説明

Fターム[4C082AC02]の内容

放射線治療装置 (15,937) | 放射線の種類 (1,317) | 特定放射線 (1,209) | X線 (300)

Fターム[4C082AC02]に分類される特許

61 - 80 / 300


【課題】患者支持装置位置決め用画像撮像装置が患部に付与する線量を勘案した治療計画を立案可能とし、放射線治療計画の精度を向上させることができる放射線治療計画装置及びシステムを提供する。
【解決手段】治療計画装置100はデータサーバ104から患者支持装置位置決め用画像撮像装置151,152が付与する線量分布の線量データを読み込み、治療計画演算装置101の主記憶装置111に保存する。治療計画装置100は、計算した関心領域へ付与される放射線の線量分布と位置決め用画像撮像装置151,1512が付与する線量分布とを足し合わせ、表示する。これにより位置決め用画像撮像装置が患部に付与する線量分布を勘案した治療計画が立案可能となり、放射線治療計画の精度を向上させることができる。 (もっと読む)


【課題】逆コンプトン散乱現象を利用して硬X線を生成するX線射出装置において、安定して硬X線を射出する。
【解決手段】第1導光部4及び第2導光部5が、平行レーザ光L1の分岐手段2への基準入射条件からのズレ量に起因する変化が対称面Aに対して対称となるように電子加速用レーザ光L2及び衝突用レーザ光L3を導光する。 (もっと読む)


【課題】放射線治療中に散乱線を検出する測定装置において、散乱線検出器の位置と検出感度とを較正することを目的とする。
【解決手段】治療ビームを散乱させる複数の散乱体を含むマーカー板を寝台14上に載置し、散乱線検出器21は治療ビームに基づいて発生する散乱体からの散乱線を検出する。位置算出部41は、その検出結果と、散乱体の設置位置から求められる散乱線検出器21での像とに基づいて散乱線検出器21の位置を求める。領域算出部45は、散乱線検出器21の位置と散乱体の設置位置とに基づいて、散乱線検出器21に散乱線が入射する可能性があるマーカー板内の領域を求め、計数値算出部46は、その領域と散乱体の位置及び材質とに基づいて、入射する散乱線の計数値を求める。補正係数算出部47は、実測値と求められた計数値とに基づいて、検出感度を補正するための補正係数を求める。 (もっと読む)


【課題】バルーンカテーテルを用いた治療において、患者や術者のX線被曝量の低減を図るX線診断治療装置を提供する。
【解決手段】バルーン拡張器17は、バルーンカテーテル16に設置されたバルーンを加圧又は減圧し、圧力計18はバルーン内の圧力を計測する。拡張状態判断部19は、バルーン内の圧力値及び/又は圧力変化値に基づいて、バルーンの状態が非拡張維持状態か拡張維持状態かを判断する。拡張維持状態においては、主制御部27は、非拡張維持状態におけるパルスレートよりも低いパルスレート、非拡張維持状態におけるX線線量よりも少ないX線線量、又は/及び、非拡張維持状態における照射野よりも狭い照射野の条件に従って、X線発生部2にX線を照射させる。 (もっと読む)


【課題】放射線治療において、単純X線画像情報を用いてベッドの位置決め精度を向上できるベッド位置決めシステムを提供する。
【解決手段】治療装置102は、回転可能な回転ガントリー103に照射ヘッド105及びX線発生装置106を備え、ベッド位置決めシステム301は天板を挟んで対向して回転ガントリーに設けられたX線源308及びX線受像器309を有し、X線源308及びX線受像器309により相互に異なる少なくとも2種類のエネルギー分布を持つX線の情報を生成する。撮像操作卓306の画像処理演算装置は、異なるエネルギー分布を持つX線に基づき作成された複数のX線画像間のサブトラクション処理により、位置決めに必要な骨組織を強調した画像を生成し、位置決め装置305はその画像情報を治療計画に用いる断層画像情報と合わせて用い、ベッド107の位置決めを行う。 (もっと読む)


【課題】位置合わせが容易な放射線治療装置を提供する。
【解決手段】アイソセンタ10aから下方に所定の距離D離間した仮位置合わせ位置Poを通過する仮位置合わせの可視光を複数の方向から照射する第1及び第2の光発生部311,312並びに第5の光発生部323と、天板21上に載置された被検体Pの病変部をアイソセンタ10aに合わせる位置合わせを行うための入力を行う位置合わせボタン23と、天板21を移動する移動機構部22とを備え、移動機構部22は、位置合わせボタン23からの入力に応じて、天板21を仮位置合わせが行われた仮位置から上方に所定の距離D移動して停止する。 (もっと読む)


