説明

露光装置、露光方法、及び表示用パネル基板の製造方法

【課題】描画データの解像度やエンコーダのパルス信号の周期に依存することなく露光間隔を設定し、描画データの解像度で決まる露光間隔とエンコーダのパルス信号の周期で決まる露光間隔とのずれを小さくして、描画精度を向上させる。
【解決手段】チャック10と光ビーム照射装置20との相対的な移動量に応じたパルス信号を出力するエンコーダ32を設け、エンコーダ32のパルス信号からチャック10と光ビーム照射装置20との相対的な移動量を検出する。描画データの解像度よりも細かな解像度で基準座標を設定し、目標とする基準露光間隔に対して、描画データの解像度で決まる露光間隔及びエンコーダ32のパルス信号の周期で決まる露光間隔を、基準座標上で演算して、チャック10の位置座標を決定し、チャック10の位置座標に応じた描画データを光ビーム照射装置20の駆動回路へ供給する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、液晶ディスプレイ装置等の表示用パネル基板の製造において、フォトレジストが塗布された基板へ光ビームを照射し、光ビームにより基板を走査して、基板にパターンを描画する露光装置、露光方法、及びそれらを用いた表示用パネル基板の製造方法に関する。
【背景技術】
【0002】
表示用パネルとして用いられる液晶ディスプレイ装置のTFT(Thin Film Transistor)基板やカラーフィルタ基板、プラズマディスプレイパネル用基板、有機EL(Electroluminescence)表示パネル用基板等の製造は、露光装置を用いて、フォトリソグラフィー技術により基板上にパターンを形成して行われる。露光装置としては、従来、レンズ又は鏡を用いてマスクのパターンを基板上に投影するプロジェクション方式と、マスクと基板との間に微小な間隙(プロキシミティギャップ)を設けてマスクのパターンを基板へ転写するプロキシミティ方式とがあった。
【0003】
近年、フォトレジストが塗布された基板へ光ビームを照射し、光ビームにより基板を走査して、基板にパターンを描画する露光装置が開発されている。光ビームにより基板を走査して、基板にパターンを直接描画するため、高価なマスクが不要となる。また、描画データ及び走査のプログラムを変更することにより、様々な種類の表示用パネル基板に対応することができる。この様な露光装置として、例えば、特許文献1、特許文献2、及び特許文献3に記載のものがある。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2010−44318号公報
【特許文献2】特開2010−60990号公報
【特許文献3】特開2010−102084号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
光ビームにより基板にパターンを描画する際、光ビームの変調には、DMD(Digital Micromirror Device)等の空間的光変調器が用いられる。DMDは、光ビームを反射する複数の微小なミラーを二方向に配列して構成され、各ミラーの角度を変更することにより、基板へ照射する光ビームを変調する。DMDの駆動回路は、描画データに基づいて、各ミラーを駆動するための駆動信号をDMDへ出力する。光ビームによる基板の走査は、基板を支持するチャックと、DMDにより変調された光ビームを基板へ照射する照射光学系を有する光ビーム照射装置とを、相対的に移動して行われる。
【0006】
描画データは、描画するパターンのCADデータから作られた座標データを元に生成されてメモリに記憶され、チャックと光ビーム照射装置との相対的な移動に伴い、チャックと光ビーム照射装置との相対的な位置座標に応じて、メモリから読み出されてDMDの駆動回路へ供給される。描画データに基づき空間的光変調器を駆動する度に、空間的光変調器により変調された光ビームが照射される描画領域を移動する距離(露光間隔)に関しては、照射される光ビームの強度により十分な露光量を得るため描画速度を制御する必要があり、さらに描画データの解像度と移動距離の基準となるエンコーダのパルス信号の周期(距離)とが一致する値とする必要がある。
【0007】
チャックと光ビーム照射装置との相対的な位置座標は、チャック又は光ビーム照射装置の移動量に応じたパルス信号を出力するエンコーダを設け、エンコーダのパルス信号からチャックと光ビーム照射装置との相対的な移動量を検出して決定される。従って、描画データに基づき空間的光変調器を駆動する度に、空間的光変調器により変調された光ビームが照射される描画領域を移動する距離(露光間隔)は、エンコーダのパルス信号の周期の整数倍となる。ここで、描画データの解像度で決まる露光間隔と、エンコーダのパルス信号の周期で決まる露光間隔とが、同一又は倍数の関係にないと、両者の間にずれが生じ、描画精度が低下する。
【0008】
本発明の課題は、描画データの解像度やエンコーダのパルス信号の周期に依存することなく露光間隔を設定し、描画データの解像度で決まる露光間隔とエンコーダのパルス信号の周期で決まる露光間隔とのずれを小さくして、描画精度を向上させることである。さらに、本発明の課題は、高品質な表示用パネル基板を製造することである。
【課題を解決するための手段】
【0009】
本発明の露光装置は、フォトレジストが塗布された基板を支持するチャックと、光ビームを変調する空間的光変調器、描画データに基づいて空間的光変調器を駆動する駆動回路、及び空間的光変調器により変調された光ビームを照射する照射光学系を有する光ビーム照射装置と、チャックと光ビーム照射装置とを相対的に移動する移動手段とを備え、移動手段によりチャックと光ビーム照射装置とを相対的に移動し、光ビーム照射装置からの光ビームにより基板を走査して、基板にパターンを描画する露光装置であって、移動手段の移動量に応じたパルス信号を出力するエンコーダと、エンコーダのパルス信号から移動手段の移動量を検出して、チャックと光ビーム照射装置との相対的な位置座標を決定し、決定した位置座標に応じた描画データを光ビーム照射装置の駆動回路へ供給する描画制御手段とを備え、描画制御手段が、描画データの解像度よりも細かな解像度で基準座標を設定し、目標とする基準露光間隔に対して、描画データの解像度で決まる露光間隔及びエンコーダのパルス信号の周期で決まる露光間隔を、基準座標上で演算して、チャックと光ビーム照射装置との相対的な位置座標を決定する座標決定手段を有するものである。
