説明

Fターム[2G052HA18]の内容

サンプリング、試料調製 (40,385) | 分析値以外の測定、検知 (545) | 圧力の測定・検知 (93)

Fターム[2G052HA18]に分類される特許

61 - 80 / 93


【課題】
デバイスごとのばらつき,デバイスの経時変化,試験体の個体差の影響を受けにくい、マイクロラボ検査システムを提供する。
【解決手段】
外部より電圧印加が行える電極、該電極の上部に形成した絶縁膜、さらにこれらを透明な容器に格納し、試薬および試験体サンプルを外部から取り入れ可能な構造にしたデバイスと、該デバイスの中の液滴を光学的に観察する手段と、その画像データより注目する液体の形状,位置を認識する手段と、少なくとも液滴の形状,位置をシミュレーションする手段で構成し、電極への印加信号を、光学的観測結果とシミュレーション結果の偏差を基に算出し、液滴挙動を制御するマイクロラボシステム。 (もっと読む)


【課題】サンプリング空気の流量を一定にして吸引ポンプ5に負荷が加わらないようにする。
【解決手段】サンプリング空気を吸入する吸引ポンプと、吸入されるサンプリング空気の通路となるサンプリングライン2と、サンプリングラインに設けられ吸入されるサンプリング空気中の放射線ダストを捕集する集塵部1と、サンプリングラインに流れるサンプリング空気の流量を検出する流量検出手段3と、サンプリングラインに接続されポンプバイパスライン7と、ポンプバイパスラインに設けられポンプバイパスラインの流量を調整するポンプバイパスライン流量調整手段8と、流量検出手段からの流量信号によりポンプバイパスライン流量調整手段9を制御する制御手段とを備えた。 (もっと読む)


【課題】試料の分解中に、試料がオーバーヒートしそうになった時に、即座に試料へのエネルギー供給を停止して、試料の変質を抑制することを可能とする、試料の分解方法および試料の分解装置を提供する。
【解決手段】試料に薬液を加えて密閉しマイクロ波を照射することを特徴とする試料の分解方法。反応容器を収容する空所を有するマイクロ波シールドと、該マイクロ波シールドの前記空所内に収容された反応容器内の温度を測定するための非接触式温度測定手段と、前記マイクロ波シールドの空所内に収容された反応容器内の圧力を測定するための圧力測定手段と、前記マイクロ波シールド内にマイクロ波を発生させるためのマイクロ波発生手段と、前記非接触式温度測定手段と前記圧力測定手段の情報を取得して前記マイクロ波発生手段の出力を制御するフィードバック手段とを備えていることを特徴とする試料の分解装置。 (もっと読む)


【目的】 人が作業をすることが困難な場所でのトリガー装置として、構造が簡単でありながら、トラブルが少なく誤作動を防止することができるトリガー装置を提供する。
【構成】 一端が開口し他端が壁面に穴2aを設けた円筒状の容器2と、容器2の一端の開口を塞ぐ蓋3と、容器2の他端の穴2aを貫通するピストンロッド5と、容器2、蓋3及びピストンロッド5で囲まれた内部空間10に封入された封入媒体11とを有し、ピストンロッド5の一端に容器2から出没可能なトリガー部5aを備え、外部空間17の圧力と内部空間10の圧力との大きさによりピストンロッド5が移動し、トリガー部5aを容器2から出没させる。 (もっと読む)


本発明は、液体サンプルのテスト方法、テスト装置および複数のテスト装置の自動化システムである。特定の目的は、異なる場所にある多数のテスト装置を含みかつ共通の制御装置を経由して接続された、患者の血液の大規模テスト用システムである。個々のテスト装置においては、液体投与室(5)と、キャリブレータと対照液体(8、9)の密閉されたパッケージと、液体試薬パッケージ(10)と、液体サンプル入口(14)と、反応からの結果を登録する手段のみならず、反応成分を投与しかつ混合するための作動装置(16)がある。該テスト装置は、制御装置の監視下に、較正反応、対照反応およびテスト反応を、自動的に行うことができる。該システムは、各テスト装置中の同一パッケージされた液体を使用することができ、対照結果の平均を計算でき、また個々の結果を該平均値と比較することにより、許容された偏差外の結果を通して、欠陥を検出する。
(もっと読む)


【課題】圧力センサが1つで済み、ノイズ等の外乱に影響されることなく気泡の有無を正確に判定することが可能な分注装置における配管内の気泡の有無判定方法および分注装置を提供すること。
【解決手段】分注ノズルを接続した配管内に液体を充填し、配管内で液体を移動させて分注ノズルから検体または試薬を含む液体試料を吸引し、吸引した液体試料を吐出して分注を行う分注装置における配管内の気泡の有無判定方法と分注装置。分注装置1は、配管2へ印加した圧力によって生ずる圧力振動の時間波形をフーリエ変換し、得られる周波数のピーク値に基づいて配管2内における気泡の有無を判定する判定装置14が設けられ、気泡の有無判定方法は、配管へ圧力を印加する工程と、印加した圧力によって配管内に生ずる圧力振動の時間波形をフーリエ変換する工程と、フーリエ変換して得られる周波数のピーク値に基づいて配管内における気泡の有無を判定する工程とを含む。 (もっと読む)


