説明

Fターム[2G059BB12]の内容

光学的手段による材料の調査、分析 (110,381) | 測定対象 (10,253) | 生体試料 (3,717)

Fターム[2G059BB12]の下位に属するFターム

Fターム[2G059BB12]に分類される特許

2,361 - 2,380 / 2,391


環境保持装置は、試料を保持し、開放面を有する第1のチャンバーと、第1のチャンバーを搭載して2次元移動する移動ステージと、第1のチャンバー内に所定の条件の気体を配管を介して導入する導入部を有し第1のチャンバーの開放面を覆うように設けられた第1の面とを備え、第1の面は、移動ステージの移動に対して固定するように設けられ、第1のチャンバーの開放面は、移動ステージの移動により、第1の面に沿って2次元移動する。 (もっと読む)


スペクトル測定システムからのデータのダイナミックレンジを改善可能な方法および装置を提供する。分光器測定を行う際、画像の品質と、ユーザが所望の特徴を区別する能力を改善することができる光源およびスペクトル測定システムを提供する。 (もっと読む)


脈管内プローブは、遠位部と近位部とを備えた外装を含む。この脈管内プローブは、外装に沿って延伸する第1光学導波路であって、遠位部と近位部との間で光放射を伝達するよう構成された第1光学導波路と、遠位部に設けられると共に、第1光学導波路と光学連通した第1ビーム方向転換器とを含む。更に、脈管内プローブは、第1光学導波路から光放射を受け取るよう構成された光学検出器と、遠位部に設けられた超音波トランスデューサとを含む。超音波トランスデューサは、超音波エネルギーを脈管内プローブと伝搬媒体との間に結合するよう構成されている。電線が外装に沿って延伸し、超音波トランスデューサと電気連通している。

(もっと読む)


本発明は、ターゲットに対して親和性を有する表面の近くにターゲットを移動させることによってターゲットを検出することに関連する。この移動は電気泳動の使用を伴い、それは、電気泳動力が発生しうる電圧を下げる酸化剤及び還元剤の存在によって増強されて良い。このより低い電位により、ターゲットが検出される、例えば濃縮の間の検出の手段及びターゲットを固定化することなく複数回検出する能力が可能になる。タグはターゲットへと、移動及び/又は検出可能性を与えるために結合させられて良い。ターゲットは分子の例えば、核酸又はタンパク質であり、そして都合良くは微生物である。微生物は表面上に固定化された場合に固定されて増殖して良く、微生物の様々な抗微生物剤に対する感受性の特定が可能になる。
(もっと読む)


表面結合光学共振プロファイルを数量化するために経験的プロファイル適合が使用される。EPFプロセスは2つの段階、すなわち、較正段階と適合段階とを有する。較正段階では、全ての領域についての完全な共振プロファイルを含むのに十分な範囲にわたって比較的細かい角度または波長間隔で較正表面結合光学共振走査が得られる。各対象領域の平滑化されサブサンプリングされた経験的プロファイルが、第1の微分曲線および診断情報と共にメイン較正モジュールによって生成される。返送される特性は近似共振位置、深さ、および幅を含む。適合段階では、個々のROI走査が経験的プロファイルに関連する共鳴移動の測定に使用される。適合モジュールは共鳴を含む実験的走査の領域を識別し、以前に記憶した経験的プロファイルを用いてその領域を適合させ、数量化を実行し、較正時のそのロケーションと比較した共鳴移動、予想絶対角度または波長、共鳴極小の時間、および追加の診断および品質情報を含む所望の値を返送する。任意選択として、較正または適合段階から得たデータをエクスポートして他のシステムで分析できる。好ましい実施形態では、機器制御およびデータ獲得ソフトウェアは内部パラメータをEPF較正モジュール内に設定し、較正走査からEPF較正モジュールに生データを送信し、EPF較正モジュールはそのデータをサブサンプラおよびSavitsky−Golay平滑化ルーチンに流し込み、その後データの微分をとって特徴付け、チップの経験的プロファイルを作成する。経験的プロファイルは任意選択として記憶される。次に、機器制御およびデータ獲得ソフトウェアは内部パラメータをEPF適合モジュール内に設定し、チップを用いて実行される実行時間走査からEPF適合モジュールに生データを送信し、EPF適合モジュールは生データを承認し、EPF較正モジュールにチップの経験的プロファイルを照会し、曲線を適合させ、必要に応じてこのプロセスを繰り返す。適合プロセスの結果が返送され、ユーザに提供される。