【0010】
また、本発明の露光方法は、フォトレジストが塗布された基板をチャックで支持し、チャックと、光ビームを変調する空間的光変調器、描画データに基づいて空間的光変調器を駆動する駆動回路、及び空間的光変調器により変調された光ビームを照射する照射光学系を有する光ビーム照射装置とを、相対的に移動し、光ビーム照射装置からの光ビームにより基板を走査して、基板にパターンを描画する露光方法であって、チャックと光ビーム照射装置との相対的な移動量に応じたパルス信号を出力するエンコーダを設け、エンコーダのパルス信号からチャックと光ビーム照射装置との相対的な移動量を検出し、描画データの解像度よりも細かな解像度で基準座標を設定し、目標とする基準露光間隔に対して、描画データの解像度で決まる露光間隔及びエンコーダのパルス信号の周期で決まる露光間隔を、基準座標上で演算して、チャックと光ビーム照射装置との相対的な位置座標を決定し、決定した位置座標に応じた描画データを光ビーム照射装置の駆動回路へ供給するものである。
【0011】
本発明において、露光間隔とは、描画データに基づき空間的光変調器を駆動する度に、空間的光変調器により変調された光ビームが照射される描画領域を移動する距離を示し、目標とする基準露光間隔は、チャックと光ビーム照射装置との相対的な移動速度、露光光の光量、基板に塗布されたフォトレジストの性能等に応じて決定される。描画データの解像度よりも細かな解像度で基準座標を設定し、目標とする基準露光間隔に対して、描画データの解像度で決まる露光間隔及びエンコーダのパルス信号の周期で決まる露光間隔を、基準座標上で演算するので、描画データの解像度やエンコーダのパルス信号の周期に依存することなく、露光間隔が設定される。従って、描画データの解像度で決まる露光間隔とエンコーダのパルス信号の周期で決まる露光間隔とのずれを小さくして、描画精度を向上させることができる。
【0012】
さらに、本発明の露光装置は、座標決定手段が、目標とする基準露光間隔に応じ、基準座標の解像度を変更して、基準露光間隔と演算上の露光間隔とのずれを小さくするものである。また、本発明の露光方法は、目標とする基準露光間隔に応じ、基準座標の解像度を変更して、基準露光間隔と演算上の露光間隔とのずれを小さくするものである。
【0013】
描画データの解像度で決まる露光間隔及びエンコーダのパルス信号の周期で決まる露光間隔を演算する際、実際の演算回路では、演算結果が演算回路の解像度に依存し、解像度以下の誤差が蓄積して、基準露光間隔と演算上の露光間隔とのずれが大きくなる。演算回路の解像度を細かくすれば、このずれを小さくすることができるが、解像度を細かくすると、より多くのビット数が必要となり、演算回路の規模が増大する。本発明では、描画データの解像度よりも細かな解像度で仮想の基準座標を設定しており、実際の演算回路を変更することなく、目標とする基準露光間隔に応じて、基準座標の解像度を変更することができる。目標とする基準露光間隔に応じ、基準座標の解像度を変更して、基準露光間隔と演算上の露光間隔とのずれを小さくするので、演算回路の解像度の制約による描画精度の低下が抑制される。
【0014】
さらに、本発明の露光装置は、座標決定手段が、基準座標上で、目標とする基準露光間隔を積算して、基準積算移動量を算出する第1の演算回路と、基準座標上で、移動手段の積算移動量を算出し、算出した積算移動量と基準積算移動量との差がエンコーダのパルス信号の間隔より小さくなる様に、エンコーダのパルス信号の周期で決まる露光間隔を補正する第2の演算回路と、基準座標上で、移動手段の積算移動量を算出し、算出した積算移動量と基準積算移動量との差が描画データの解像度より小さくなる様に、描画データの解像度で決まる露光間隔を補正する第3の演算回路とを有するものである。
【0015】
また、本発明の露光方法は、基準座標上で、目標とする基準露光間隔を積算して、基準積算移動量を算出し、基準座標上で、チャックと光ビーム照射装置との相対的な積算移動量を算出して、算出した積算移動量と基準積算移動量との差がエンコーダのパルス信号の間隔より小さくなる様に、エンコーダのパルス信号の周期で決まる露光間隔を補正し、基準座標上で、チャックと光ビーム照射装置との相対的な積算移動量を算出して、算出した積算移動量と基準積算移動量との差が描画データの解像度より小さくなる様に、描画データの解像度で決まる露光間隔を補正するものである。
【0016】
基準座標上で、チャックと光ビーム照射装置との相対的な積算移動量を算出して、算出した積算移動量と基準積算移動量との差がエンコーダのパルス信号の間隔より小さくなる様に、エンコーダのパルス信号の周期で決まる露光間隔を補正するので、基準露光間隔とエンコーダのパルス信号の周期で決まる露光間隔とのずれが、エンコーダのパルス信号の間隔より小さくなる。また、基準座標上で、チャックと光ビーム照射装置との相対的な積算移動量を算出して、算出した積算移動量と基準積算移動量との差が描画データの解像度より小さくなる様に、描画データの解像度で決まる露光間隔を補正するので、基準露光間隔と描画データの解像度で決まる露光間隔とのずれが、描画データの解像度より小さくなる。
【0017】
本発明の表示用パネル基板の製造方法は、上記のいずれかの露光装置又は露光方法を用いて基板の露光を行うものである。上記の露光装置又は露光方法を用いることにより、描画データの解像度やエンコーダのパルス信号の周期に依存することなく露光間隔が設定され、描画精度が向上するので、高品質な表示用パネル基板が製造される。
【発明の効果】
【0018】
本発明の露光装置及び露光方法によれば、描画データの解像度よりも細かな解像度で基準座標を設定し、目標とする基準露光間隔に対して、描画データの解像度で決まる露光間隔及びエンコーダのパルス信号の周期で決まる露光間隔を、基準座標上で演算することにより、描画データの解像度やエンコーダのパルス信号の周期に依存することなく、露光間隔を設定することができる。従って、描画データの解像度で決まる露光間隔とエンコーダのパルス信号の周期で決まる露光間隔とのずれを小さくして、描画精度を向上させることができる。
