説明

Fターム[4G075CA51]の内容

物理的、化学的プロセス及び装置 (50,066) | 処理手段 (6,634) | 特定物質の添加、使用 (1,395)

Fターム[4G075CA51]の下位に属するFターム

Fターム[4G075CA51]に分類される特許

101 - 120 / 407


【課題】簡易かつ低コストで、導電微粒子を少量かつ所望の領域に均一に存在させることができ、安定かつ良好な電子放出できる電子放出素子を製造する方法を提供する。
【解決手段】電子放出素子1の電子加速層4の形成工程は、絶縁体微粒子5が分散された分散液を塗布して絶縁体微粒子5を含む微粒子層を形成する微粒子層形成工程と、この微粒子層に、導電微粒子6の分散液をインクジェット法にて塗布する導電微粒子塗布工程とを含む。 (もっと読む)


【課題】簡易に形成でき、電子加速層や薄膜電極の劣化を防止でき、耐久性が高く、長期に渡って安定した電子放出が可能な電子放出装置を提供する。
【解決手段】電子放出装置10では、電極基板2と薄膜電極3とに挟持された電子加速層4は、導電微粒子6と該導電微粒子6の平均粒径よりも大きい平均粒径の絶縁体微粒子5とを含んでおり、電源部7は、薄膜電極3側が負となるように電極基板2と薄膜電極3との間に電圧を印加する。 (もっと読む)


【課題】常温常圧で動作し、大きな酸素運搬能力を容易に出しえ、電解質の漏出など事故の問題が無い、酸素ポンプの提供。
【解決手段】金属コバルトを表面に有する多孔質のガス交換性の負極3と多孔質のガス交換性の正極2との間に、電解液を含浸させた多孔質セパレータ1とを有し、集電構造を介して外部直流電源より両電極2,3に給電して、互いに隔離された気相の負極側から正極側に酸素の移動を行うものであり、常温常圧で動作する水系溶剤を用い、極めて少ない量の電解質が含浸保持されるので、電解質の漏出などの恐れが無い。また、構造的に薄くやわらかく、大面積にして酸素運搬能力を大きくすることが可能である。 (もっと読む)


【課題】微細流路の変形が生じない高精度なプラスチック製のマイクロチップを提供することである。
【解決手段】マイクロチップ10は、微細流路13となる微細加工が施されたプラスチック製の第1基材11と、第1基材11の微細加工された面に接着剤レス接合されたプラスチック製の第2基材12とを含み、第2基材12の接合面に金属薄膜14が設けられている構成とする。 (もっと読む)


本願発明は、強力に集束された超音波デバイスに関する。さらに本願発明は、液状試料に音響エネルギーを照射して、液状試料内にキャビテーションを形成するための装置に関する。この装置(100)はソースを有しており、カートリッジ(105)を受け入れるように構成されており、この装置は、ソースから放射されたHIFU波を液体空気インタフェース上にフォーカシングする。この液体空気インタフェースは、カートリッジ内にある。このフォーカシングは、カートリッジが装置の受け入れ部分内に挿入されているときに実施される。
(もっと読む)


【課題】簡便かつ容易に表面が修飾剤で修飾された無機ナノ粒子を製造できる表面修飾無機ナノ粒子の製造方法を提供する。
【解決手段】表面修飾剤Aで修飾された無機ナノ粒子の表面を、前記表面修飾剤Aの一部又は全部に代えて前記表面修飾剤Aとは別の表面修飾剤Bで修飾する表面修飾無機ナノ粒子の製造方法であって、前記表面修飾剤Aで修飾された無機ナノ粒子、表面修飾剤B、及び、溶媒を含有する分散液をピンチコックされたキャピラリー流路に通液する工程を有する表面修飾無機ナノ粒子の製造方法。 (もっと読む)


複数の物質で満たされる、反応器(13)の反応容積部中で物理的反応及び/又は化学反応を助長及び/又は促進する新しい効果的な方法は、反応容積部を有する反応器(13)を用意するステップと、物理的反応及び/又は化学反応に関与する複数の物質で前記反応器(13)の前記反応容積部を満たすステップと、強磁性体粒子の所定の部分を前記反応容積部内に加えるステップと、インダクタ(11、12)の磁界(H1、H2)が前記反応器(13)の前記反応容積部中で互いに干渉するように、少なくとも2つのインダクタ(11、12)間に反応容積部を有する前記反応器(13)を配置するステップと、所定の振幅及び周波数を有する交番電流を前記インダクタのそれぞれに供給するステップとを含む。 (もっと読む)


【課題】蒸発操作を含む多段階合成プロセスであるフッ素F−18標識化合物の合成を、効率的なマイクロチップ上の操作として集積化することができるフッ素F−18標識化合物の製造方法を提供する。
【解決手段】内部に気相の流路14を有すると共に、気相の流路14の底部に液相を溜めるプール部16を有するマイクロチップ1を用い、マイクロチップ1に液相としてフッ素F−18イオンを含んだ溶液を導入する。マイクロチップ1のプール部16に毛管力を利用してフッ素F−18イオンを含んだ溶液を分散させる。気相の流路14に気相を流して、プール部16に溜められたフッ素F−18イオンを含んだ溶液を蒸発乾固させる。マイクロチップ1内での高効率での蒸発操作が実現できるので、蒸発乾固あるいは溶媒留去操作などの蒸発操作を含むフッ素F−18標識化合物の合成プロセスを高効率にマイクロチップ1上に集積化することが可能になる。 (もっと読む)


