説明

X線源および蛍光X線分析装置

【課題】2次ターゲット26の交換を容易に可能とし、複数種類の特性X線25を容易に放出できるX線源11を提供する。
【解決手段】X線透過窓13を有する真空容器12内に、電子ビーム15を発生する電子銃14、電子ビーム15が入射して1次X線21を放出する1次ターゲット20を設ける。1次X線21は、真空容器12のX線透過窓13を透過する。真空容器12のX線透過窓13の外側を囲って、ボックス形の2次ターゲット体23を着脱可能に取り付ける。2次ターゲット体23は、X線透過窓13を透過する1次X線21が入射して特性X線25を放出する2次ターゲット26を備える。2次ターゲット体23には、特性X線25を外部に放出する特性X線取出窓27を設ける。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、特性X線を放出するX線源および蛍光X線分析装置に関する。
【背景技術】
【0002】
一般的なX線源では、高電圧で加速した電子を陽極であるターゲットに入射することにより、制動X線とターゲット特有の特性X線とが混在して放出されることが知られている(例えば、特許文献1参照)。
【0003】
制動X線は、連続的なエネルギスペクトルであって白色で構成され、そのスペクトル分布は入射する電子エネルギによって変化するのに対し、特性X線は、電子エネルギに依存せず、ターゲット固有の単一的なエネルギ分布の単色である。蛍光X線分析は、特性X線を試料に入射したときに放出される蛍光X線の信号のエネルギ分布を測定し、試料中の元素の種類、量を同定するものであるが、分析性能を高めるべく工夫された様々のX線源が利用されている。
【0004】
蛍光X線分析装置においては、既知のスペクトルを持つ特性X線を利用して試料を励起することによって、蛍光X線の信号と入射X線の散乱であるノイズ成分とを分別しやすくなり、高S/N比での元素分析が可能となることから、X線源から放出されるX線スペクトルを単色に近いものにする試みが試行され、その一部が実用に至っている。
【0005】
図9は、上述の特性X線を利用する高分解能の蛍光X線分析装置の一般的な構成例を示したものである。ここでは、一般的なX線源1を用いて、そのX線源1から放出させた連続エネルギスペクトルの1次X線である連続X線2を2次ターゲット3に入射し、特性X線4を放出させて外部に設置したコリメータ5を通して試料6に照射し、試料6の表面の元素を励起して発する蛍光X線7をX線検出器8で検出する構成としている。
【0006】
この構成における特性X線4の放出方式では、X線源1と2次ターゲット3とを離して設置しなければならない。連続X線2は全周方向である4π方向に放出され、その強度は距離の2乗に反比例して減少するため、従来の構成ではX線源1から放出される連続X線2で2次ターゲット3を照射する効率が低く、2次ターゲット3から放出される特性X線4の強度を高めるには、大出力のX線源1を備える必要が生じ、これにより高分解能の蛍光X線分析装置が大形化、電力消費量の増大、X線遮蔽規模の増加、さらに結果的にコスト増加を招き、普及に対する制約を強める要因となっている(例えば、非特許文献1参照。)。
【特許文献1】特開2004−28845号公報(第4−5頁、図1−2)
【非特許文献1】蛍光X線分析の現状と展望 中井泉 応用物理 第74巻 第4号(2005年) 第455頁〜第456頁
【発明の開示】
【発明が解決しようとする課題】
【0007】
上述のように、高分解能の蛍光X線分析装置においては、特性X線を効率良く発生できること、放出されるX線スペクトル中に不要なノイズの成分を極力含まないX線源を提供することが重要な課題としてある。
【0008】
さらに、分析対象に合わせて複数種類の特性X線を選べるようなX線源を提供することも重要な課題としてある。一例として、半導体分野で普及の著しい高分解能型の全反射蛍光X線分析では、超微量の軽元素から重元素まで多数の対象元素を分析することが要求される。そのため、複数種類の特性X線を放出可能とする1次や2次のターゲットの異なる複数のX線源を用い、利用するX線エネルギ領域に別けてX線源を切り換えて使用しなければならない。