【0019】
さらに、本発明の露光装置及び露光方法によれば、目標とする基準露光間隔に応じ、基準座標の解像度を変更して、基準露光間隔と演算上の露光間隔とのずれを小さくすることにより、演算回路の解像度の制約による描画精度の低下を抑制することができる。
【0020】
さらに、本発明の露光装置及び露光方法によれば、基準座標上で、チャックと光ビーム照射装置との相対的な積算移動量を算出して、算出した積算移動量と基準積算移動量との差がエンコーダのパルス信号の間隔より小さくなる様に、エンコーダのパルス信号の周期で決まる露光間隔を補正することにより、基準露光間隔とエンコーダのパルス信号の周期で決まる露光間隔とのずれを、エンコーダのパルス信号の間隔より小さくすることができる。また、基準座標上で、チャックと光ビーム照射装置との相対的な積算移動量を算出して、算出した積算移動量と基準積算移動量との差が描画データの解像度より小さくなる様に、描画データの解像度で決まる露光間隔を補正することにより、基準露光間隔と描画データの解像度で決まる露光間隔とのずれを、描画データの解像度より小さくすることができる。
【0021】
本発明の表示用パネル基板の製造方法によれば、描画データの解像度やエンコーダのパルス信号の周期に依存することなく露光間隔を設定して、描画精度を向上させることができるので、高品質な表示用パネル基板を製造することができる。
【図面の簡単な説明】
【0022】
【図1】本発明の一実施の形態による露光装置の概略構成を示す図である。
【図2】本発明の一実施の形態による露光装置の側面図である。
【図3】本発明の一実施の形態による露光装置の正面図である。
【図4】光ビーム照射装置の概略構成を示す図である。
【図5】DMDのミラー部の一例を示す図である。
【図6】レーザー測長系の動作を説明する図である。
【図7】本発明の一実施の形態による描画制御部の概略構成を示す図である。
【図8】中心点座標決定部の一例のブロック図である。
【図9】中心点座標決定部の動作を示す図である。
【図10】中心点座標決定部の動作を示す図である。
【図11】中心点座標決定部の動作を示す図である。
【図12】中心点座標決定部の動作を示す図である。
【図13】中心点座標決定部の動作を示す図である。
【図14】光ビームによる基板の走査を説明する図である。
【図15】光ビームによる基板の走査を説明する図である。
【図16】光ビームによる基板の走査を説明する図である。
【図17】光ビームによる基板の走査を説明する図である。
【図18】液晶ディスプレイ装置のTFT基板の製造工程の一例を示すフローチャートである。
【図19】液晶ディスプレイ装置のカラーフィルタ基板の製造工程の一例を示すフローチャートである。
【発明を実施するための形態】
【0023】
図1は、本発明の一実施の形態による露光装置の概略構成を示す図である。また、図2は本発明の一実施の形態による露光装置の側面図、図3は本発明の一実施の形態による露光装置の正面図である。露光装置は、ベース3、Xガイド4、Xステージ5、Yガイド6、Yステージ7、θステージ8、チャック10、ゲート11、光ビーム照射装置20、リニアスケール31,33、エンコーダ32,34、レーザー測長系、レーザー測長系制御装置40、ステージ駆動回路60、及び主制御装置70を含んで構成されている。なお、図2及び図3では、レーザー測長系のレーザー光源41、レーザー測長系制御装置40、ステージ駆動回路60、及び主制御装置70が省略されている。露光装置は、これらの他に、基板1をチャック10へ搬入し、また基板1をチャック10から搬出する基板搬送ロボット、装置内の温度管理を行う温度制御ユニット等を備えている。
【0024】
なお、以下に説明する実施の形態におけるXY方向は例示であって、X方向とY方向とを入れ替えてもよい。
【0025】
図1及び図2において、チャック10は、基板1の受け渡しを行う受け渡し位置にある。受け渡し位置において、図示しない基板搬送ロボットにより基板1がチャック10へ搬入され、また図示しない基板搬送ロボットにより基板1がチャック10から搬出される。チャック10は、基板1の裏面を真空吸着して支持する。基板1の表面には、フォトレジストが塗布されている。
【0026】
基板1の露光を行う露光位置の上空に、ベース3をまたいでゲート11が設けられている。ゲート11には、複数の光ビーム照射装置20が搭載されている。なお、本実施の形態は、8つの光ビーム照射装置20を用いた露光装置の例を示しているが、光ビーム照射装置の数はこれに限らず、本発明は1つ又は2つ以上の光ビーム照射装置を用いた露光装置に適用される。
【0027】
図4は、光ビーム照射装置の概略構成を示す図である。光ビーム照射装置20は、光ファイバー22、レンズ23、ミラー24、DMD(Digital Micromirror Device)25、投影レンズ26、及びDMD駆動回路27を含んで構成されている。光ファイバー22は、レーザー光源ユニット21から発生された紫外光の光ビームを、光ビーム照射装置20内へ導入する。光ファイバー22から射出された光ビームは、レンズ23及びミラー24を介して、DMD25へ照射される。DMD25は、光ビームを反射する複数の微小なミラーを直交する二方向に配列して構成された空間的光変調器であり、各ミラーの角度を変更して光ビームを変調する。DMD25により変調された光ビームは、投影レンズ26を含むヘッド部20aから照射される。DMD駆動回路27は、主制御装置70から供給された描画データに基づいて、DMD25の各ミラーの角度を変更する。
【0028】
図2及び図3において、チャック10は、θステージ8に搭載されており、θステージ8の下にはYステージ7及びXステージ5が設けられている。Xステージ5は、ベース3に設けられたXガイド4に搭載され、Xガイド4に沿ってX方向へ移動する。Yステージ7は、Xステージ5に設けられたYガイド6に搭載され、Yガイド6に沿ってY方向へ移動する。θステージ8は、Yステージ7に搭載され、θ方向へ回転する。Xステージ5、Yステージ7、及びθステージ8には、ボールねじ及びモータや、リニアモータ等の図示しない駆動機構が設けられており、各駆動機構は、図1のステージ駆動回路60により駆動される。
【0029】