(もっと読む)


媒質内の物質の濃度などの、媒質の物理的特性を決定するための方法及びデバイスが開示される。デバイスは、光源2と、少なくとも第1及び第2の光ファイバ5、6が互いに平行に配置され、前記第1の光ファイバ5は光源からサンプル1に放射線を送出し、前記サンプルから第1の後方散乱放射線を集めるように配列され、前記第2の光ファイバ6は第2の後方散乱放射線を集めるように配列されたプローブと、第1及び第2の後方散乱放射線を発生する分光計7、前記第1及び第2の後方散乱放射線に基づき第1及び第2の信号発生するための分光計7と、前記第1の及び第2の信号から微分後方散乱信号を決定し、前記測定された微分後方散乱信号の曲線当てはめにより後方散乱関数へと前記物理的特性を計算するように適合されたプロセッサ9とを備える。光ファイバの口径がサンプル中の光子の平均自由行程よりも短いか長いかに応じて、異なる後方散乱関数が使用される。
(もっと読む)


人体内の対象領域の少なくとも一つのパラメータの非侵襲的モニタリングに使用される方法とシステムを提示する。当該システムは、測定ユニットと制御ユニットを備える。測定ユニットは、照射アセンブリ(101A)と光検出アセンブリ(101B)とを有し、採集光を示す測定データを生成する光学ユニットと、所定の超音波周波数範囲の音波を発生するように構成された音響ユニット(110)と、を備える。測定ユニットは、所定の周波数範囲の音波が対象領域内で照射領域と重なり対象領域外の領域とは実質的に重ならず、かつ検出アセンブリが対象領域からの散乱光と対象領域外の領域からの散乱光を採集するという動作条件を提供する。測定データは、超音波で標識付けされた光の部分と標識付けされていない光の部分の両方を有する散乱光を示し、対象領域と対象領域外の領域のそれぞれの光応答を識別可能にする。
(もっと読む)


本発明は、以下の工程を含む、疾患の生物学的プロファイルに対する化学的複数成分混合物の影響を決定するための方法を提供する:(a)多変量解析を用いて、疾患の症状を有する生体システム群の生物学的プロファイルを参照(または健常)生体システム群の生物学的プロファイルと比較することにより、疾患の生物学的プロファイルを決定する工程;(b)多変量解析を用いて、疾患の生物学的プロファイルに対する1つまたは複数の合成組成物の一連のサンプルの影響を決定する工程であって、これらサンプル中、1つまたは複数の合成組成物の濃度が異なる、工程;(c)工程(b)で得られた情報に基づいて、疾患の生物学的プロファイルに対して所望の影響を示すことが期待される複数成分合成産物混合物のセットを調製する工程;および(d)多変量解析を用いて、疾患の生物学的プロファイルに対する工程(c)で調製された複数成分混合物セットの影響を決定する工程。本発明はまた、医薬物を調製するための方法、および合成産物ベースの医薬物を調製するための、工程(c)で調製されるような複数成分合成産物混合物の使用を提供する。

(もっと読む)


