同一の参照番号及び処理名を付してその詳細な説明を省略する。
【0108】
実施の形態7
図30は、実施の形態7に係るストロボ照明装置を備えた撮像装置の内部ハードウェア構成を示すブロック図である。図中4は、撮像装置を示しており、ストロボ光により照明された被撮像物を撮像する撮像部47と、撮像部47が撮像した撮像画像を図示しない記憶媒体に書き込む記憶媒体書込部42と、ユーザによる撮像装置に対する操作を受け付ける操作受付部48と、制御部としての撮像制御部41と、撮像制御プログラム401を含む各種データを記憶するROM40とを備えている。撮像制御部41は、バス21を介して撮像装置4のハードウェア各部と接続されており、ハードウェア各部を制御すると共に、ROM40に記憶されている撮像制御プログラム401をRAM19に読み出して実行することで、種々のソフトウェア的処理を実行する。撮像部47は、撮像装置4がストロボ光の配光を調整する場合、無発光下及びプリ発光下の照明範囲を撮像するよう構成されている。
【0109】
撮像制御部41は、操作受付部48がストロボ光照明光下で被撮像物の撮像を指示する撮像操作を受け付けた場合、ROM40に記憶されているストロボ制御プログラム201をRAM19に読み出して実行し、配光が調整されたストロボ光の本発光下で被撮像物を撮像する。これにより、ストロボ光下で被撮像物を撮像して取得した撮像画像に飽和輝度を超えた露光過剰部分及び輝度の不足した露光不足部分の発生を防ぐ。また撮像画像における輝度分布が一定範囲内となるため、撮像部47に用いられるCCD等の受像素子として、ダイナミックレンジの狭い安価な素子を用いることが可能となる。
【0110】
本実施の形態7は以上の如き構成としてあり、その他の構成及び作用は実施の形態1から実施の形態6までと同様であるので対応する部分には同一の参照番号を付してその詳細な説明を省略する。
【図面の簡単な説明】
【0111】
【図1】実施の形態1に係るストロボ照明装置の内部ハードウェア構成を示すブロック図である。
【図2】ストロボ光出射部を示す模式的斜視図である。
【図3】図2のIII−III線における模式的構造断面図である。
【図4】実施の形態1に係るプリ発光下の撮像画像及び分割された撮像画像の例を示す模式図である。
【図5】発光量決定表のデータ例を示す表である。
【図6】実施の形態1に係る配光決定表のデータ例を示す表である。
【図7】実施の形態1に係るストロボ照明装置で実行される発光処理の手順を示すフローチャートである。
【図8】マルチ測光処理の手順を示すフローチャートである。
【図9】実施の形態1に係る本発光量設定処理の手順を示すフローチャートである。
【図10】実施の形態1に係る配光変更処理の手順を示すフローチャートである。
【図11】実施の形態2に係るストロボ照明装置の内部ハードウェア構成を示すブロック図である。
【図12】実施の形態2に係る配光決定表のデータ例を示す表である。
【図13】実施の形態2に係るストロボ照明装置で実行される発光処理の手順を示すフローチャートである。
【図14】測光処理の手順を示すフローチャートである。
【図15】実施の形態2に係る本発光量設定処理の手順を示すフローチャートである。
【図16】測距処理の手順を示すフローチャートである。
【図17】実施の形態2に係る配光変更処理の手順を示すフローチャートである。
【図18】実施の形態3に係る分割された撮像画像及びストロボ光の光束を示す模式図である。
【図19】実施の形態3に係る配光決定表のデータ例を示す表である。
【図20】実施の形態3に係るストロボ照明装置で実行される発光処理の手順を示すフローチャートである。
【図21】実施の形態3に係る配光変更処理の手順を示すフローチャートである。
【図22】実施の形態3に係る配光変更処理の手順を示すフローチャートである。
【図23】実施の形態4に係る分割された撮像画像及びストロボ光の光束を示す模式図である。
【図24】実施の形態4に係る配光決定表のデータ例を示す表である。
【図25】実施の形態4に係る配光変更処理の手順を示すフローチャートである。
【図26】実施の形態5に係るストロボ光出射部の外観を示す模式的斜視図である。
【図27】図26のXXVII−XXVII線における構造断面図である。
【図28】実施の形態5に係るストロボ照明装置で実行される発光処理の手順を示すフローチャートである。
【図29】実施の形態6に係る本発光量設定処理の手順を示すフローチャートである。
【図30】実施の形態7に係るストロボ照明装置を備えた撮像装置の内部ハードウェア構成を示すブロック図である。
【符号の説明】
【0112】
1 ストロボ照明装置
11 CPU
12 発光量制御部
13 駆動電源
14 ストロボ光源
15 配光変更部
15c、15d 液晶レンズ
15e 液体レンズ
16 配光制御部
17 撮像部
18 操作受付部
19 RAM
20 ROM
21 バス
31 受光センサ
32 測距センサ
47 撮像部
201 ストロボ制御プログラム
202 発光量決定表
203 配光決定表
401 撮像制御プログラム

