説明

VX−950を含む共結晶体およびそれを含む医薬組成物

本発明は、VX−950ならびにサリチル酸、4−アミノサリチル酸およびシュウ酸からなる群から選択される共結晶体形成体をそれぞれ含む、組成物および共結晶体に関する。また、その製造方法および使用方法も本発明の範囲内である。

【発明の詳細な説明】
【技術分野】
【0001】
相互参照
本発明は、2006年2月27日出願の、米国仮特許出願番号第60/777221号の利益を主張しており、その全内容を出典明示により本明細書中に援用する。
【背景技術】
【0002】
発明の背景
C型肝炎ウイルス(“HCV”)による感染は、切実なヒトの医学的問題である。HCVは、非A型、非B型肝炎のほとんどの症例の原因因子として認識されており、全世界でヒト血清陽性率3%であると概算される[A. Alberti et al., “Natural History of Hepatitis C,” J. Hepatology, 31 (Suppl. 1), pp. 17−24 (1999)]。米国だけで400万人近くが、感染している可能性がある[M.J. Alter et al., “The Epidemiology of Viral hepatitis in the United States, ” Gastroenterol. Clin. North Am., 23, pp. 437−455 (1994); M. J. Alter “Hepatitis C Virus Infection in the United States,” J. Hepatology, 31 (Suppl. 1), pp. 88−91 (1999)]。
【0003】
HCVへの最初の暴露により、感染した個体の約20%のみが、臨床的急性肝炎を発症し、その他は、自然に感染を解消すると考えられる。しかしながら、症例の約70%において、該ウイルスは、数十年にわたって続く慢性感染を確立する[S. Iwarson, “The Natural Course of Chronic Hepatitis,” FEMS Microbiology Reviews, 14, pp. 201−204 (1994); D. Lavanchy, “Global Surveillance and Control of Hepatitis C,” J. Viral He, 6, pp. 35−47 (1999)]。これは、通常、肝炎の再発および漸進的悪化をもたらし、しばしば、肝硬変および肝細胞癌のようなより重度の疾患状態に至る[M.C. Kew, “Hepatitis C and Hepatocellular Carcinoma”, FEMS Microbiology Reviews, 14, pp. 211−220 (1994); I. Saito et al., “Hepatitis C Virus Infection is Associated with the Development of Hepatocellular Carcinoma,” Proc. Natl. Acad. Sci. USA, 87, pp. 6547−6549 (1990)]。残念なことに、慢性HCVの進行を遅らせるのに広く有効な処置は存在しない。
【0004】
HCVゲノムは、アミノ酸3010−3033のポリタンパク質をコードする[Q.L. Choo, et al., “Genetic Organization and Diversity of the Hepatitis C Virus.” Proc. Natl. Acad. Sci. USA, 88, pp. 2451−2455 (1991); N. Kato et al., “Molecular Cloning of the Human Hepatitis C Virus Genome From Japanese Patiants with Non−A, Non−B Hepatitis,” Proc. Natl. Acad. Sci. USA, 87, pp. 9524−9528 (1990); A. Takamizawa et al., “Structure and Organization of the Hepatitis C Virus Genome Isolated From Human Carriers,” J. Virol., 65, pp. 1105−1113 (1991)]。HCV非構造(NS)タンパク質は、ウイルス複製に必須の触媒機構を提供すると考えられている。NSタンパク質は、ポリタンパク質のタンパク質分解的切断によって得られる[R. Bartenschlager et al., “Nonstructural Protein 3 of the Hepatitis C Virus Encodes a Serine−Type Proteinase Required for Cleavage at the NS3/4 and NS4/5 Junctions,” J. Virol., 67, pp. 3835−3844 (1993); A. Grakoui et al., “Characterization of the Hepatitis C Virus −Encoded Serine Proteinase: Determination of Proteinase−Dependent Polyprotein Cleavage Sites,” J. Virol., 67, pp. 2832−2843 (1993); A. Grakoui et al., “Expression and Identification of Hepatitis C Virus Polyprotein Cleavage Products,” J. Virol., 67, pp. 1385−1395 (1993); L. Tomei et al., “NS3 is a serine protease required for processing of Hepatitis C Virus polyprotein”, J. Virol., 67, pp. 4017−4026 (1993)]。
【0005】