本発明は、干渉分光法による媒体の特性の非侵襲的検出に用いられるデバイス(1)に関する。本発明によるデバイス(1)は、上記試験対象媒体(34)の少なくとも1つのゾーンを光線(19)で照射する際に用いられる光源(3)と、上記光線(19)を基準ビーム(21)およびプローブビーム(23)に分割する干渉計(5)であって、上記干渉計(5)は、上記基準ビーム(21)および上記プローブビーム(23)の各長さの自動制御のためのカットオフ周波数fcを有する、干渉計(5)とを含む。上記デバイス(1)はまた、走査手段(33)も含む。上記走査手段(33)は、上記試験対象ゾーン(34)の走査を周波数f(上記カットオフ周波数fcよりも大きい上記光線(7))の位相変化を測定する手段によって記録された画像の取得の周波数)において行う際に、上記プローブビーム(23)と共に用いられる。 (もっと読む)


透過型の空間ヘテロダイン干渉法(SHIFT)測定のシステムおよび方法が記載される。方法は、少なくとも一部は半透明である対象物(630,730)を透過した基準ビームおよび対象ビームを用いてフーリエ解析のために、空間ヘテロダイン干渉縞を含む空間ヘテロダイン化されたホログラムをデジタル記録すること;解析されるイメージを規定するために、基準ビームと対象ビームとの間の角度によって規定される空間テロダインキャリア周波数の上にデジタル記録された空間的にヘテロダイン化されたホログラムの元の原点を重ねるためにホログラムの元の原点を移動することによって、デジタル記録された空間的にヘテロダイン化されたホログラムをフーリエ解析すること;元の原点周辺の信号を切り離し、結果を規定するために、解析されたイメージをデジタルフィルタリングすること;および、その結果に逆フーリエ変換を施すことを含む。
(もっと読む)


透過および反射型の空間ヘテロダイン干渉法(SHIRT)測定のシステムおよび方法が記載される。方法は、第1の基準ビームおよび対象ビームを用いて、第1の空間的にヘテロダイン化されたホログラムをデジタル記録し、第2の基準ビームおよび対象ビームを用いて、第2の空間的にヘテロダイン化されたホログラムをデジタル記録する。また方法は、第1の解析されるイメージを規定するために、デジタル記録された第1の空間的にヘテロダイン化されたホログラムをフーリエ解析し、第2の解析されるイメージを規定するために、デジタル記録された第2の空間的にヘテロダイン化されたホログラムをフーリエ解析し、第1の結果を規定するために第1の解析されたイメージをデジタルフィルターし、第2の結果を規定するために第2の解析されたイメージをデジタルフィルターし、そして第1の結果に第1の逆フーリエ変換を施し、第2の結果に第2の逆フーリエ変換を施す。
(もっと読む)


化学及び生物学的過程の分析の間、異常な条件を検出するための方法及び装置(1)が開示される。1の実施態様では、マイクロ電気化学反応チャンバー(7)における反応条件がモニターされる。反応チャンバー(7)は、反応チャンバー内に配置された反応混合液を通して電流を流すように配置され、それにより電気化学反応を誘導する電極(17a、17b)を含む。検出器(19)は、電極(17a、17b)間を流れる電流を検出及び計測するように提供される。検出器(19)は、計測された電流が、予め決められた値の範囲内又は範囲外に存在するかを指し示すシグナルを発生させる。計測された電流が、予期された値の範囲を外れる場合、反応条件は異常である。一対の電極は、電気化学反応の検出を誘導する二重の機能を実行してもよい。別の実施態様では、電極は、表面増強ラマン散乱及び表面プラスモン共鳴の技術の組合せ使用して、被分析物の存在を検出することが目的である。
(もっと読む)


【課題】より正確で、高感度で、より広範な検出方法が産業界において必要とされている。
【解決手段】簡潔に述べると、本開示の実施形態は、構造体、その構造体の形成方法、およびその構造体の使用方法を含む。特に、構造体の例の1つは、ナノ化学種および多孔質材料を含む。ナノ化学種は、第1の特性と、第2の検出可能な特性とを有する。さらに、第1のエネルギーに曝露することによって、第2の検出可能な特性に対応する第2の検出可能なエネルギーが発生する。多孔質材料は、第1の特性と、複数の細孔とを有する。この第1の特性によって、ナノ化学種は、多孔質材料と相互作用して、多孔質材料の細孔内に入る。 (もっと読む)