【課題】呼吸同期照射に必要な呼吸位相でのみX線透視画像の撮影を行うことにより、高精度な呼吸同期照射を少ないX線被曝量で実現する放射線治療システムを提供することにある。
【解決手段】外部呼吸モニタ300は、被検体の体外から呼吸位相を観測する。内部呼吸観測手段であるX線管210及び検出器210は、被検体をX線透視画像で撮影し、撮影したX線透視画像から体内構造の位置を用いて呼吸位相を観測する。透視画像撮影ゲート制御装置310は、外部呼吸モニタによって得られた呼吸位相を用いて、呼吸位相が予め指定された範囲内のタイミングでX線透視画像を撮影する。治療ビームゲート制御装置410は、ゲート撮影制御装置310によりゲート撮影された画像から計測した内部呼吸位相を用いて治療ビームの出射をゲート制御する。 (もっと読む)


【課題】カテーテル挿入の容易化のため、ある座標系において取得した画像を、他の座標系において取得した画像と位置合わせする新奇の方法を提供する。
【解決手段】身体の第1位置及び方向を検出する第1医療位置決めシステム226と、第2位置及び方向を検出する第2医療位置決めシステム236と、第2イメージャ及び第2医療位置決めシステムに結合される位置合わせモジュール232とを含み、前記第1医療位置決めシステムは第1イメージャ224に関係付けられて身体の第1画像を前記第1位置及び方向と関係付ける。前記第2医療位置決めシステムは、前記第2イメージャ234に関係付けられて第2画像を前記第2位置及び方向と関係付け、前記位置合わせモジュールは、前記第1位置及び方向及び前記第2位置及び方向にしたがって、前記第1画像を前記第2画像に位置合わせする。 (もっと読む)


【課題】熱蛍光板状体を利用した線量計であって、かつ放射線の3次元線量分布を取得することができる線量計、この線量計の製造方法、及びこの線量計の使用方法を提供する。
【解決手段】熱蛍光積層体17は、母体としての四ホウ酸リチウムと、この母体中に存在するマンガン及びアルミニウム(III)とを含む熱蛍光板状体19が、複数枚積層されて形成されている。 (もっと読む)


サイバーナイフ(登録商標)によって生成される放射線の分布及び強度を測定する放射線ビーム分析器である。当該分析器は、センサが配されている小さな水タンクを使用する。センサと放射線源との間の距離は変化しない。水タンクがセンサに対して上昇及び下降させられて、患者の体内の疾患の位置がシュミレーションされる。このタンクの移動は、サイバーナイフ(登録商標)からの放射線が、患者内の疾患の適切な治療のために適切にキャリブレーション及び調整されることを可能にする。第2の実施形態において、放射線ビーム分析器は、放射線源によって生成された放射線の分布及び強度を測定する。分析器は、センサまたは検出器が配される小さな水タンクを使用する。センサと放射線源との間の距離は変化しない。SAD(線源と軸との距離)を一定に維持する2つの方法が存在する。第1の方法は、検出器を保持するホルダを用いて検出器の位置を固定し、小さな水タンクを上昇または下降させる方法である。第2の方法は、上昇及び下降機構を用いて検出器を上方または下方に一方の方向に移動させ、同時に、他の上昇及び下降機構を用いて小さな水タンクを逆の方向に移動させる方法である。第2の方法もSADを一定に維持する。これらの方法は、放射線源に対して検出器を位置決めして、患者の体内の疾患の位置をシミュレートする。このタンクの移動は、放射線ビーム源が、適切にアイソセントリックに測定されることを可能にする。
(もっと読む)


【課題】 放射線治療において、リーフの検出機構が簡素化、小型化され、リーフの検出精度が向上する放射線治療装置を提供することを目的とする。
【解決手段】 位置検出機構40は、発光素子41からのレーザー光等の光を、シリンドリカルレンズ(円柱レンズ)42を通して線状の公選へと変化させて、リーフブロック27の端面全体へ照射する。リーフブロック27の端面全体へ照射されたレーザー光の反射光は、光学レンズを通してCCDやCMOS等の撮像素子43で受ける。撮像素子43の画素はリーフ幅より小さいものであり、撮像素子43上に端面位置が図4の(c)のように描出され、パターン画像を画像処理により解析して、リーフブロック27の変位、つまり絶対位置を算出する。 (もっと読む)


X線ビームプロセッサシステムは、複数本のX線ビームを発生するX線ビーム発生器と、設定領域からのX線ビームを遮蔽するミラーシールドと、空胴形状の導波構成体であって、X線ビームを導波して該導波構成体の中を伝搬させるように構成され、複数の入射ポートと複数の出射ポートとを備えた導波構成体と、前記導波構成体の軸心「X」に対して同軸心的に配列された複数のリング状ミラーであって、前記複数の入射ポート及び前記複数の出射ポートに近接してそれらに対してほぼ平行に配設された複数のミラーと、前記複数のミラーを前記導波構成体に取付ける複数の取付部材とを備えている。 (もっと読む)