HCV NSタンパク質3(NS3)は、ウイルス複製および感染性に必須である[Kolykhalov, J. Virology, Volume 74, pp. 2046 −2051 2000 “Mutations at the HCV NS3 Serine Protease Catalytic Triad abolish infectivity of HCV RNA in Chimpanzees]。黄熱病ウイルスNS3プロテアーゼにおける変異は、ウイルス感染性を減少することが知られている[Chambers, T.J. et al., “Evidence that the N−terminal Domain of Nonstructural Protein NS3 From yellow Fever Virus is a Serine Protease Responsible for Site−Specific Cleavages in the Viral Polyprotein”, Proc. Natl. Acad. Sci. USA, 87, pp. 8898−8902 (1990)]。NS3の最初の181アミノ酸(ウイルスポリタンパク質の残基1027−1207)は、HCVポリタンパク質の4つ全ての下流部位を処理するNS3のセリンプロテアーゼドメインを含むことが示されている[C. Lin et al., “Hepatitis C Virus NS3 Serine Proteinase: Trans−Cleavage Requirements and Processing Kinetics”, J. Virol., 68, pp. 8147−8157 (1994)]。
【0006】
HCV NS3 セリンプロテアーゼおよびそれに関係する補因子NS4Aは、全てのウイルス酵素プロセシングを補助し、故に、ウイルス複製に必須であると見なされる。このプロセシングは、ウイルス酵素プロセシングにも関与する、ヒト免疫不全ウイルス アスパルチルプロテアーゼにより行われるのと同様のようである。ウイルスのタンパク質プロセシングを阻害するHIVプロテアーゼ阻害剤は、ヒトにおける強力な抗ウイルス剤であり、ウイルス生活環のこの段階を中断することは、結果として治療的活性剤であることを示す。結果として、HCV NS3 セリンプロテアーゼはまた、創薬の魅力的な標的でもある。
【0007】
最近まで、HCV疾患の確立された治療は、インターフェロン処置のみであった。しかしながら、インターフェロンは、重大な副作用を有し[M. A. Wlaker et al., “Hepatitis C Virus: An Overview of Current Approaches and Progress,” DDT, 4, pp. 518−29 (1999); D. Moradpour et al., “Current and Evolving Therapies for Hepatitis C,” Eur. J. Gastroenterol. Hepatol., 11, pp. 1199−1202 (1999); H. L. A. Janssen et al. “Suicide Associated with Alfa−Interferon Therapy for Chronic Viral Hepatitis,” J. Hepatol., 21, pp. 241−243 (1994); P.F. Renault et al., “Side Effects of Alpha Interferon,” Seminars in Liver Disease, 9, pp. 273−277 (1989)]、症例のごく一部(〜25%)のみで長期寛解を示す[O. Weiland, “Interferon Therapy in Chronic Hepatitis C Virus Infection”, FEMS Microbiol. Rev., 14, pp. 279−288 (1994)]。PEG化型インターフェロン(PEG−イントロン(登録商標)およびPEGASYS(登録商標))ならびにリバビリンとインターフェロン(REBETROL(登録商標))の併用療法の最近の導入は、寛解率のごく限られた改善および副作用の一部分のみの減少という結果となっている。さらに、有効な抗HCVワクチンの見込みは、不明確なままである。
【0008】
よって、より有効な抗HCV治療が必要である。そのような阻害剤は、プロテアーゼ阻害剤、特にセリンプロテアーゼ阻害剤、より具体的にはHCV NS3 プロテアーゼ阻害剤として治療可能性を有し得る。特に、そのような化合物は、抗ウイルス剤、特に抗HCV剤として有用であり得る。
【0009】
下記に示す構造を有するHCV阻害剤であるVX−950は、そのような必要とされる化合物である。VX−950は、PCT公開番号WO02/18369に記載され、それは、その全内容を参照により本明細書に包含させる。
【化1】

【発明の開示】
【0010】
発明の概要
概して、本発明は、HCV阻害剤であるVX−950ならびに特定の共結晶体形成体(CCF)を含む組成物に関する。ある特定の条件下で、VX−950ならびにCCFは一体となって、結晶組成物、すなわち共結晶体を形成し得る。その遊離形と比較すると、特定のVX−950共結晶体は、アモルファス(amorphous)VX−950分散体よりも改善された溶解性、高水溶性および高い固体状態の物理的安定性を有するために有利である。該特定のVX−950共結晶体は、減少した質量の投与量形態を提供し、故に、VX−950共結晶体がアモルファス形態と比較してより高いバルク密度も示すため、丸剤の負荷がより少ない。さらに、VX−950共結晶体は、スプレー乾燥、溶融押出、凍結乾燥または沈殿を必要とするアモルファス形態と比較して製造上の利点を提供する。
【0011】
1つの局面において、本発明で供される組成物は、VX−950ならびにCCFとしてサリチル酸(SA)、4−アミノサリチル酸(4−ASA)およびシュウ酸(OA)からなる群から選択されるCCF化合物をそれぞれ含む。1つの態様において、VX−950ならびにCCFは共に、結晶形態の組成物である。
【0012】