【特許請求の範囲】
【請求項1】
光源と、二次元配置された複数の配光変更素子からなり、前記光源が出射する照明光の配光を変更する配光変更部と、前記照明光の照明範囲を撮像する撮像部とを備えた照明装置が照射する照明光の配光調整方法において、
前記照明光の照明範囲を前記撮像部により撮像して撮像画像を取得し、
該撮像画像から前記複数の配光変更素子夫々に対応した複数の部分領域の輝度を取得し、
該輝度に基づいて前記複数の配光変更素子夫々の光学パラメータを制御する
ことを特徴とする配光調整方法。
【請求項2】
光源と、二次元配置された複数の配光変更素子からなり、前記光源が出射する照明光の配光を変更する配光変更部と、前記照明光の照明範囲に位置する被照明物までの距離を測定する測距部とを備えた照明装置が照射する照明光の配光調整方法において、
前記光源から照明範囲に位置する被照明物までの距離を前記測距部により測定し、
前記距離に基づいて前記複数の配光変更素子夫々の光学パラメータを変更する
ことを特徴とする配光調整方法。
【請求項3】
光源と、二次元配置された複数の配光変更素子からなり、前記光源が出射する照明光の配光を変更する配光変更部と、前記照明光の照明範囲に位置する被照明物までの距離を測定する測距部と、前記照明光の照明範囲の輝度を取得する輝度取得部と、前記照明光の照明範囲を撮像する撮像部とを備えた照明装置が照射する照明光の配光調整方法において、
前記光源から照明範囲に位置する被照明物までの距離を前記測距部により測定し、
前記輝度及び距離夫々に基づいて前記光源の発光量及び複数の配光変更素子夫々の光学パラメータを各変更する
ことを特徴とする配光調整方法。
【請求項4】
二次元配置された複数の発光素子からなる光源と、前記複数の発光素子と対応する複数の配光変更素子が配置されてなり、前記光源が出射する照明光の配光を変更する配光変更部と、前記照明光の照明範囲を撮像する撮像部とを備えた照明装置が照射する照明光の配光調整方法において、
前記照明光の照明範囲を前記撮像部により撮像して撮像画像を取得し、
該撮像画像から前記複数の発光素子夫々に対応した複数の部分領域の輝度を取得し、
該輝度に基づいて前記複数の配光変更素子夫々の光学パラメータを変更する
ことを特徴とする配光調整方法。
【請求項5】
前記輝度に基づいて前記光源の発光量を変更することを特徴とする請求項1又は請求項4に記載の配光調整方法。
【請求項6】
前記輝度に基づいて前記複数の発光素子夫々の発光量を変更することを特徴とする請求項4に記載の配光調整方法。
【請求項7】
光源と、該光源の前側に配されており、前記光源から後面に入射した照明光の配光を変更する配光変更部とを備え、前記照明光の配光を調整して照射する照明装置において、
前記配光変更部は、二次元配置された複数の配光変更素子からなり、
前記照明光の照明範囲を撮像する撮像部と、
該撮像部が撮像した撮像画像から前記複数の配光変更素子夫々に対応する複数の部分領域の輝度を取得する輝度取得部と、
該輝度取得部が取得した夫々の輝度に基づいて前記複数の配光変更素子夫々の光学パラメータを制御する配光制御部と
を備えることを特徴とする照明装置。
【請求項8】
閾値が設定されてあり、前記撮像画像から前記閾値を超える輝度を有する高輝度領域を検出する高輝度領域検出部をさらに備え、
前記配光制御部は、前記複数の配光変更素子のうち、前記高輝度領域と対応する配光変更素子夫々の光学パラメータを制御するよう構成してある
ことを特徴とする請求項7に記載の照明装置。
【請求項9】
前記配光変更素子は、透過率可変の液晶素子からなり、
前記配光制御部は、複数の前記液晶素子夫々の透過率を制御するよう構成してあること
を特徴とする請求項7又は請求項8に記載の照明装置。
【請求項10】
前記配光変更素子は、照射角度可変の液晶レンズからなり、
前記配光制御部は、複数の前記液晶レンズ夫々の照射角度を制御するよう構成してあること
を特徴とする請求項7又は請求項8に記載の照明装置。
【請求項11】
前記配光変更素子は、焦点距離可変の液体レンズからなり、
前記配光制御部は、複数の前記液体レンズ夫々の焦点距離を制御するよう構成してあること
を特徴とする請求項7又は請求項8に記載の照明装置。
【請求項12】
請求項7から請求項11までのいずれか一項に記載の照明装置を備えることを特徴とする撮像装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate

【図27】
image rotate

【図28】
image rotate

【図29】
image rotate

【図30】
image rotate


【公開番号】特開2009−204734(P2009−204734A)
【公開日】平成21年9月10日(2009.9.10)
【国際特許分類】
【出願番号】特願2008−44943(P2008−44943)
【出願日】平成20年2月26日(2008.2.26)
【出願人】(000005049)シャープ株式会社 (33,933)
【Fターム(参考)】