【課題】 放射線治療において、治療計画時に設定された被検体の治療部位へ、正確に放射線を照射することを目的とする。
【解決手段】 被検体Pが寝台10に固定具Fで固定されている状態をカメラ23で撮影し、治療計画と関連させて保存する。治療計画に関連付けられている固定具ID33と患者固定写真ID34から、被検体Pの固定されている固定具Fと載置されている写真をモニタ22に表示し、表示された写真を参考にしながら被検体Pを寝台10へ載置する。 (もっと読む)


【課題】癌患者を治療するための改良された治療装置を提供する。
【解決手段】本発明は、患者の治療用、特に癌治療用の治療装置1であって、患者に対して電離放射線を印加するための放射線治療装置2を備え、さらに患者に対して局所ハイパーサーミアを施すための一体型温熱療法用加温装置3を備えることを特徴とする治療装置に関する。 (もっと読む)


【課題】乳房用画像撮影及び治療装置(乳房専用CT)のX線断面画像を利用して乳房中の患部にX線を照射する小型で操作の容易な乳房専用のX線治療機能付き断層画像撮影装置を提供する。
【解決手段】乳房を突き出す挿入孔14を備えるX線遮蔽板13と、挿入孔を挟んで配置された撮影用X線源20と画像センサ18が挿入孔の位置を撮影用回転中心Aとして周回して乳房BのX線断層画像を生成するX線撮影系と、治療用X線源30がほぼ撮影用回転中心Aの位置を治療用回転中心A'として周回し治療用X線源からの治療線Sを少なくとも2個の自由度を持つ照準方向に照射するX線治療系とを有する。 (もっと読む)


【課題】放射線治療において、患者の呼吸に同期した高精細画像を提供し、治療の安全性、確実性、効率を向上させること。
【解決手段】CTコンソール6のモニタ画像生成部64が、4次元CT画像データからKV−XR画像と同方向のDRR画像を再構成する。そして、モニタ画像生成部64は、再構成したDRR画像の中で目印座標が最も近い、すなわち呼吸時相が最も一致するDRR画像でリアルタイムKV−XR画像を置き換えたモニタ画像、あるいは、両画像を並列表示するモニタ画像を生成する。そして、生成されたモニタ画像をRTコンソール2が表示装置に表示する。 (もっと読む)


ターゲットを処置するために画像ガイド型処置が遂行される。画像ガイド型処置を遂行するために、ターゲットの動きを表す測定データが取得される。1つ以上のX線像のタイミングが測定データに基づいて決定される。ターゲットの位置を使用してターゲットにおいて処置が遂行される。 (もっと読む)


【課題】放射線の線量をより安定して測定すること。
【解決手段】放射線により電離した荷電粒子を集める電極64と、電極64が内部に配置される容器本体61と、容器本体61の内部を密封する蓋62とを備えている。蓋62は、容器本体61に固定される固定枠部分75と、固定枠部分75と一体に接合される透過部分76とを備えている。このとき、透過部分76は、固定枠部分75より薄い。蓋62は、固定枠部分75と透過部分76とが一体に接合されていることにより剛性が向上し、電極64が配置される容器の変形が抑制される。このため、透過型線量計56は、電極64を流れる電流の変動を抑制することができ、放射線の線量をより安定して測定することができる。 (もっと読む)


【課題】撮像被験者に適正な注入制御データを簡単に設定することができる薬液注入装置を提供する。
【解決手段】薬液注入装置400は、撮像作業ごとに設定される注入制御データに対応して動作制御するシリンジ駆動機構412により薬液注入を実行する。ただし、注入制御データの自動設定要求が入力操作されると、RIS100の撮像オーダデータから被験者管理データを取得し、この被験者管理データで注入制御データを生成設定する。しかし、RIS100から被験者管理データを取得できないときには被験者管理装置910,920から被験者管理データを取得する。従って、撮像オーダデータに被験者管理データが適正に登録されていれば、この被験者管理データで注入制御データを生成し、登録されていなくとも被験者管理装置910,920の被験者管理データで注入制御データを生成する。 (もっと読む)


【課題】被検体に照射される放射線の線量の変動を低減すること。
【解決手段】荷電粒子ビームを生成する加速装置51、52と、その荷電粒子ビームが照射されることにより放射線を放射するターゲット53と、ターゲット53に流れる電流を測定するセンサ57と、その放射線の線量を測定する線量計56と、その電流とその線量とに基づいて加速装置51、52を制御する制御装置60とを備えている。被検体に照射される放射線の線量は、ターゲット53に流れる電流とともに変動し、その線量とともに変動する。このような放射線治療装置は、電流または線量の一方だけに基づいて加速装置51、52を制御することに比較して、被検体に照射される放射線の線量をより高精度に制御することができる。 (もっと読む)


61 - 80 / 300