他の局面において、本発明は、VX−950ならびにCCFをそれぞれ含む3種のVX−950共結晶体を提供する。具体的には、第一の共結晶体は、VX−950およびCCFとしてサリチル酸(SA)を含む。いくつかの態様において、CCFがSAであるとき、共結晶体のX線粉末回折(XRPD)スペクトルは、約4.43、7.63、8.53、9.63、12.89、14.83および16.29 2θにてピークを示し;その示差走査熱量測定(DSC)サーモグラムは、約137℃および約223℃にて融点を示す。第二の共結晶体は、VX−950およびCCFとして4−アミノサリチル酸(4−ASA)を含む。いくつかの態様において、CCFが4−ASAであるとき、共結晶体のXRPDスペクトルは、約4.37、7.57、8.47、9.59、12.81、および14.75 2θにてピークを示し;そのDSCサーモグラムは、約177℃にて融点を示す。第三の共結晶体は、VX−950およびCCFとしてシュウ酸(OA)を含む。いくつかの態様において、CCFがOAであるとき、共結晶体のXRPDスペクトルは、約4.65、6.17、9.63、12.65、14.91および28.97 2θにてピークを示す。いくつかの態様において、単位格子中のVX−950とCCFのモル数の比は、0.2ないし5(例えば、1)である。いくつかの態様において、VX−950およびCCFは両方とも、固体状態(例えば、結晶)であり、非共有的に(すなわち、水素結合により)結合している。
【0013】
他の局面において、本発明は、式(VX−950):(CCF)〔式中、CCFは、サリチル酸、4−アミノサリチル酸およびシュウ酸からなる群から選択される共結晶体形成体であり;mおよびnは、独立して1ないし5の整数である。〕で示される共結晶体を提供する。いくつかの態様において、mおよびnは両方とも1である。
【0014】
他の局面において、本発明は、VX−950およびCCFの共結晶体を提供し、ここで、CCFは室温で固体であり、VX−950およびCCFは、非共有結合により結合する。いくつかの態様において、CCFは、サリチル酸、4−アミノサリチル酸およびシュウ酸からなる群から選択される。ある態様において、VX−950とCCFの間の非共有結合相互作用は、水素結合およびファン・デル・ワールス相互作用を含む。
【0015】
さらに他の局面において、本発明は、上記の3種のVX−950共結晶体のうちの1つを含む医薬組成物を提供する。1つの態様において、医薬組成物は、希釈剤、溶媒、賦形剤または担体をさらに含む。
【0016】
本発明のさらに他の局面は、VX−950ならびにサリチル酸、4−アミノサリチル酸およびシュウ酸からなる群から選択されるCCFの共結晶体の製造方法を提供する。該方法は、VX−950を得る工程;サリチル酸、4−アミノサリチル酸およびシュウ酸からなる群から選択される共結晶体形成体を得る工程;固相中に共結晶体を形成するために、結晶化条件下、VX−950と共結晶体形成体を溶液中で粉砕、加熱、共昇華、共融解または接触する工程;および、その後所望により、上記のように形成した共結晶体を単離する工程、を含む。いくつかの態様において、約10ないし約0.1のモル比でVX−950およびCCFを含む、VX−950およびCCFの共結晶体を製造する。
【0017】
さらに他の局面において、本発明は、VX−950ならびにサリチル酸、4−アミノサリチル酸およびシュウ酸からなる群から選択されるCCFを含む共結晶体の興味のある化学的または物理的特性(例えば、融点、溶解性、溶解、吸湿性およびバイオアベイラビリティ)をモジュレートするための方法を提供する。該方法は、VX−950および共結晶体形成体の興味のある化学的または物理的特性を測定する工程;VX−950および共結晶体形成体の、興味のある化学的または物理的特性の所望のモジュレーションをもたらし得るモル比率を決定する工程;および、決定したモル比率で共結晶体を製造する工程、を含む。
【0018】
本発明の組成物および共結晶体は、HCVが原因であるかまたはHCVと関係する疾患の処置に用いられ得る。故に、治療的有効量の本発明の共結晶体または本発明の組成物を、それを必要とする対象に投与することを含む、かかる疾患の処置方法もまた本発明の範囲内である。
【0019】
本発明の組成物および共結晶体はまた、VX−950と同じまたは異なる活性成分、ならびにサリチル酸、4−アミノサリチル酸およびシュウ酸と同じまたは異なるCCFを含むさらなる共結晶体を製造するために、種晶としても用いられ得る。例えば、少量の本発明の共結晶体を、所望の活性成分およびCCFを含む溶液中に加えることが可能であり、該混合物を、さらなる共結晶体が形成され、形成された共結晶体が増加するように、静置する。
【0020】
さらに、本発明の組成物および共結晶体を、探索ツールとして用い得る。例えば、共結晶体の結晶構造を、他の可能性のある共結晶形態を同定するための分子モデリングに用い得る。それらを、薬理学的特性(例えば、バイオアベイラビリティ、代謝および効果)の研究に用い得る。
【0021】
図面の簡単な説明
図1は、VX−950およびSAの共結晶体の熱重量分析(TGA)スペクトルを示す。
【0022】
図2は、VX−950および4−ASAの共結晶体のTGAスペクトルを示す。
【0023】
図3は、VX−950およびSAの共結晶体のDSCサーモグラムを示す。
【0024】
図4は、VX−950および4−ASAの共結晶体のDSCサーモグラムを示す。
【0025】
図5は、室温にて6時間の、水中(上)および1%HPMC中(下)、VX−950および4−ASAの共結晶体のXRPDスペクトルを示す。
【0026】
図6は、室温にて、1時間(上)、2時間(中)および6時間(下)の水中、VX−950およびSAの共結晶体のXRPDスペクトルを示す。
【0027】
図7は、室温にて、1時間(中)、2時間(上)および6時間(下)の1%HPMC中、VX−950およびSAの共結晶体のXRPDスペクトルを示す。
【0028】
図8は、VX−950およびSAの共結晶体のXRPDスペクトルを示す。
【0029】
図9は、VX−950および4−ASAの共結晶体のXRPDスペクトルを示す。
【0030】
図10は、VX−950およびOAの共結晶体のXRPDスペクトルを示す。