θステージ8のθ方向への回転により、チャック10に搭載された基板1は、直交する二辺がX方向及びY方向へ向く様に回転される。Xステージ5のX方向への移動により、チャック10は、受け渡し位置と露光位置との間を移動される。露光位置において、Xステージ5のX方向への移動により、各光ビーム照射装置20のヘッド部20aから照射された光ビームが、基板1をX方向へ走査する。また、Yステージ7のY方向への移動により、各光ビーム照射装置20のヘッド部20aから照射された光ビームによる基板1の走査領域が、Y方向へ移動される。図1において、主制御装置70は、ステージ駆動回路60を制御して、θステージ8のθ方向へ回転、Xステージ5のX方向への移動、及びYステージ7のY方向への移動を行う。
【0030】
図5は、DMDのミラー部の一例を示す図である。光ビーム照射装置20のDMD25は、光ビーム照射装置20からの光ビームによる基板1の走査方向(X方向)に対して、所定の角度θだけ傾いて配置されている。DMD25を、走査方向に対して傾けて配置すると、直交する二方向に配列された複数のミラー25aのいずれかが、隣接するミラー25a間の隙間に対応する箇所をカバーするので、パターンの描画を隙間無く行うことができる。
【0031】
なお、本実施の形態では、Xステージ5によりチャック10をX方向へ移動することによって、光ビーム照射装置20からの光ビームによる基板1の走査を行っているが、光ビーム照射装置20を移動することにより、光ビーム照射装置20からの光ビームによる基板1の走査を行ってもよい。また、本実施の形態では、Yステージ7によりチャック10をY方向へ移動することによって、光ビーム照射装置20からの光ビームによる基板1の走査領域を変更しているが、光ビーム照射装置20を移動することにより、光ビーム照射装置20からの光ビームによる基板1の走査領域を変更してもよい。
【0032】
図1及び図2において、ベース3には、X方向へ伸びるリニアスケール31が設置されている。リニアスケール31には、Xステージ5のX方向への移動量を検出するための目盛が付けられている。また、Xステージ5には、Y方向へ伸びるリニアスケール33が設置されている。リニアスケール33には、Yステージ7のY方向への移動量を検出するための目盛が付けられている。
【0033】
図1及び図3において、Xステージ5の一側面には、リニアスケール31に対向して、エンコーダ32が取り付けられている。エンコーダ32は、リニアスケール31の目盛を検出して、パルス信号を主制御装置70へ出力する。また、図1及び図2において、Yステージ7の一側面には、リニアスケール33に対向して、エンコーダ34が取り付けられている。エンコーダ34は、リニアスケール33の目盛を検出して、パルス信号を主制御装置70へ出力する。主制御装置70は、エンコーダ32のパルス信号をカウントして、Xステージ5のX方向への移動量を検出し、エンコーダ34のパルス信号をカウントして、Yステージ7のY方向への移動量を検出する。
【0034】
図6は、レーザー測長系の動作を説明する図である。なお、図6においては、図1に示したゲート11、及び光ビーム照射装置20が省略されている。レーザー測長系は、公知のレーザー干渉式の測長系であって、レーザー光源41、レーザー干渉計42,44、及びバーミラー43,45を含んで構成されている。バーミラー43は、チャック10のY方向へ伸びる一側面に取り付けられている。また、バーミラー45は、チャック10のX方向へ伸びる一側面に取り付けられている。
【0035】
レーザー干渉計42は、レーザー光源41からのレーザー光をバーミラー43へ照射し、バーミラー43により反射されたレーザー光を受光して、レーザー光源41からのレーザー光とバーミラー43により反射されたレーザー光との干渉を測定する。この測定は、Y方向の2箇所で行う。レーザー測長系制御装置40は、主制御装置70の制御により、レーザー干渉計42の測定結果から、チャック10のX方向の位置及び回転を検出する。
【0036】
一方、レーザー干渉計44は、レーザー光源41からのレーザー光をバーミラー45へ照射し、バーミラー45により反射されたレーザー光を受光して、レーザー光源41からのレーザー光とバーミラー45により反射されたレーザー光との干渉を測定する。レーザー測長系制御装置40は、主制御装置70の制御により、レーザー干渉計44の測定結果から、チャック10のY方向の位置を検出する。
【0037】
図4において、主制御装置70は、光ビーム照射装置20のDMD駆動回路27へ描画データを供給する描画制御部を有する。図7は、描画制御部の概略構成を示す図である。描画制御部71は、メモリ72、バンド幅設定部73、中心点座標決定部74、及び座標決定部75を含んで構成されている。メモリ72は、各光ビーム照射装置20のDMD駆動回路27へ供給する描画データを、そのXY座標をアドレスとして記憶している。
【0038】
バンド幅設定部73は、メモリ72から読み出す描画データのY座標の範囲を決定することにより、光ビーム照射装置20のヘッド部20aから照射される光ビームのY方向のバンド幅を設定する。
【0039】
レーザー測長系制御装置40は、露光位置における基板1の露光を開始する前のチャック10のXY方向の位置を検出する。中心点座標決定部74は、レーザー測長系制御装置40が検出したチャック10のXY方向の位置から、基板1の露光を開始する前のチャック10の中心点のXY座標を決定する。図1において、光ビーム照射装置20からの光ビームにより基板1の走査を行う際、主制御装置70は、ステージ駆動回路60を制御して、Xステージ5によりチャック10をX方向へ移動させる。基板1の走査領域を移動する際、主制御装置70は、ステージ駆動回路60を制御して、Yステージ7によりチャック10をY方向へ移動させる。図7において、中心点座標決定部74は、エンコーダ32,34からのパルス信号をカウントして、Xステージ5のX方向への移動量及びYステージ7のY方向への移動量を検出し、チャック10の中心点のXY座標を決定する。
【0040】
座標決定部75は、中心点座標決定部74が決定したチャック10の中心点のXY座標に基づき、各光ビーム照射装置20のDMD駆動回路27へ供給する描画データのXY座標を決定する。メモリ72は、座標決定部75が決定したXY座標をアドレスとして入力し、入力したXY座標のアドレスに記憶された描画データを、各光ビーム照射装置20のDMD駆動回路27へ出力する。