【課題】液体試料が容易に分類されかつ必要に応じて分注されることを可能にする代替方法を提案する。
【解決手段】本発明は、液体を上記液体用の既知の分注システムにおいて分類するための方法であって、選択される測定可能かつ物理的根拠のある仮想パラメータの変動は上記液体に典型的なデータ・セットとして検出され、上記選択される仮想パラメータの上記典型的なデータ・セットは既知の液体の対応するデータ・セットと比較され、上記液体はこの比較に基づいて分類される。 (もっと読む)


【課題】流路構造体を有する液体処理装置において、流路構造体の内部への液体の導入時に、液体の内部に気泡が発生することを防止する。
【解決手段】液体処理装置1は、導入口から排出口に至る微細流路が形成されたマイクロリアクタ2、マイクロリアクタ2の導入口および排出口にそれぞれ接続される供給管31および排出管41、薬液を供給管31を介してマイクロリアクタ2へと供給する送液ポンプ32、並びに、排出管41に接続される減圧ポンプ43を備える。マイクロリアクタ2の内部への薬液の導入時には、制御部12が送液ポンプ32および/または減圧ポンプ43を駆動制御して、供給管31内の薬液の第1圧力と排出口におけるガスの第2圧力との差が薬液の内部にて気泡が発生しない圧力差以下に維持される。これにより、液体処理装置1では薬液の内部における気泡の発生を防止することができる。 (もっと読む)


【課題】
必要な排気サンプル流量を全排気ガス流量とともに広い流量範囲に亘り正確に計測して、抽出し清浄なガスで希釈する排気ガスの比例サンプリング装置を構成すること
【解決手段】
排気管の直後ラミナー型流量計を用いて排気ガスの全流量を測定し、この流量値と常に一定比率となる排気ガスサンプル流量を測定し、かつ制御弁で制御しながらバッグに採取するサンプリング装置において、CFOまたはCFVを用いて一定流量のサンプル排気ガス流とこれに一定な比率の流量となる清浄な乾燥空気または窒素ガスを希釈ガスとしてそれぞれのCFOまたはCFVを用いて流量制御し、ドライポンプで吸引・混合・加圧し、一定圧力の希釈排気ガスサンプルを調整して、その一部を全排気ガス流量に比例した制御希釈排気ガスサンプルとして可変断面積オリフィス式流量測定制御装置によりバッグに捕集する。 (もっと読む)


【目的】水分量測定手段の頻繁な校正やそれに伴う水分量測定手段の検出素子の交換を必要としない長期安定性の優れた焼却炉トリチウムサンプラを提供する。
【構成】監視対象排気の吸入側に、排気中の水分を結露させて捕集するための冷却装置14および試料水捕集計量容器15aが配され、その後方に、湿度計または露点を内蔵する水分量測定部12および流量計18が配置されている。試料水捕集計量容器15aに捕集された水分量データと流量計18の流量データから、所定体積の排気中の捕集水分量が算出され、水分量測定部12で得られる冷却装置14を通過した排気中の残存水分量データから、所定体積の排気中の残存水分量が算出され、両者を合算することで所定体積の排気中の全水分量が算出される。 (もっと読む)


【課題】
高圧サンプル液による分析計の破損を防止するとともに所要の流量を分析計に供給することのできるサンプリング装置を提供する。
【解決手段】
入口側をサンプル液の流入側に接続し、出口側を前記サンプル液の成分を分析する分析計11に接続し、開度を調節することにより流入および流出するサンプル液の流量を調整することのできる流量調節部6と、該流量調節部の開度を調節する駆動部7と、前記流量調節部の出口側圧力および出口側流量を測定し、出口側圧力が前記分析計の最高使用圧力未満で、かつ出口側流量が所定流量範囲内にあるように前記駆動部を制御する制御部8とを備えた。 (もっと読む)


空気監視システムは、導電性内側表面を有する管を含む。一実施形態では、ライナーは、例えばカーボンナノチューブなどの炭素ベースの材料を含む。別の実施形態では、伝導性層は、基板に接着される。
(もっと読む)


【課題】 試料ガス中の微量不純物の測定をリアルタイムで行なうことができ、さらに複数種類の試料ガスの分析を短周期の切替えで実施することが可能な微量不純物分析装置および微量不純物分析方法を提供する。
【解決手段】 複数種類の試料ガスに含まれる不純物成分を該試料ガス毎に検出するための微量不純物分析装置であって、該試料ガス毎に並列に配置された、試料ガス送入のための複数の送入経路と、該複数の送入経路が合流する導入経路と、該導入経路に接続された1または2以上のガス分析手段と、を含み、該複数の送入経路の各々に、少なくとも2つの開閉弁と、該2つの開閉弁の間の経路を減圧するための減圧手段とが設けられ、かつ、該ガス分析手段に導入する試料ガスの種類の切り替えを行なうことにより、1のガス分析手段に対して2以上の種類の該試料ガスが順次導入される微量不純物分析装置に関する。 (もっと読む)