【0009】
本発明は、このような点に鑑みなされたもので、高効率で特性X線を放出でき、放出する特性X線へのノイズ成分の混入が抑えられ、例えば全反射蛍光X線分析に適するようなシートビーム形状の特性X線を容易に得ることができ、しかも、2次ターゲットの交換を容易に可能とし、複数種類の特性X線を容易に放出できるX線源および蛍光X線分析装置を提供することを目的とする。
【課題を解決するための手段】
【0010】
本発明のX線源は、X線透過窓を有する真空容器と、この真空容器内で電子ビームを発生する電子銃と、前記真空容器内に設けられ、前記電子銃が発生する電子ビームが入射してX線を放出する1次ターゲットと、前記真空容器のX線透過窓の外側を囲って着脱可能に取り付けられるボックス形に設けられ、前記1次ターゲットから放出されて前記X線取出窓を透過するX線が入射して特性X線を放出する2次ターゲット、および2次ターゲットから放出される特性X線を外部に放出する特性X線取出窓を有する2次ターゲット体とを具備しているものである。
【0011】
また、本発明の蛍光X線分析装置は、特性X線を試料に照射する請求項1ないし6いずれか記載のX線源と、前記特性X線の照射にて試料の表面の元素が励起して発する蛍光X線を検出するX線検出器とを具備しているものである。
【発明の効果】
【0012】
本発明によれば、真空容器内の1次ターゲットから放出されたX線が真空容器のX線取出窓を透過するとともにこのX線透過窓の外側を囲うボックス形の2次ターゲット体内に侵入して2次ターゲットに入射し、この2次ターゲットから放出される特性X線が2次ターゲット体の特性X線窓から外部に放出されるため、高効率で特性X線を放出でき、放出する特性X線へのノイズ成分の混入が抑えられるとともに、例えば全反射蛍光X線分析に適するようなシートビーム形状の特性X線を容易に得ることができる。しかも、2次ターゲット体は真空容器側に対して着脱できるため、種類の異なる2次ターゲットに容易に取り換えることができ、複数種類の特性X線を容易に放出できるX線源を提供できる。
【発明を実施するための最良の形態】
【0013】
以下、本発明の実施の形態を図面を参照して説明する。
【0014】
図1に第1の実施の形態を示す。
【0015】
X線源11は、内部が真空保持される真空容器12を有し、この真空容器12の一端寄りの側面にX線を外部に放出するX線透過窓13が配設されている。X線透過窓13は、例えばBe(ベリリウム)等の材料で形成されていて気密を保つ役割を果たす。
【0016】
真空容器12の他端には電子銃14が配設され、真空容器12内に位置する電子銃14の端部に、真空容器12内の一端側へ向けて電子ビーム15を放出するエミッタである電子源16が設けられている。電子源16は、ライン状に形成され、細長いライン形状の電子ビーム15を放出することができる。電子銃14は、駆動電源17によって電子ビーム15を発生、加速する。
【0017】
真空容器12内には、電子銃14に対向して1次ターゲット20が配設されている。この1次ターゲット20は、電子ビーム15が入射してX線としての連続X線である1次X線21をX線透過窓13へ向けて放出する。
【0018】
真空容器12のX線透過窓13が設けられた外側面には、X線透過窓13の外側を囲むように覆うボックス形の2次ターゲット体23が着脱可能に取り付けられている。この2次ターゲット体23の真空容器12に対向する面にはX線透過窓13を透過する1次X線21が2次ターゲット体23内に通過するX線通過口24が開口形成され、2次ターゲット体23の少なくとも内面には1次X線21が入射することによって2次X線である特性X線25を放出する2次ターゲット26が形成されている。
【0019】
2次ターゲット26は、2次ターゲット体23の例えばステンレスのような一般的な材料でボックス形に形成された主構成材の1次X線21が入射する内表面部分だけに2次ターゲット26の材料の箔を貼り付けたものや2次ターゲット26の材料をコーティングしたもので対応できる。あるいは、2次ターゲット体23を2次ターゲット26の材料で形成してもよい。