【0031】
発明の詳細な説明
共結晶体の製造方法および特性化方法は、文献に詳しく記載される。例えば、Trask et al., Chem. Commun., 2004, 890−891;および、O. Almarsson and M.J. Zaworotko, Chem. Commun., 2004, 1889−1896を参照のこと。これらの方法は一般的に、本発明の共結晶体を製造および特性化するためにも適する。
【0032】
活性な薬剤成分およびCCFを含む共結晶体の製造方法の例は、ボールミル粉砕法、反応ブロック中の融解法、溶媒蒸発法、スラリー変換、混合、昇華、またはモデリングを含む。ボールミル粉砕法において、任意のモル比の共結晶体の成分(例えば、興味のある化合物、例えば本発明のVX−950、およびCCF)を、混合してボールミルする。所望により、メチルエチルケトンのような溶媒を、ボールミルした混合物に添加してもよい。ミル後、混合物を、室温または加熱条件下にて真空下で乾燥させ、典型的に粉末生成物を得ることができる。融解法において、共結晶体の成分(例えば、CCFおよびVX−950)を、所望によりアセトニトリルのような溶媒と混合してもよい。その後、混合物を蓋を閉めた反応ブロック中に入れ、吸熱反応のため加熱する。その後、得られた混合物を冷却し、溶媒を用いたときは、それを除去する。溶媒蒸発法において、共結晶体の各成分をまず溶媒(または、溶媒混合物、例えば50/50のトルエン/アセトニトリル)中に溶解し、その後、該溶液を混合する。その後、混合物を放置し、溶媒を蒸発乾固させて共結晶体を得る。
【0033】
特性化方法の例は、熱重量分析(TGA)、示差走査熱量測定(DSC)、X線粉末回折(XRPD)、溶解度分析、動的蒸気吸着、赤外線排ガス分析、および懸濁液安定化を含む。TGAは、共結晶体サンプル中に残る溶媒の存在を調べるため、および各共結晶体サンプルの分解が起こる温度を同定するために用いることができる。DSCは、温度の関数として共結晶体サンプルにおいて起こる熱転移を探索するため、および各共結晶体サンプルの融点を決定するために用いることができる。XRPDは、共結晶体の構造特性化のために用いることができる。溶解度分析は、各共結晶体サンプルの物理的状態における変化を示すために行われ得る。そして、懸濁液安定性分析を、溶媒中の共結晶体サンプルの化学的安定性を決定するために用いることができる。
【0034】
有効量の本発明の共結晶体または組成物(それぞれ、VX−950ならびにサリチル酸、4−アミノサリチル酸およびシュウ酸からなる群から選択される共結晶体形成体(CCF)を含む。)を、HCVが原因であるかまたはHCVと関係する疾患を処置するために用い得る。有効量は、処置する対象、例えば患者に、治療的効果を与えるのに必要な量である。有効量のVX−950およびCCFの共結晶体は、約0.1mg/kgないし約150mg/kgである(例えば、約1mg/kgないし約60mg/kg)。有効用量はまた、当業者に理解される通り、投与経路、用いる賦形剤、ならびに他の治療剤および/または治療の使用を含む他の治療的処置との併用の可能性に依存して変化してもよい。
【0035】
本発明の共結晶体または医薬組成物は、化合物VX−950の送達を可能にする何らかの方法、例えば経口、静脈内または非経腸投与により、それを必要とする対象(例えば、細胞、組織、または患者(動物またはヒトを含む))に投与され得る。例えば、それらを、丸剤、錠剤、カプセル、エアロゾル、坐剤、摂取もしくは注入のためまたは点眼もしくは点耳のための液体剤形、栄養補助食品、および局所用製剤により投与可能である。
【0036】
医薬組成物は、水、リンゲル溶液、等張生理食塩水、5%グルコース、等張塩化ナトリウム溶液のような、希釈剤、溶媒、賦形剤および担体を含み得る。他の態様において、医薬組成物は、シクロデキストリンのような可溶化剤をさらに含み得る。適当な希釈剤、溶媒、賦形剤、担体および可溶化剤のさらなる例は、例えば,U.S. Pharmacopeia 23/National Formulary 18, Rockville, MD, U.S. Pharmacopeia Convention, Inc., (1995); Ansel HC, Popovich NG, Allen Jr LV. Pharmaceutical Dosage Forms and Drug Delivery Systems, Baltimore MD, Williams &Wilkins, (1995); Gennaro AR., Remingtons: The Science and Practice of Pharmacy, Easton PA, Mack Publishing Co., (1995); Wade A, Weller PJ. Handbook of Pharmaceutical Excipients, 2nd Ed, Washington DC, American Pharmaceutical Association, (1994); Baner GS, Rhodes CT. Modern Pharmaceutics, 3rd Ed., New York, Marcel Dekker, Inc., (1995); Ranade VV, Hollinger MA. Drug Delivery Systems. Boca Raton, CRC Press, (1996)に見出され得る。
【0037】
医薬組成物はまた、等張生理食塩水、5%グルコースまたは他の公知の薬学的に許容される賦形剤(複数可)中、共結晶体の水溶液を含み得る。シクロデキストリンのような可溶化剤、または当業者に公知の他の可溶化剤を、治療用化合物VX−950の送達のための薬学的賦形剤として利用することができる。投与経路に関して、共結晶体または医薬組成物を、経口、経鼻、経皮、皮内、膣内、耳内、眼内、口腔内、直腸内、経粘膜、または吸入により、または静脈内投与により投与できる。組成物を、バルーンカテーテルにより静脈内に送達することができる。組成物を、動物(例えば、ヒト、非ヒト霊長動物、ウマ、イヌ、ウシ、ブタ、ヒツジ、ヤギ、ネコ、マウス、ラット、モルモット、ウサギ、ハムスター、スナネズミ(gerbil)、フェレット、トカゲ、は虫類または鳥類のような哺乳動物)に投与することが出来る。