ナノ構造の光学素子は、提供される入射放射の少なくとも1つの所定の第1の波長未満の幅を有する複数の開口のアレイを有する金属膜又は複数の金属アイランドを含む。金属膜又は金属アイランドは、入射放射が金属膜又は金属アイランド上の少なくとも1つのプラズモンモードと共鳴するように構成される。
(もっと読む)


回折格子結合導波路の検知領域における生物学的物質(例えば、細胞、薬物、化合物)の存在を検出するために用いることができる回折格子結合導波路(100)及び方法が説明される。回折格子結合導波路は、基板(112)、回折格子(108)及び屈折率が1.5以下の基板より高い屈折率を有する導波路膜(106)を有する。比較的低屈折率の基板が、導波路モードを導波路膜上の検知領域にある生物学的物質に向けてシフトさせ、よってその領域におけるモードのエバネッセントテールの電場強度を高めることにより、回折格子結合導波路の感度を実効的に高める。一実施形態において、回折格子導波路のアレイがマイクロプレートのウエル内に組み込まれる。

(もっと読む)


マイクロ流体装置の画像を処理する方法である。この方法は、マイクロ流体装置の第1画像を受信する。第1画像は第1状態に関連している。さらに、この方法は、マイクロ流体装置の第2画像を受信する。第2画像は第2状態に関連している。さらに、この方法は、第1画像と第2画像を第3座標空間に変換する。さらに、この方法は、変換された第1画像と変換された第2画像に関連した情報に少なくとも基づいて第3画像を取得し、また、第1状態と第2状態に関連した情報を取得するべく第3画像を処理する。
(もっと読む)


ポリヌクレオチド増幅反応の進行の定量的測定は、(i)標的ポリヌクレオチドの増幅のための反応を実行し、(ii)増幅反応の間または後に、増幅産物をポリヌクレオチドに結合する分子(空間的に規定された位置に存在するか、または非線形または非蛍光性の方法により判定される分子)に接触させ、(iii)印加された照射の変化を測定することによって、上記増幅産物および上記分子の間の相互作用を検出することにより行うことが出来る。 (もっと読む)


本発明は、中性または陰イオン性多糖類の存在下で、光散乱技術により、核酸やタンパク質などの1種または複数種の特異的結合性分析物を検出する方法を提供し、この方法では、導波体のエバネセント波の侵入度内でのナノ粒子標識複合体の形成によって生じる光散乱の変化が、分析物の存在のシグナルとなる。 (もっと読む)


患者の骨組織の状態を診断するため、または診断を補助するための方法において、この患者の骨組織の一部分が、光源を使用して照射される。この骨組織は、例えば、皮膚を通してかまたは切開を介して、インビボで照射され得る。あるいは、骨組織の生検が照射され得る。次いで、この骨組織によって散乱されたか、反射されたか、または透過された光についてのスペクトル内容の情報が決定され、そして少なくとも部分的に、この患者が骨組織の状態を有するか否かを決定するために使用される。
(もっと読む)


所望の光学特性を有する光ビームを発生し、アレー状に配された試料に照射できる光検査システムおよび方法である。1つの実施の形態において、光学検査システムは光源、回折素子、およびコリメート光学系(例えば、単レンズ、f−θレンズ、分割鏡、ファイバー・アレー)を含んでいる。光源から回折光学系に向けて光ビームが出射され、回折光学系は光ビームを受け、コリメート光学系に向け多数の光ビームを出射する。コリメート光学系は回折光学系から出射された光を受けて調整し、試料アレーに向け所望の光学特性を有する調整済み光ビームを出射する。光学検査システムの別の幾つかの実施の形態も記載されている。
(もっと読む)


2,361 - 2,380 / 2,391