【0020】
2次ターゲット体23には、X線透過窓13およびX線通過口24に対向する対向面23aに対して交差する面であって、その対向面23aに沿った位置に、特性X線25を放出する特性X線取出窓27が開口形成されている。特性X線取出窓27は、1次X線21が混入せず、シートビーム形状の特性X線25を取り出せるように、対向面23aに沿った細長いスリット状の開口形状に形成されている。
【0021】
なお、1次ターゲット20側である陽極側を接地電位とし、電子銃14側である陰極側に負高電圧を印加する構成である。
【0022】
また、1次ターゲット20は、2次ターゲット26よりも原子番号で2程度大きな元素を用いて、それにより放出される1次X線21を利用することが最も効率良く2次ターゲット26を励起することができる。
【0023】
そして、電子銃14に駆動電源17から電圧を印加することによって放出された電子ビーム15が1次ターゲット20に入射し、1次ターゲット20から放出される1次X線21がX線透過窓13から2次ターゲット体23内に透過する。2次ターゲット体23内に透過した1次X線21が主として2次ターゲット体23の対向面23aの2次ターゲット26に入射し、この2次ターゲット26から特性X線25を放出する。2次ターゲット体23の対向面23aの2次ターゲット26の表面から浅い角度で放出される特性X線25の成分だけが特性X線取出窓27を通過し、2次ターゲット体23の外部にシートビーム形状の特性X線25を放出する。
【0024】
このように、利用しようとする特性X線25以外のノイズ成分の混入が抑制されたシートビーム形状の特性X線25が得られるX線源11を提供できる。
【0025】
また、この構成を採ることにより、特性X線25は固体のX線透過窓13を通していないため、透過時の減衰作用を受けることがなく、これは特に大きな減衰作用を受ける低エネルギの特性X線25を得ようとする場合に有利となる。さらに、固体のX線透過窓13を通過する際のコンプトン散乱成分の発生も懸念する必要がなく、これにより、X線強度の確保と高いスペクトル単色性を保証することが可能となる。
【0026】
しかも、2次ターゲット体23は真空容器12側に対して着脱できるため、利用しようとする特性X線25が得られる複数種類の2次ターゲット26を有する2次ターゲット体23を複数種類用意しておくことにより、種類の異なる2次ターゲット26に取り換えることにより、複数種類の特性X線25を容易に放出できるX線源11を提供できる。
【0027】
次に、図2に第2の実施の形態を示す。
【0028】
この実施の形態では、第1の実施の形態のX線源11においては、1次ターゲット20側である陽極側を接地電位とし、電子銃14側である陰極側に負高電圧を印加する構成であったのに対して、その逆の構成としたもので、すなわち、電子銃14側である陰極側を接地電位、1次ターゲット20側である陽極側を高圧電位にしたものである。
【0029】
図3は、陰極、陽極どちらを接地電位とするかによって受ける影響について説明したものである。
【0030】
図3(b)に示すように、陽極接地の場合は、1次X線21を放出する1次ターゲット20とX線透過窓13が同じ接地電位であるため、絶縁距離を考慮する必要が無く、その間の距離を短縮して2次ターゲット26への1次X線21の照射効率を高くすることが可能となる。反面、1次ターゲット20から放出される1次X線21の中の高エネルギー成分である反跳電子29は、エネルギを減少することなくX線透過窓13に衝突し、損傷を与えることになる。一般的に、このX線透過窓13には、X線減弱率の小さなBe(ベリリウム)が用いられ、低エネルギ成分を取り出す場合には、その厚さも1mm以下の非常に薄いものが使用されるが、上述の反跳電子29による損傷を考慮すると、窓厚を薄くすることが困難となることが短所がある。
【0031】