【0038】
本発明の共結晶体または医薬組成物はまた、移植可能デバイスを用いるような移植(例えば、外科的移植)により送達することができる。移植可能デバイスの例には、ステント、送達ポンプ、脈管フィルター、および移植可能な放出制御組成物が含まれるが、これらに限定されない。何れかの移植可能デバイスは、本発明の共結晶体または医薬組成物中の活性成分として化合物VX−950を送達するために用いることができる。ただし、1)該デバイス、化合物VX−950および該化合物を含む何らかの医薬組成物が生体適合性であること、および2)該デバイスが、有効量の化合物を送達または放出し、処置した患者に治療的効果を与え得ること、を条件とする。
【0039】
ステント、送達ポンプ(例えば、浸透圧ミニポンプ)および他の移植可能デバイスによる治療剤の送達は、当技術分野で知られている。例えば、“Recent Developments in Coated Stents” by Hofma et al., published in Current Interventional Cardiology Reports, 2001, 3: 28−36を参照のこと、その全内容、そこに引用される文献は、本明細書中に包含させる。移植可能デバイス、例えばステントの他の記載は、米国特許番号6,569,195および6,322,847、ならびにPCT国際出願番号WO04/0044405、WO04/0018228、WO03/0229390、WO03/0228346、WO03/0225450、WO03/0216699およびWO03/0204168に見出すことができ、それぞれその全内容(ならびに、そこに引用される他の文献)を本明細書中に包含させる。
【0040】
下記の記載は、本発明の共結晶体の製造方法および特性化方法の例であり、それは説明のみを意味し、いかなる場合も限定するものではない。
【実施例】
【0041】
実施例1.ボールミル粉砕法による製造
サリチル酸(SA):70mgのVX−950およびCCFとして等モル当量のSA(Sigma Chemicals Co., St. Louis, MO, USA)を、50μLのメチルエチルケトン(“MEK”)と混合した。該成分をWig−L−Bug装置を用いて10分間ミル粉砕した。ミル処理後、バッチを真空オーブン中75度にて2時間乾燥させた。得られた物質は、オフホワイト色であった。
【0042】
4−アミノサリチル酸(4−ASA):70mgのVX−950およびCCFとしての等モル当量の4−ASA(15.8mg)(Sigma Chemicals Co., St. Louis, MO, USA)を、50μLのアセトニトリル(“ACN”)と混合した。その後、該成分を、ボールミル粉砕装置Retsch MM200(GlenMills Inc, Clifton, NJ)を周波数15Hzで用いて3時間ミル粉砕した。混合物を、焼結コランダムでできたミル部分に入れた。ミル処理後、該物質を、20mLのねじ式キャップ付きシンチレーションバイアル(蓋なし)中に移し、室温にて16時間真空乾燥させた。乾燥後、キャップを閉めた。得られた物質は、オフホワイト色−灰色がかった色であった。
【0043】
シュウ酸(OA):70mgのVX−950およびCCFとしての等モル当量のOA(Sigma Chemicals Co., St. Louis, MO, USA)を、5μL未満の下記の溶媒のいずれか(全量10mgの固体に基づき):酢酸エチル、メチルエチルケトン、アセトニトリル、水または1,2−ジクロロエタンと混合した。該成分を共に粉砕した。VX−950およびOAの共結晶体を、上記の方法と同様にして得た。
【0044】
実施例2.融解法による製造
100mgのVX−950および等モル当量のサリチル酸、4−アミノサリチル酸およびシュウ酸(Sigma Chemicals Co., St. Louis, MO, USA)からなる群から選択されるCCFを、5分間ボルテックスにより混合した。この方法を2度行った。1度目は溶媒なしで行った。2度目は、4−アミノサリチル酸、サリチル酸およびシュウ酸それぞれに対して、100μLのアセトニトリル、メチルエチルケトン、および酢酸エチルを加えて行った。混合物を、蓋を閉めた反応ブロック(Radley Discovery Technologies, RR 98072)中に入れ、吸熱反応のため加熱した。混合物を吸熱温度で30分間放置し、その後、得られた混合物を蓋を開けて周囲条件下で冷却し、溶媒を用いたとき、それを除去した。
【0045】
実施例3.溶媒蒸発法による製造
VX−950およびサリチル酸、4−アミノサリチル酸およびシュウ酸(Sigma Chemicals Co., St. Louis, MO, USA)からなる群から選択されるCCFを、50%トルエン/アセトニトリルの溶媒混合物中に別々に溶解した。溶解を、視覚的に透明な溶液が得られるまで回転および超音波処理して行った。VX−950溶液を、20mLのねじ式キャップ付きシンチレーションバイアル中で、全てについて最終容量3mLの0:1、1:3、1:1および3:1、1:0モル比でCCF溶液と混合した。これらのバイアルを、ドラフト中でキャップをはずし、溶媒を数日間かけて蒸発乾固させて固体物質を得た。
【0046】
実施例4.モデリング法による製造
モデリングもまた、VX−950およびサリチル酸、4−アミノサリチル酸およびシュウ酸(Sigma Chemicals Co., St. Louis, MO, USA)からなる群から選択されるCCFの共結晶体が見られた。
【0047】
実施例5.熱重量分析(TGA)