【0041】
以下、本発明の一実施の形態による露光方法について説明する。図8は、中心点座標決定部の一例のブロック図である。また、図9〜図13は、中心点座標決定部の動作を示す図である。図8において、中心点座標決定部74は、露光間隔タイミング生成回路410、基準座標演算回路420、エンコーダ座標演算回路430、描画座標演算回路440、及び描画座標生成回路450を含んで構成されている。
【0042】
図9は、目標とする基準露光間隔が10.625mm、エンコーダ32のパルス信号の間隔が0.8mmのときの例を示している。このとき、エンコーダ32のパルス信号の周期で決まる露光間隔は、エンコーダ32のパルス信号の間隔の13倍(13ビット)の10.40mmとなり、解像度誤差は、0.225mmとなる。また、図10は、目標とする基準露光間隔が10.625mm、描画データの解像度が0.5mmのときの例を示している。このとき、描画データの解像度で決まる露光間隔は、描画データの解像度の21倍(21ビット)の10.50mmとなり、解像度誤差は、0.125mmとなる。
【0043】
図8において、露光間隔タイミング生成回路410は、露光間隔レジスタ411、演算器412、カウンタ413、及び比較器414を含んで構成されている。露光間隔レジスタ411には、露光間隔をエンコーダ32のパルス信号のビット数で示した数値(図9の例における「13」)が記憶されている。カウンタ413は、エンコーダ32のパルス信号をカウントして、カウントした数値を出力する。比較器414は、露光間隔レジスタ411から演算器412を介して入力した数値と、カウンタ413が出力した数値とを比較し、両者が一致すると、露光間隔を制御するタイミング信号を出力する。
【0044】
基準座標演算回路420は、描画データの解像度よりも細かな解像度で基準座標を設定し、基準座標上で、目標とする基準露光間隔を積算して、基準積算移動量を算出する。基準座標演算回路420は、露光間隔レジスタ421、及び加算器422を含んで構成されている。露光間隔レジスタ421には、目標とする基準露光間隔の数値(図9及び図10の例における「10.625」)が記憶されている。加算器422は、露光間隔タイミング生成回路410からタイミング信号を入力する度に、露光間隔レジスタ421から入力した目標とする基準露光間隔の数値を積算して、基準積算移動量を算出する。
【0045】
エンコーダ座標演算回路430は、基準座標演算回路420と同じ基準座標を設定し、基準座標上で、Xステージ5の積算移動量を算出し、算出した積算移動量と基準積算移動量との差がエンコーダ32のパルス信号の間隔より小さくなる様に、エンコーダ32のパルス信号の周期で決まる露光間隔を補正する。エンコーダ座標演算回路430は、露光間隔レジスタ431、演算器432、加算器433、エンコーダパルス間隔レジスタ434、及び比較器435を含んで構成されている。
【0046】
露光間隔レジスタ431には、エンコーダ32のパルス信号の周期で決まる露光間隔の数値(図9の例における「10.40」)が記憶されている。加算器433は、露光間隔タイミング生成回路410からタイミング信号を入力する度に、露光間隔レジスタ431から演算器432を介して入力した露光間隔の数値を積算して、チャック10の積算移動量を算出する。
【0047】
エンコーダパルス間隔レジスタ434には、エンコーダ32のパルス信号の間隔の数値(図9の例における「0.8」)が記憶されている。比較器435は、基準座標演算回路420の加算器422から入力した基準積算移動量の数値と、加算器433から入力した積算移動量の数値とを比較し、両者の差(図9の例における「積算誤差」)がエンコーダパルス間隔レジスタ434から入力したパルス信号の間隔の数値に達する一回前に、露光間隔の補正を要求する補正要求信号を出力する。
【0048】
比較器435から補正要求信号が出力されると、露光間隔タイミング生成回路410の演算器412は、露光間隔レジスタ411から入力した数値に補正要求信号の「1」を加算して、比較器414へ出力する。図9の例において、比較器414は、補正要求信号が出力されない場合、カウンタ413が出力した数値が露光間隔レジスタ411に記憶された数値「13」に達すると、タイミング信号を出力し、補正要求信号が出力された場合、カウンタ413が出力した数値が演算器412により「1」を加算された数値「14」に達すると、タイミング信号を出力する。従って、前のタイミング信号が出力されてからのチャック10の移動量は、補正要求信号が出力されない場合、10.40mm(13ビット)となり、補正要求信号が出力された場合、11.20mm(14ビット)となる。図9の例では、露光番号4,8,11,15,18,22,25,29のところで、補正要求信号が出力され、チャック10の移動量が11.20mm(14ビット)となっている。
【0049】
また、比較器435から補正要求信号が出力されると、エンコーダ座標演算回路430の演算器432は、露光間隔レジスタ431に記憶されたエンコーダ32のパルス信号の周期で決まる露光間隔の数値(図9の例における「10.40」)に、エンコーダパルス間隔レジスタ434に記憶されたエンコーダ32のパルス信号の間隔の数値(図9の例における「0.8」)を加算した数値を、加算器433へ出力する。従って、図9の例において、加算器433から出力されるチャック10の積算移動量は、補正要求信号が出力されない場合、10.40mmずつ増加し、補正要求信号が出力された場合、11.20mm増加する。図9の例では、露光番号4,8,11,15,18,22,25,29のところで、補正要求信号が出力され、チャック10の積算移動量の増分が11.20mmとなっている。
【0050】
エンコーダ座標演算回路430により、基準座標上で、チャック10と光ビーム照射装置20との相対的な積算移動量を算出し、積算移動量と基準積算移動量との差がエンコーダ32のパルス信号の間隔より小さくなる様に、エンコーダ32のパルス信号の周期で決まる露光間隔を補正するので、基準露光間隔とエンコーダ32のパルス信号の周期で決まる露光間隔とのずれが、エンコーダ32のパルス信号の間隔より小さくなる。