図3(a)に示すように、これと逆の構成、すなわち陰極を接地電位とした場合には、1次ターゲット20から放出された反跳電子29は、ほとんどが1次ターゲット20に回帰するため、X線透過窓13に到達して衝撃を与えることはない。これにより非常に薄いX線透過窓13を用いることができ、低エネルギX線を効率良く取り出すうえで有利となる。反面、1次ターゲット20とX線透過窓13は、絶縁確保のため一定以上の距離Lを確保することが必要となり、そのため2次ターゲット26までの距離が大きくなり、1次X線21の2次ターゲット26への照射効率を高くする上で不利となる。
【0032】
したがって、目的とする2次ターゲット26の特性X線25のエネルギが低いものであれば、この第2の実施の形態のように、陰極接地の構成を採ることが効果的となる。
【0033】
次に、図4に第3の実施の形態を示す。
【0034】
この実施の形態では、第1の実施の形態のX線源11において、電子銃14に独立に運転できる電子源16a,16bと、異なる材質(元素)の1次ターゲット20a,20bとを用いて構成したものである。一方の電子源16aからの電子ビーム15aは一方の1次ターゲット20aに、他方の電子源16bからの電子ビーム15bは他方の1次ターゲット20bに照射される。また、電子源16a,16bは1つの駆動電源17で簡単に加速エネルギを変えることが可能である。
【0035】
さらに、1次ターゲット20a,20bに対して、種類の異なる2次ターゲット26を有する2次ターゲット体23を組み合わせることで、2種類以上の特性X線25を得ることが可能である。
【0036】
X線による励起方式を利用する場合、2次ターゲット26の特性X線25を効率よく放出できるエネルギの1次X線21a,21bを選ぶことが効果的となる。そのため、目的とする特性X線25を得るため、複数の2次ターゲット26を取り換えて用いる場合には、それぞれの元素を励起するのに最適な元素の1次ターゲット20a,20bを選定する必要がある。
【0037】
最適な組合せの一例は、2次ターゲット26としてチタン(Ti:特性X線Kαエネルギ4.5keV)に対する1次ターゲット20a,20bとしてはクロム(Cr:特性X線Kαエネルギ5.4keV)、2次ターゲット26としてモリブデン(Mo:特性X線Kαエネルギ17.5keV)に対する1次ターゲット20a,20bとしてはロジウム(Rh:特性X線Kαエネルギ20.2keV)、2次ターゲット26としてガドリニウム(Gd:特性X線Kαエネルギ43keV)に対する1次ターゲット20a,20bとしてはタンタル(Ta:特性X線Kαエネルギ57.5keV)などの組合せを採ることができる。
【0038】
また、2次ターゲット26は1次ターゲット20a,20bよりも原子番号で2程度小さな元素が最も高い励起効率を与えるが、より小さな原子番号の1次ターゲット20a,20bも同時に内蔵していれば、最適値よりも小さな原子番号の2次ターゲット26を選択した場合にも、高い励起効率で2次ターゲット26から特性X線25を放出させることが可能となる。
【0039】
これにより、高エネルギから低エネルギまで複数の単色エネルギ成分を含む特性X線25を放出させることができ、元素分析の領域を広く採ることが可能となる。
【0040】
このように、1つの電子銃14の電子源16a,16bを選定したり、2次ターゲット26側を取り換えるだけで、高エネルギから低エネルギまで複数の特性X線25を放出できるX線源11を提供できる。
【0041】
次に、図5に第4の実施の形態を示す。
【0042】
この実施の形態では、真空容器の一端に電子銃14に対向するX線透過窓13を形成し、このX線透過窓13の内面に1次ターゲット20をコーティングによって形成する。1次ターゲット20の厚みは、加速電子の飛程より厚いものとする。
【0043】
真空容器12のX線透過窓13が設けられた一端面には、X線透過窓13の外側を囲むように覆うボックス形の2次ターゲット体23を着脱可能に取り付ける。
【0044】