各サンプルのTGAを、Model Q500 Thermogravimetric Analyzer (TA Instruments, New Castle, DE, USA)を、下記の構成要素:QAdv.exe version 2.2 build 248.0; RhDII.dII version 2.2 build 248.0; RhBase.dII version 2.2 build 248.0; RhComm.dII version 2.2 build 248.0; TaLicense.dII version 2.2 build 248.0;および、TGA.dII version 2.2 build 248.0と共に、そのThermal Advantage Q Series(商標)コントロールソフトウェア、Version 2.2.0.248, Thermal Advantage Release 4.2.1 (TA Instruments−Water LLC)を用いて行った。加えて、用いた分析ソフトウェアは、Universal Analysis 2000 software for Windows 2000/XP, version 4.1 D build 4.1.0.16 (TA Instruments)であった。
【0048】
全ての実験に関して、TGAを行うための基本的方法には、サンプルの1つのアリコート(約3−8mg)を、白金サンプルPan(Pan: 特許番号第952018.906号, TA Instruments)に移すことが含まれる。該Panをローディング板上に置き、その後、コントロールソフトウェアを用いてQ500 Thermogravimetric Analyzer中に自動的にローディングした。サーモグラムを、ある温度範囲(一般的に、室温ないし300℃)で、90L/分のサンプルパージ流速および10L/分のバランスパージ流速で乾燥窒素(圧縮窒素、4.8等級(BOC Gases, Murray Hill, NJ, USA))下、10℃/分にて、サンプルを個々に加熱することにより得た。温度遷移(例えば、重量変化)を観察し、説明書と共に供される分析ソフトウェアを用いて分析した。
【0049】
図1によると、VX−950およびSA(モル比1)の共結晶体のTGAスペクトルは、145℃までに約2.3%の重量減少、および160℃までに全量18%の重量減少を示す。このことは、1:1共結晶体についてのサリチル酸の予期される減少と一致する。最初の重量減少は、76℃で昇華し始めるサリチル酸の昇華による可能性が高い。
【0050】
図2によると、VX−950および4−ASA(モル比1)の共結晶体のTGAスペクトルは、溶媒放出のための125℃までに約1.4%の重量減少、および約250℃までに約13%の重量減少を示した。
【0051】
実施例6.示差走査熱量測定(DSC)
DSC分析を、MDSC Q100 Differential Scanning Calorimeter (TA Instruments)を、そのcontrol Thermal Advantage Q Series(商標)ソフトウェア, version 2.2.0.248, Thermal Advantage Release 4.2.1を下記の構成要素: QAdv.exe version 2.2 build 248.0; RhDII.dII version 2.2 build 248.0; RhBase.dII version 2.2 build 248.0; RhComm.dII version 2.2 build 248.0; TaLicense.dII version 2.2 build 248.0;および、DSC.dII version 2.2 build 248.0と共に用いて、行った。さらに、用いた分析ソフトウェアは、Windows 2000/ XP , version 4.1 D build 4.1.0.16用のUniversal Analysis 2000 ソフトウェアであった(TA Instruments)。装置をイリジウムで調整した。
【0052】
全てのDSC分析に関して、サンプルのアリコート(約2mg)を、アルミニウムサンプルPan(Pan:特許番号第900786.901号;および、Lid:特許番号第900779.901号, TA Instruments)中に量り取った。該サンプルPanを、1つのピンホールで圧着することにより密閉し、その後、自動サンプル機を備えるQ100 Differential Scanning Calorimeter中にローディングした。サーモグラムを、ある温度範囲(一般的に、室温ないし300℃)で、60L/分のサンプルパージ流速および40L/分のバランスパージ流速で乾燥窒素(圧縮窒素、4.8等級(BOC Gases, Murray Hill, NJ, USA)下、10℃/分にて、各サンプルを個々に加熱することにより得た。サンプルを含むPanと同様に調製した空のアルミニウムPanを、基準として用いた。温度遷移を観察し、説明書と共に供される分析ソフトウェアを用いて分析した。
【0053】
図3によると、DSCサーモグラムは、約137℃でのVX−950およびSAの共結晶体の最初の融解を示す。SAおよびVX−950の融点は、それぞれ159℃および247℃である。2番目の223℃での融点遷移は、遊離化合物の融点遷移におよそ対応する。より低い融点が、不純物の存在のために観測され、いくらかの分解が含まれ得る。
【0054】
図4によると、DSCサーモグラムは、VX−950および4−ASAの共結晶体の約177℃での融解を示す。
【0055】
下記の表1は、本発明に用いたVX−950とCCFの可能性のある相互作用についてのDSCスクリーンのまとめである。
【表1】

【0056】
実施例7.X線粉末回折(XRPD)
XRPD分析において、BrukerまたはRigakuのどちらかの装置を用いた。
a.Bruker
XRPDパターンを、密閉チューブ源およびHi−Star 領域検出器を備えるBruker D8 Discover 回折計(Bruker AXS, Madison, WI, USA)を、室温にて、反射モードで用いることにより得た。銅標的X線チューブ(Siemens)を40kVおよび35mAで操作した。Brukerにより供されるグラファイトモノクロメータおよび0.5mmコリメーターを、平行な単色ビーム(CuKa、l=1.5418Å)を製造するために用いた。サンプルと検出器の間の距離は、約30cmであった。サンプルを、Si zero−background 薄板(The Gem Dugout, State College, PA)上に置き、その後、それをXYZ板上の中央に置いた。データを、Windows NT, version 4.1.16 用のGADDSソフトウェア(Bruker AXS, Madison, WI, USA)を用いて得た。2個のフレームを、フレーム当たり120秒の露光時間で記録した。サンプルは、露光中、XおよびY方向の両方に1mmの振幅で振動した。その後、データを0.02の刻み幅の3ないし41 2θの範囲で統合し、1つの連続したパターンにまとめた。Corundum plate (NIST standard 1976)を装置の調整に用いた。