【0051】
描画座標演算回路440は、基準座標演算回路420と同じ基準座標を設定し、基準座標上で、Xステージ5の積算移動量を算出し、算出した積算移動量と基準積算移動量との差が描画データの解像度より小さくなる様に、描画データの解像度で決まる露光間隔を補正する。描画座標演算回路440は、露光間隔レジスタ441、演算器442、加算器433、描画解像度レジスタ444、及び比較器445を含んで構成されている。
【0052】
露光間隔レジスタ441には、描画データの解像度で決まる露光間隔の数値(図10の例における「10.50」)が記憶されている。加算器443は、露光間隔タイミング生成回路410からタイミング信号を入力する度に、露光間隔レジスタ441から演算器442を介して入力した露光間隔の数値を積算して、チャック10の積算移動量を算出する。
【0053】
描画解像度レジスタ444には、描画データの解像度の数値(図10の例における「0.5」)が記憶されている。比較器445は、基準座標演算回路420の加算器422から入力した基準積算移動量の数値と、加算器433から入力した積算移動量の数値とを比較し、両者の差(図10の例における「積算誤差」)が描画解像度レジスタ444から入力した描画データの解像度の数値に達する一回前に、露光間隔の補正を要求する補正要求信号を出力する。
【0054】
描画座標生成回路450は、座標移動間隔レジスタ451、演算器452、及び加算器453を含んで構成されている。座標移動間隔レジスタ451には、露光間隔を描画データの解像度のビット数で示した数値(図10の例における「21」)が記憶されている。加算器453は、露光間隔タイミング生成回路410からタイミング信号を入力する度に、座標移動間隔レジスタ451から演算器452を介して入力した露光間隔の数値を積算して、チャック10の積算移動量を算出する。
【0055】
描画座標演算回路440の比較器445から補正要求信号が出力されると、描画座標演算回路440の演算器442は、露光間隔レジスタ441に記憶された描画データの解像度で決まる露光間隔の数値(図10の例における「10.50」)に、描画解像度レジスタ444に記憶された描画データの解像度の数値(図10の例における「0.5」)を加算した数値を、加算器443へ出力する。従って、図10の例において、加算器443から出力されるチャック10の積算移動量は、補正要求信号が出力されない場合、10.50mmずつ増加し、補正要求信号が出力された場合、11.00mm増加する。図10の例では、露光番号4,8,12,16,20,24,28のところで、補正要求信号が出力され、チャック10の積算移動量の増分が11.00mmとなっている。
【0056】
また、描画座標演算回路440の比較器445から補正要求信号が出力されると、描画座標生成回路450の演算器452は、座標移動間隔レジスタ451から入力した数値に補正要求信号の「1」を加算して、加算器453へ出力する。図10の例において、加算器453は、補正要求信号が出力されない場合、座標移動間隔レジスタ451に記憶された数値「21」を出力し、補正要求信号が出力された場合、演算器452により「1」を加算された数値「22」を出力する。従って、前のタイミング信号が出力されてからのチャック10の移動量は、補正要求信号が出力されない場合、10.50mm(21ビット)となり、補正要求信号が出力された場合、11.00mm(22ビット)となる。図10の例では、露光番号4,8,12,16,20,24,28のところで、補正要求信号が出力され、チャック10の移動量が11.00mm(22ビット)となっている。
【0057】
描画座標演算回路440により、基準座標上で、チャック10と光ビーム照射装置20との相対的な積算移動量を算出し、積算移動量と基準積算移動量との差が描画データの解像度より小さくなる様に、描画データの解像度で決まる露光間隔を補正するので、基準露光間隔と描画データの解像度で決まる露光間隔とのずれが、描画データの解像度より小さくなる。
【0058】
描画データの解像度で決まる露光間隔及びエンコーダのパルス信号の周期で決まる露光間隔を演算する際、実際の演算回路では、演算結果が演算回路の解像度に依存し、解像度以下の誤差が蓄積して、基準露光間隔と演算上の露光間隔とのずれが大きくなる。例えば、図11は、目標とする基準露光間隔が10.624mm、エンコーダ32のパルス信号の間隔が0.8mmのときの例を示している。このとき、エンコーダ32のパルス信号の周期で決まる露光間隔は、エンコーダ32のパルス信号の間隔の13倍(13ビット)の10.40mmとなり、解像度誤差は、0.224mmとなる。しかしながら、演算回路の解像度を、0.005mmとすると、図12に示す様に、演算上の露光間隔は解像度の2124倍(2124ビット)の10.620mmとなり、解像度誤差は、0.220mmとなる。そして、この場合の積算誤差を、図11の場合の積算誤差と比較すると、図12の場合は、露光番号が増加するに従って、積算誤差が0.004mmずつ増加している。
【0059】
演算回路の解像度を細かくすれば、このずれを小さくすることができるが、解像度を細かくすると、より多くのビット数が必要となり、演算回路の規模が増大する。本発明では、描画データの解像度よりも細かな解像度で仮想の基準座標を設定しており、実際の演算回路を変更することなく、目標とする基準露光間隔に応じて、基準座標の解像度を変更することができる。例えば、図11の例では、演算回路の解像度を、0.001mmとすると、図13に示す様に、演算上の露光間隔値は解像度の10624倍(10624ビット)の10.624mmとなり、解像度誤差は、0.224mmとなる。従って、この場合の積算誤差は、図11の場合の積算誤差と同じになる。目標とする基準露光間隔に応じ、基準座標の解像度を変更して、基準露光間隔と演算上の露光間隔とのずれを小さくするので、演算回路の解像度の制約による描画精度の低下が抑制される。
【0060】
また、仮想の基準座標の原点を、Xステージ5及びYステージ7の移動範囲の外側のチャック10の中心点が到達しない位置に設定すると、基準座標演算回路420、エンコーダ座標演算回路430、及び描画座標演算回路440において、演算結果の正負の極性が全て同じになるので、基準座標演算回路420、エンコーダ座標演算回路430、及び描画座標演算回路440の各構成要素を簡単な構成にすることができる。