そして、電子銃14が発生した電子ビーム15が1次ターゲット20に入射し、この1次ターゲット20から放出される1次X線21がX線透過窓13から2次ターゲット体23内に透過する。2次ターゲット体23内に透過した1次X線21が主として2次ターゲット体23の対向面23aの2次ターゲット26に入射し、この2次ターゲット26から特性X線25を放出する。2次ターゲット体23の対向面23aの2次ターゲット26の表面から浅い角度で放出される特性X線25の成分だけが特性X線取出窓27を通過し、2次ターゲット体23の外部にシートビーム形状の特性X線25を放出する。
【0045】
このように、真空隔壁であるX線透過窓13と1次ターゲット20を一体化することにより、1次X線21の2次ターゲット26への照射角度を大きくとることができ、1次X線21の利用効率が高くすることができる。
【0046】
また、1次ターゲット20を透過して放出する1次X線21を利用する場合は、2次ターゲット26までの遮蔽物が無く、1次X線21により他構成材が励起されて放出されるノイズ成分の放出を抑制し易い構成となっている。これにより、1次ターゲット20から特性X線取出窓27までの構成を小形化でき、X線源11を小形化できる。
【0047】
この場合にも、2次ターゲット26側を取り換えるだけで、複数の特性X線25を放出でき、利用効率が高く小形化が可能なX線源11を提供することができる。
【0048】
次に、図6に第5の実施の形態を示す。
【0049】
この実施の形態では、第4の実施の形態のX線源11において、電子銃14に独立に運転できる電子源16a,16bと、異なる材質(元素)の1次ターゲット20a,20bとを用いて構成したものである。一方の電子源16aからの電子ビーム15aは一方の1次ターゲット20aに、他方の電子源16bからの電子ビーム15bは他方の1次ターゲット20bに照射される。また、電子源16a,16bは1つの駆動電源17で簡単に加速エネルギを変えることが可能である。
【0050】
さらに、1次ターゲット20a,20bに対して、種類の異なる2次ターゲット26を有する2次ターゲット体23を組み合わせることで、2種類以上の特性X線25を得ることが可能である。
【0051】
このように、2次ターゲット26側を取り換えるだけで、高エネルギから低エネルギまで複数種類の特性X線25を放出できるX線源11を提供できる。
【0052】
次に、図7に第6の実施の形態を示す。
【0053】
この実施の形態では、第5の実施の形態のX線源11において、電子銃14から放出された電子ビーム15a,15bの軌道を偏向させて複数種類の1次ターゲット20a,20bのうちの任意のいずれか1つに対して入射させる電子ビーム偏向手段31としての偏向電磁石32を備えている。なお、電子を偏向する場合は電界を用いてもよい。
【0054】
また、電子銃14は駆動電源17の操作で簡単に加速エネルギを変えることが可能である。
【0055】
さらに、1次ターゲット20a,20bに対して、種類の異なる2次ターゲット26を有する2次ターゲット体23を組み合わせることで、2種類以上の特性X線25を得ることが可能である。
【0056】
このように、1つの電子銃14の電子源16a,16bを選定したり、2次ターゲット26側を取り換えるだけで、高エネルギから低エネルギまで複数種類の特性X線25を放出できるため、出力増大または小形化が可能なX線源11を提供できる。
【0057】
次に、図8に上記各実施の形態のX線源11を用いた蛍光X線分析装置61を示す。
【0058】
蛍光X線分析装置61は、X線源11から放出されるシートビーム形状の特性X線25を試料62に照射し、この試料62の表面の元素が励起されて発する蛍光X線63をX線検出器65で捉え、元素分析を行う構成である。
【0059】
試料62としての半導体ウェハの表面汚染検査を目的とする場合には、特性X線25は、半導体ウェハ表面に対してできるだけ一定角度で、しかも0.1°以下の非常に浅い角度で入射する必要があるため、例えば扇状のファンビームのようなものも含むシートビーム形状としている。
【0060】