【0057】
b.Rigaku
XRPDパターンを、回転陽極RUH3R X線発生器(Rigaku, The Woodlands, TX, USA)およびRigaku Raxis IIC検出器を、室温にてトランスミッションモードで用いて記録した。50kVおよび100mAでのCuKの放射を用いた。集束ミラーおよびNiフィルターを用いて、平行な単色ビーム(l=1.5418Å)を製造した。該サンプルを、2mm直径のホウ素ガラスキャピラリー(Hampton Research, Aliso Viejo, CA, USA)中に入れ、実験中f軸の周囲を回転させた。サンプルと検出器の間の距離は、約25cmであった。Rigaku のCrystalclearソフトウェア, Version 1.3.5 SP2を用いて、300秒の露光時間で1つのフレームを記録した。その後、データを約0.02の刻み幅の3ないし41 2qの範囲で統合した。Silicon powder (NIST standard 640c)を装置の調整に用いた。
【0058】
図5に示す通り、水および1%ヒドロキシプロピルメチルセルロース(HPMC)中、室温にて6時間後、VX−950および4−ASAの共結晶体は、6時間までのインキュベーション後に、遊離形への変換の兆候は全く示さなかった。24時間の時点で、該共結晶体は、1%HPMC溶液中、未だそのままであった。しかしながら、水中のサンプルは、24時間の時点で遊離形に変換していた。
【0059】
対照的に、図6に示す通り、VX−950およびSAの共結晶体のXRPDパターンは、室温にて水に懸濁後、(i)1時間後には、9.1 2θ()のピークの増加により示される通り、共結晶体から遊離形へのわずかな変換が見られ、(ii)2時間の時点では、さらなる変換が見られ、そして(iii)6時間の時点では、完全な変換が見られる。1%HPMC水溶液中に懸濁後、同じ共結晶体は、1時間および2時間の時点で共結晶体から遊離形へのわずかな変換を示し、6時間の時点でさらなる変換が観察された。図7を参照のこと。
【0060】
図8、図9および図10は、VX−950とSA、4−ASAおよびOAそれぞれとの共結晶体のXRPDスペクトルを示す。特に、VX−950およびSAの共結晶体は、4.43、7.63、8.53、9.63、12.89、14.83および16.29 2θでのXRPDピークを示し;VX−950および4−ASAの共結晶体は、4.37、7.57、8.47、9.59、12.81および14.75 2θでのXRPDピークを示し;VX−950およびOAの共結晶体は、4.65、6.17、8.21、9.63、12.65、14.91および28.97 2θでのXRPDピークを示す。
【0061】
実施例8.溶解度分析
サンプルのアリコートをチューブ中に入れ、その後水性媒体を添加した。設定時間点において、上清のアリコートを回収し、0.45PTFEミクロンフィルター(Millex, LCR, Millipore)を通してろ過し、高速液体クロマトグラフィー(HPLC)分析(Agilent 1100; Palo Alto, CA, USA)を行った。該系は、25℃設定の自動サンプル器を備えていた。サンプル操作に関して、サンプルのアリコートをv/v比1:1でアセトニトリルを用いて希釈した。該サンプルを270nm設定の検出器でアイソクラクチック(isocratically)に流した。カラムは、XTerra(登録商標)フェニルカラム150mm×4.6mm、3.5μm粒子サイズ(P/N 186001144)(Waters, Milford, MA, USA)であった。移動層は、リン酸カリウム緩衝液(10mM、pH=7.0):メタノールの60:40(v/v)比であった。泳動を流速1mL/分で行い、15分以内に完了した。下記の表2に、人工腸液(pH6.8)中、室温にて24時間の時点でのVX−950および4−ASAの共結晶体の溶解度をまとめた(VX−950同等物と表される(VX−950は8.8分で溶出した))。
【表2】

【0062】
実施例9.懸濁液安定化
水性媒体中に懸濁した共結晶体の物理的安定性を評価した。該共結晶体粉末を、25℃にて、(1)非緩衝の脱イオン水、および(2)HPMCの1%(w/w)溶液(低粘性度)中に約6mg/mlの濃度でスラリーにした。該スラリーを、磁性撹拌棒およびプレートを用いて混合した。固体サンプルを、1、2、6および24時間の間隔でろ過により単離した。
【0063】
水中に懸濁して1、2および6時間後、VX−950およびサリチル酸の共結晶体のPXRDパターンは、9.1 2θ()でのピークの増加により示される通り、1時間後に共結晶体から遊離形へのわずかな変換を示す。さらなる変換が、2時間の時点で観察され、完全な変換が、6時間の時点で見られる。
【0064】
1%HPMC水溶液に懸濁して1、2および6時間後、VX−950およびサリチル酸の共結晶体のPXRDパターンは、該共結晶体が、1時間および2時間の時点で共結晶体から遊離形へわずかに変換したことを示す。6時間の時点でさらなる変換が観察される。HPMCは、共結晶体から遊離形への変換率の減少を示す。ゆっくりとした変換が、9.1 2θ()でのピークの増加によっても示される。
【0065】
水および1%HPMC水溶液中に懸濁して6時間後のVX−950および4−アミノサリチル酸の共結晶体のPXRDパターン。両方の場合において、該共結晶体は、6時間までのインキュベート時間後、遊離形への変換を示さなかった。24時間の時点で、該共結晶体は、1%HPMC溶液中未だそのままであった。しかしながら、該サンプルは、水中、24時間の時点で遊離形へ変換した。