【0061】
図14〜図17は、光ビームによる基板の走査を説明する図である。図14〜図17は、8つの光ビーム照射装置20からの8本の光ビームにより、基板1のX方向の走査を4回行って、基板1全体を走査する例を示している。図14〜図17においては、各光ビーム照射装置20のヘッド部20aが破線で示されている。各光ビーム照射装置20のヘッド部20aから照射された光ビームは、Y方向にバンド幅Wを有し、Xステージ5のX方向への移動によって、基板1を矢印で示す方向へ走査する。
【0062】
図14は、1回目の走査を示し、X方向への1回目の走査により、図14に灰色で示す走査領域でパターンの描画が行われる。1回目の走査が終了すると、Yステージ7のY方向への移動により、基板1がY方向へバンド幅Wと同じ距離だけ移動される。図15は、2回目の走査を示し、X方向への2回目の走査により、図15に灰色で示す走査領域でパターンの描画が行われる。2回目の走査が終了すると、Yステージ7のY方向への移動により、基板1がY方向へバンド幅Wと同じ距離だけ移動される。図16は、3回目の走査を示し、X方向への3回目の走査により、図16に灰色で示す走査領域でパターンの描画が行われる。3回目の走査が終了すると、Yステージ7のY方向への移動により、基板1がY方向へバンド幅Wと同じ距離だけ移動される。図17は、4回目の走査を示し、X方向への4回目の走査により、図17に灰色で示す走査領域でパターンの描画が行われ、基板1全体の走査が終了する。
【0063】
複数の光ビーム照射装置20からの複数の光ビームにより基板1の走査を並行して行うことにより、基板1全体の走査に掛かる時間を短くすることができ、タクトタイムを短縮することができる。
【0064】
なお、図14〜図17では、基板1のX方向の走査を4回行って、基板1全体を走査する例を示したが、走査の回数はこれに限らず、基板1のX方向の走査を3回以下又は5回以上行って、基板1全体を走査してもよい。
【0065】
以上説明した実施の形態によれば、描画データの解像度よりも細かな解像度で基準座標を設定し、目標とする基準露光間隔に対して、描画データの解像度で決まる露光間隔及びエンコーダ32のパルス信号の周期で決まる露光間隔を、基準座標上で演算することにより、描画データの解像度やエンコーダ32のパルス信号の周期に依存することなく、露光間隔を設定することができる。従って、描画データの解像度で決まる露光間隔とエンコーダ32のパルス信号の周期で決まる露光間隔とのずれを小さくして、描画精度を向上させることができる。
【0066】
さらに、目標とする基準露光間隔に応じ、基準座標の解像度を変更して、基準露光間隔と演算上の露光間隔とのずれを小さくすることにより、演算回路の解像度の制約による描画精度の低下を抑制することができる。
【0067】
さらに、基準座標上で、チャック10と光ビーム照射装置20との相対的な積算移動量を算出して、算出した積算移動量と基準積算移動量との差がエンコーダ32のパルス信号の間隔より小さくなる様に、エンコーダ32のパルス信号の周期で決まる露光間隔を補正することにより、基準露光間隔とエンコーダ32のパルス信号の周期で決まる露光間隔とのずれを、エンコーダ32のパルス信号の間隔より小さくすることができる。また、基準座標上で、チャック10と光ビーム照射装置20との相対的な積算移動量を算出して、算出した積算移動量と基準積算移動量との差が描画データの解像度より小さくなる様に、描画データの解像度で決まる露光間隔を補正することにより、基準露光間隔と描画データの解像度で決まる露光間隔とのずれを、描画データの解像度より小さくすることができる。
【0068】
本発明の露光装置又は露光方法を用いて基板の露光を行うことにより、描画データの解像度やエンコーダのパルス信号の周期に依存することなく露光間隔を設定して、描画精度を向上させることができるので、高品質な表示用パネル基板を製造することができる。
【0069】
例えば、図18は、液晶ディスプレイ装置のTFT基板の製造工程の一例を示すフローチャートである。薄膜形成工程(ステップ101)では、スパッタ法やプラズマ化学気相成長(CVD)法等により、基板上に液晶駆動用の透明電極となる導電体膜や絶縁体膜等の薄膜を形成する。レジスト塗布工程(ステップ102)では、ロール塗布法等によりフォトレジストを塗布して、薄膜形成工程(ステップ101)で形成した薄膜上にフォトレジスト膜を形成する。露光工程(ステップ103)では、露光装置を用いて、フォトレジスト膜にパターンを形成する。現像工程(ステップ104)では、シャワー現像法等により現像液をフォトレジスト膜上に供給して、フォトレジスト膜の不要部分を除去する。エッチング工程(ステップ105)では、ウエットエッチングにより、薄膜形成工程(ステップ101)で形成した薄膜の内、フォトレジスト膜でマスクされていない部分を除去する。剥離工程(ステップ106)では、エッチング工程(ステップ105)でのマスクの役目を終えたフォトレジスト膜を、剥離液によって剥離する。これらの各工程の前又は後には、必要に応じて、基板の洗浄/乾燥工程が実施される。これらの工程を数回繰り返して、基板上にTFTアレイが形成される。
【0070】
また、図19は、液晶ディスプレイ装置のカラーフィルタ基板の製造工程の一例を示すフローチャートである。ブラックマトリクス形成工程(ステップ201)では、レジスト塗布、露光、現像、エッチング、剥離等の処理により、基板上にブラックマトリクスを形成する。着色パターン形成工程(ステップ202)では、染色法や顔料分散法等により、基板上に着色パターンを形成する。この工程を、R、G、Bの着色パターンについて繰り返す。保護膜形成工程(ステップ203)では、着色パターンの上に保護膜を形成し、透明電極膜形成工程(ステップ204)では、保護膜の上に透明電極膜を形成する。これらの各工程の前、途中又は後には、必要に応じて、基板の洗浄/乾燥工程が実施される。
【0071】
図18に示したTFT基板の製造工程では、露光工程(ステップ103)において、図19に示したカラーフィルタ基板の製造工程では、ブラックマトリクス形成工程(ステップ201)及び着色パターン形成工程(ステップ202)の露光処理において、本発明の露光装置又は露光方法を適用することができる。