【課題】 一の測定部で、複数の採取箇所における,ある特定の測定項目についての被測定流体の測定を行うことができる流体測定装置を実現する。
【解決手段】 流体測定装置1は、給水ライン2と接続された第一サンプリングライン7および第二サンプリングライン8、並びに濃縮水排水ライン5と接続された第三サンプリングライン9と、サンプリングされた被測定流体を特定の測定項目にしたがって測定する測定部10と、選択されたいずれかの前記各サンプリングライン7,8,9から前記測定部10へ被測定流体を導入する弁装置を構成する第一開閉弁11,第二開閉弁12および第三開閉弁13とを備える。 (もっと読む)


【課題】高感度で短時間にて対象とする項目に関して的確に測定でき、とくに、透過水量の低下や通水差圧の上昇の程度を予想可能な、水質測定方法および装置を提供する。
【解決手段】濾過膜に通水して水質を測定する方法であって、水質測定のための測定項目と、濾過膜の表面構造特性、とくに表面凹凸の高低差との関係を予め求め、該関係から前記測定項目の測定に使用すべき表面構造特性の特定の範囲または特定の基準値を決定し、決定した特定の範囲または特定の基準値を満足する表面構造を有する濾過膜を用いて水質を測定することを特徴とする水質測定方法、および水質測定装置。 (もっと読む)


本発明は、サンプル内の分析対象物を分析機器に対して移送するための方法に関するものであって、この方法においては、吸着性材料を収容している第1容器内へと第1所定量の標準材料を導入し;そしてその次に、第1容器内へと所定量のサンプルを導入し;さらにその後に、サンプル内の分析対象物および標準材料内の化合物を、分析機器に対して移送する。
(もっと読む)


【課題】 簡単な装置構成でありながら、吐出される液滴1滴毎の容量をリアルタイムで制御することができる液体分注装置を提供する。
【解決手段】 ノズル先端から液滴を飛翔させる方式の液体分注装置において、背圧を発生させるためのポンプと、背圧の変化を検出するための圧力センサと、高速で開閉することができるバルブと、前記バルブの先端に取設されたノズルとからなり、前記ポンプと圧力センサと高速バルブは共通の管路で接続されており、ノズルからの液滴の飛翔により生じた背圧の変化を前記圧力センサにより検出し、その背圧変化をフィードバックして予め設定した背圧値になるように前記ポンプを駆動させる制御機構を有することを特徴とする液体分注装置。 (もっと読む)


【課題】極めて簡易な装置構成で、焼却炉もしくは燃焼溶融炉等の燃焼制御を高精度に行う。
【解決手段】排ガス通路19内のガス圧力を検出する圧力計40と、ガス分析装置20の滞留室内のガス圧力を検出する連成計とを備え、コントローラ41にて圧力計40と連成計によりそれぞれ検出される圧力の差圧を演算し、この演算される差圧が所定値に達したときにガス分析装置20の酸素濃度検出器により検出される酸素濃度の値を保持し、この保持した酸素濃度値に基づき燃焼溶融炉1に供給される空気量を制御するようにする。 (もっと読む)


【課題】極めて簡素な装置構成で、しかも分析後の排ガスを大気中へ放出することのないガス分析装置を提供する。
【解決手段】排ガス通路2内の排ガスを捕集するサンプリング管8と、このサンプリング管8にて捕集された排ガスを滞留させる滞留室(第1空間部4、第2空間部6)と、この滞留室内に配され、排ガス中の酸素濃度を分析するジルコニア式酸素分析計プローブ11と、滞留室と排ガス通路2内とを連通させるように配され、ジルコニア式酸素分析計プローブ11にて分析後の排ガスを排ガス通路2内に還流させる還流路と、排ガス通路2内から滞留室内に排ガスを導入するために還流路内に加圧空気を噴射するエジェクタとを備える構成とする。 (もっと読む)


【課題】複数箇所の容器に検体や試薬を分注する場合であっても、効率良く検体や試薬を混合した液体を攪拌できる分注装置を提供する。
【解決手段】円筒形状の枠体103と、複数の超音波振動子105と、超音波伝達媒体が供給、排出可能に構成された略円筒形状のバッグ107とを有する超音波照射装置101を分注装置の作業領域に設け、マイクロプレートに所定量の液体を分注する前に、所望の液体を吸引したノズルチップ19内の液体に向けて超音波を照射して液体を攪拌する。 (もっと読む)


61 - 80 / 93