【0066】
他の態様
本発明は、その詳細な説明と関連して記載されているが、上記の記載が説明を目的としており、本発明の範囲を限定せず、本発明の範囲は添付の特許請求の範囲により定義されることが、理解されるべきである。他の局面、利点および修飾は、添付の特許請求の範囲内である。
【図面の簡単な説明】
【0067】
【図1】図1は、VX−950およびSAの共結晶体の熱重量分析(TGA)スペクトルを示す。
【図2】図2は、VX−950および4−ASAの共結晶体のTGAスペクトルを示す。
【図3】図3は、VX−950およびSAの共結晶体のDSCサーモグラムを示す。
【図4】図4は、VX−950および4−ASAの共結晶体のDSCサーモグラムを示す。
【図5】図5は、室温にて6時間の、水中(上)および1%HPMC中(下)、VX−950および4−ASAの共結晶体のXRPDスペクトルを示す。
【図6】図6は、室温にて、1時間(上)、2時間(中)および6時間(下)の水中、VX−950およびSAの共結晶体のXRPDスペクトルを示す。
【図7】図7は、室温にて、1時間(中)、2時間(上)および6時間(下)の1%HPMC中、VX−950およびSAの共結晶体のXRPDスペクトルを示す。
【図8】図8は、VX−950およびSAの共結晶体のXRPDスペクトルを示す。
【図9】図9は、VX−950および4−ASAの共結晶体のXRPDスペクトルを示す。
【図10】図10は、VX−950およびOAの共結晶体のXRPDスペクトルを示す。

【特許請求の範囲】
【請求項1】
VX−950およびサリチル酸を含む共結晶体。
【請求項2】
VX−950およびサリチル酸のモル比が約1:1である、請求項1記載の共結晶体。
【請求項3】
X線粉末回折ピークを約4.43、7.63、8.53、9.63、12.89、14.83、16.29 2θに有する、請求項2記載の共結晶体。
【請求項4】
DSCサーモグラムにおけるピークを約137℃および223℃にて有する、請求項2記載の共結晶体。
【請求項5】
VX−950および4−アミノサリチル酸を含む共結晶体。
【請求項6】
VX−950および4−アミノサリチル酸のモル比が約1:1である、請求項5記載の共結晶体。
【請求項7】
X線粉末回折ピークを約4.37、7.57、8.47、9.59、12.81および14.75 2θに有する、請求項6記載の共結晶体。
【請求項8】
DSCサーモグラムにおけるDSCピークを約177℃にて有する、請求項6記載の共結晶体。
【請求項9】
VX−950およびシュウ酸を含む共結晶体。
【請求項10】
VX−950およびシュウ酸のモル比が約1:1である、請求項9記載の共結晶体。
【請求項11】
X線粉末回折ピークを約4.65、6.17、8.21、9.63、12.65、14.91および28.97 2θにて有する、請求項10記載の共結晶体。
【請求項12】
式(VX−950):(CCF)〔式中、CCFは、サリチル酸、4−アミノサリチル酸およびシュウ酸からなる群から選択される共結晶体形成体であり;mおよびnは、独立して1ないし5の整数である。〕で示される共結晶体。
【請求項13】
mおよびnが両方とも1である、請求項12記載の共結晶体。
【請求項14】
VX−950ならびにサリチル酸、4−アミノサリチル酸およびシュウ酸からなる群から選択される共結晶体形成体を含む医薬組成物。
【請求項15】
VX−950および共結晶体形成体が一体となって結晶形態を形成する、請求項14記載の医薬組成物。
【請求項16】
VX−950および共結晶体形成体のモル比が約1:1である、請求項14記載の医薬組成物。
【請求項17】
希釈剤、溶媒、賦形剤、担体または可溶化剤をさらに含む、請求項15記載の医薬組成物。
【請求項18】
a.VX−950を得る工程、
b.サリチル酸、4−アミノサリチル酸およびシュウ酸からなる群から選択される共結晶体形成体を得る工程、
c.固相中に共結晶体を形成するために、結晶化条件下、VX−950と共結晶体形成体を溶液中で粉砕、加熱、共昇華、共融解または接触させる工程、および
d.所望により、工程(c)で形成した共結晶体を単離する工程
を含む、共結晶体の製造方法。
【請求項19】
a.VX−950および共結晶体形成体の興味のある化学的または物理的特性を測定する工程、
b.VX−950および共結晶体形成体の、興味のある化学的または物理的特性の所望のモジュレーションをもたらし得るモル比率を決定する工程、および
c.工程(b)で決定されたモル比率で該共結晶体を製造する工程
を含む、共結晶体の興味のある化学的または物理的特性モジュレート方法。
【請求項20】
予め存在する共結晶体を種晶として共結晶体の製造に供する工程を含む共結晶体の製造方法であって、該予め存在する共結晶体は、VX−950ならびにサリチル酸、4−アミノサリチル酸およびシュウ酸からなる群から選択される共結晶体形成体を含み;該共結晶体は、VX−950と同じまたは異なっていてよい活性成分、ならびに該予め存在する共結晶体中に含まれる共結晶体形成体と同じまたは異なっていてよい共結晶体形成体を含む、共結晶体の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公表番号】特表2009−529006(P2009−529006A)
【公表日】平成21年8月13日(2009.8.13)
【国際特許分類】
【出願番号】特願2008−557333(P2008−557333)
【出願日】平成19年2月27日(2007.2.27)
【国際出願番号】PCT/US2007/004995
【国際公開番号】WO2007/098270
【国際公開日】平成19年8月30日(2007.8.30)
【公序良俗違反の表示】
(特許庁注:以下のものは登録商標)
1.WINDOWS
【出願人】(598032106)バーテックス ファーマシューティカルズ インコーポレイテッド (414)
【氏名又は名称原語表記】VERTEX PHARMACEUTICALS INCORPORATED
【住所又は居所原語表記】130 Waverly Street, Camridge, Massachusetts 02139−4242, U.S.A.
【Fターム(参考)】