【符号の説明】
【0072】
1 基板
3 ベース
4 Xガイド
5 Xステージ
6 Yガイド
7 Yステージ
8 θステージ
10 チャック
11 ゲート
20 光ビーム照射装置
20a ヘッド部
21 レーザー光源ユニット
22 光ファイバー
23 レンズ
24 ミラー
25 DMD(Digital Micromirror Device)
26 投影レンズ
27 DMD駆動回路
31,33 リニアスケール
32,34 エンコーダ
40 レーザー測長系制御装置
41 レーザー光源
42,44 レーザー干渉計
43,45 バーミラー
60 ステージ駆動回路
70 主制御装置
71 描画制御部
72 メモリ
73 バンド幅設定部
74 中心点座標決定部
75 座標決定部
410 露光間隔タイミング生成回路
411,421,431,441 露光間隔レジスタ
412,432,442,452 演算器
413 カウンタ
414,435,445 比較器
420 基準座標演算回路
422,433,443,453 加算器
430 エンコーダ座標演算回路
434 エンコーダパルス間隔レジスタ
440 描画座標演算回路
444 描画解像度レジスタ
450 描画座標生成回路
451 座標移動間隔レジスタ

【特許請求の範囲】
【請求項1】
フォトレジストが塗布された基板を支持するチャックと、
光ビームを変調する空間的光変調器、描画データに基づいて空間的光変調器を駆動する駆動回路、及び空間的光変調器により変調された光ビームを照射する照射光学系を有する光ビーム照射装置と、
前記チャックと前記光ビーム照射装置とを相対的に移動する移動手段とを備え、
前記移動手段により前記チャックと前記光ビーム照射装置とを相対的に移動し、前記光ビーム照射装置からの光ビームにより基板を走査して、基板にパターンを描画する露光装置であって、
前記移動手段の移動量に応じたパルス信号を出力するエンコーダと、
前記エンコーダのパルス信号から前記移動手段の移動量を検出して、前記チャックと前記光ビーム照射装置との相対的な位置座標を決定し、決定した位置座標に応じた描画データを前記光ビーム照射装置の駆動回路へ供給する描画制御手段とを備え、
前記描画制御手段は、描画データの解像度よりも細かな解像度で基準座標を設定し、目標とする基準露光間隔に対して、描画データの解像度で決まる露光間隔及び前記エンコーダのパルス信号の周期で決まる露光間隔を、基準座標上で演算して、前記チャックと前記光ビーム照射装置との相対的な位置座標を決定する座標決定手段を有することを特徴とする露光装置。
【請求項2】
前記座標決定手段は、目標とする基準露光間隔に応じ、基準座標の解像度を変更して、基準露光間隔と演算上の露光間隔とのずれを小さくすることを特徴とする請求項1に記載の露光装置。
【請求項3】
前記座標決定手段は、
基準座標上で、目標とする基準露光間隔を積算して、基準積算移動量を算出する第1の演算回路と、
基準座標上で、前記移動手段の積算移動量を算出し、算出した積算移動量と基準積算移動量との差が前記エンコーダのパルス信号の間隔より小さくなる様に、エンコーダのパルス信号の周期で決まる露光間隔を補正する第2の演算回路と、
基準座標上で、前記移動手段の積算移動量を算出し、算出した積算移動量と基準積算移動量との差が描画データの解像度より小さくなる様に、描画データの解像度で決まる露光間隔を補正する第3の演算回路とを有することを特徴とする請求項1又は請求項2に記載の露光装置。
【請求項4】
フォトレジストが塗布された基板をチャックで支持し、
チャックと、光ビームを変調する空間的光変調器、描画データに基づいて空間的光変調器を駆動する駆動回路、及び空間的光変調器により変調された光ビームを照射する照射光学系を有する光ビーム照射装置とを、相対的に移動し、
光ビーム照射装置からの光ビームにより基板を走査して、基板にパターンを描画する露光方法であって、
チャックと光ビーム照射装置との相対的な移動量に応じたパルス信号を出力するエンコーダを設け、
エンコーダのパルス信号からチャックと光ビーム照射装置との相対的な移動量を検出し、
描画データの解像度よりも細かな解像度で基準座標を設定し、目標とする基準露光間隔に対して、描画データの解像度で決まる露光間隔及びエンコーダのパルス信号の周期で決まる露光間隔を、基準座標上で演算して、チャックと光ビーム照射装置との相対的な位置座標を決定し、
決定した位置座標に応じた描画データを光ビーム照射装置の駆動回路へ供給することを特徴とする露光方法。
【請求項5】
目標とする基準露光間隔に応じ、基準座標の解像度を変更して、基準露光間隔と演算上の露光間隔とのずれを小さくすることを特徴とする請求項4に記載の露光方法。
【請求項6】
基準座標上で、目標とする基準露光間隔を積算して、基準積算移動量を算出し、
基準座標上で、チャックと光ビーム照射装置との相対的な積算移動量を算出して、算出した積算移動量と基準積算移動量との差がエンコーダのパルス信号の間隔より小さくなる様に、エンコーダのパルス信号の周期で決まる露光間隔を補正し、
基準座標上で、チャックと光ビーム照射装置との相対的な積算移動量を算出して、算出した積算移動量と基準積算移動量との差が描画データの解像度より小さくなる様に、描画データの解像度で決まる露光間隔を補正することを特徴とする請求項4又は請求項5に記載の露光方法。
【請求項7】
請求項1乃至請求項3のいずれか一項に記載の露光装置を用いて基板の露光を行うことを特徴とする表示用パネル基板の製造方法。
【請求項8】
請求項4乃至請求項6のいずれか一項に記載の露光方法を用いて基板の露光を行うことを特徴とする表示用パネル基板の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate


【公開番号】特開2012−185433(P2012−185433A)
【公開日】平成24年9月27日(2012.9.27)
【国際特許分類】
【出願番号】特願2011−50028(P2011−50028)
【出願日】平成23年3月8日(2011.3.8)
【出願人】(501387839)株式会社日立ハイテクノロジーズ (4,325)
【Fターム(参考)】