そして、蛍光X線分析装置61に適用するX線源11は、そのエネルギスペクトルが、2次ターゲット26の特性X線25が主成分となっており、それによって試料62の表面の元素が励起されて発する蛍光X線63を捉え、元素組成を分析することができる。
【0061】
このとき、励起する特性X線25のスペクトルを予め分析機器に記憶させておき、それによって得られる蛍光信号/励起強度の関係をとらえておけば、蛍光信号強度から、試料62の表面の元素の定量分析を精度良く行うことができる。
【0062】
このように、シートビーム形状の特性X線25を効率良く放出できるX線源11により、高分解能の蛍光X線分析装置61を提供できる。
【図面の簡単な説明】
【0063】
【図1】本発明の第1の実施の形態を示すX線源の説明図である。
【図2】本発明の第2の実施の形態を示すX線源の説明図である。
【図3】X線源の接地電位の影響について、(a)に陰極接地、(b)に陽極接地を示して説明する説明図である。
【図4】本発明の第3の実施の形態を示すX線源の説明図である。
【図5】本発明の第4の実施の形態を示すX線源の説明図である。
【図6】本発明の第5の実施の形態を示すX線源の説明図である。
【図7】本発明の第6の実施の形態を示すX線源の説明図である。
【図8】本発明のX線源を用いた蛍光X線分析装置の説明図である。
【図9】従来の蛍光X線分析装置の説明図である。
【符号の説明】
【0064】
11 X線源
12 真空容器
13 X線透過窓
15,15a,15b 電子ビーム
20,20a,20b 1次ターゲット
21,21a,21b X線としての1次X線
23 2次ターゲット体
25 特性X線
26 2次ターゲット
27 特性X線取出窓
31 電子ビーム偏向手段
61 蛍光X線分析装置
62 試料
63 蛍光X線
65 X線検出器

【特許請求の範囲】
【請求項1】
X線透過窓を有する真空容器と、
この真空容器内で電子ビームを発生する電子銃と、
前記真空容器内に設けられ、前記電子銃が発生する電子ビームが入射してX線を放出する1次ターゲットと、
前記真空容器のX線透過窓の外側を囲って着脱可能に取り付けられるボックス形に設けられ、前記1次ターゲットから放出されて前記X線取出窓を透過するX線が入射して特性X線を放出する2次ターゲット、および2次ターゲットから放出される特性X線を外部に放出する特性X線取出窓を有する2次ターゲット体と
を具備していることを特徴とするX線源。
【請求項2】
電子銃側を接地電位、1次ターゲット側を高圧電位とした
ことを特徴とする請求項1記載のX線源。
【請求項3】
複数種類のX線を放出する複数種類の1次ターゲットを備えている
ことを特徴とする請求項1または2記載のX線源。
【請求項4】
1次ターゲットは、X線透過窓に電子の飛程より厚い厚みにコーティングされている
ことを特徴とする請求項1ないし3いずれか記載のX線源。
【請求項5】
電子銃は、複数種類の1次ターゲット毎に電子ビームを発生する複数の電子源を備えている
ことを特徴とする請求項3記載のX線源。
【請求項6】
1つの電子銃が発生する電子ビームの軌道を偏向させて複数種類の1次ターゲットのうちの任意の1次ターゲットに対して入射させる電子ビーム偏向手段を具備している
ことを特徴とする請求項3記載のX線源。
【請求項7】
特性X線を試料に照射する請求項1ないし6いずれか記載のX線源と、
前記特性X線の照射にて試料の表面の元素が励起して発する蛍光X線を検出するX線検出器と
を具備していることを特徴とする蛍光X線分析装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2008−16339(P2008−16339A)
【公開日】平成20年1月24日(2008.1.24)
【国際特許分類】
【出願番号】特願2006−186842(P2006−186842)
【出願日】平成18年7月6日(2006.7.6)
【出願人】(000003078)株式会社東芝 (54,554)
【出願人】(503382542)東芝電子管デバイス株式会社 (369)
【Fターム(参考)】