本発明は、1つまたは2つ以上の微粒子の位置及び/または配向を固定させ得る第1の陰刻または、第1の陽刻が表面に形成された第1の基材を準備する第1の段階;及び前記第1の基材上に、複数の微粒子を置いた後、物理的圧力によって微粒子の一部または全部を第1の陰刻または第1の陽刻によって形成された孔隙に挿入させる第2の段階を含み;微粒子を基材上に配置させる方法を提供する。また、本発明は、少なくとも表面の一部が粘着性を帯びる第1の基材を準備する第1の段階;及び平坦な面(flat facet)なしに連続的な曲面のみに形状がなされた2つ以上の複数の微粒子などを前記第1の基材のうち、粘着性を帯びる表面上に置いた後、物理的圧力によって第1の基材上に整列させる第2の段階を含み、微粒子を基材上に配置させる方法を提供する。 (もっと読む)


【課題】 分散性が良好で成形体の高密度化が可能なセラミックス粉末を提供する。
【解決手段】 ラジカル種を生成可能な液体状の媒質中に、表面修飾剤によって予め修飾された原料セラミックス粉末を投入し、前記原料セラミックス粉末が投入された前記媒質を流動させた状態で、当該媒質中にて前記ラジカル種を生成する。 (もっと読む)


【課題】ガスと被処理物とを反応槽内で反応させるにあたり、1回の処理毎にオゾン反応槽内のガスを排出・再充填しなくても被処理物を反応槽から出し入れでき、かつ反応槽内に充填されているガスが周囲に拡散するのを抑制した、処理性と安全性の良いガス反応槽、ガス反応装置及びガス反応処理方法を提供することを目的とする。
【解決手段】ガス反応槽は、開口を通して被処理物を内部に受け入れ、被処理物とガスとを接触させて被処理物の処理を行うようにしたものである。開口3にガス漏出防止手段を構成するゴム片4が設けられている。ゴム片4は、開口3の全体を覆う大きさを有している。ゴム片4には、開口3の長手方向に延在する切り込み4aが設けられている。ガス反応槽1の一端側にオゾンなどの反応ガス供給部5が接続され、他端側に流出するガスを無害化処理するためのガス無害化手段6が接続されている。 (もっと読む)


【課題】 本発明は、モノマーを重合させるために必要となる300−380nmの波長域の紫外線を効率良く放射することを目的とする。
【解決手段】 常温で固体のヨウ素固形物および希ガスと、互いに対向する一対の壁部と封止用壁部との間に形成される放電空間および前記放電空間の最冷部を形成するヨウ素固形物収容空間を備える放電容器と、前記放電空間を挟んで対向するように配置された一対の電極とを備え、前記ヨウ素固形物により前記放電空間に供給されるヨウ素ガスが励起ヨウ素分子を形成することによって、ピーク波長が342nm付近にある紫外線を放射するランプと、前記ヨウ素固形物収容空間を所定の温度にする温度可変部と、前記温度可変部の動作を制御する制御部とを備える。 (もっと読む)


ナノ粉末の生成および材料処理のためのプロセスおよび装置が、本明細書で説明されている。プラズマを発生させるためにプラズマトーチを備えるトーチ本体と、プラズマ放電を受け取るためにトーチ本体と流体連結し、さらに急冷部と流体連結している反応炉部と、反応炉部と熱的に連結している少なくとも1つの加熱要素とを備え、その少なくとも1つの加熱要素が反応炉部内の温度を選択的に調節すること可能にするプラズマ反応炉が、本明細書で説明されている。
(もっと読む)


【課題】
水蒸気プラズマを安定して生成することができる、新たな水蒸気プラズマ生成装置を提供する。
【解決手段】
流入した水蒸気を水蒸気プラズマとして流出させる被加熱体を、一体に連結された複数の被加熱部材により構成する。該複数の被加熱部材に、水蒸気の流入側から水蒸気プラズマの流出側へ向かうにつれて徐々に数が減らされた貫通孔と、それぞれが対向する面の少なくとも一方に水蒸気の通過域を構成する凹部を形成することで、安定した水蒸気プラズマを発生させることができる。 (もっと読む)


【課題】処理用面間での微粒子の析出をより迅速且つ効果的に行う事が出来、均一且つ微細な微粒子を作製する。
【解決手段】接近・離反可能に互いに対向して配設され、少なくとも一方が他方に対して回転する処理用面間にできる薄膜流体中で、微粒子原料溶液と微粒子原料に対しての貧溶媒とを合流させる事で微粒子を析出させる方法であり、上記微粒子原料溶液の温度と上記貧溶媒の温度との温度差が5℃以上とされたことを特徴とする。 (もっと読む)


【課題】被加工物の被加工面を加工することにより平坦性の高い被加工面を形成することのできる加工方法を提供する。
【解決手段】本発明に係る加工方法は、処理液30中に被加工面20aを有する被加工物20を設置する被加工物設置工程と、光触媒を含む薄膜を被加工面20aに対向させて処理液30中に設置する薄膜設置工程と、薄膜に光を照射して、光触媒の光触媒作用により処理液30から活性種40を生成させる活性種生成工程と、活性種40と被加工面20aの表面原子22とを化学反応させ、処理液30中に溶出する化合物50を生成させることにより被加工物20を加工する加工工程とを備える。 (もっと読む)


【課題】均一な形状を有し、寸法ばらつきの小さい均質性の高い微粒子、及び寸法、形状、融合状態等の制御が可能である今までにない微粒子の製造方法の提供。
【解決手段】基材の一の表面上に、該表面を基準として複数の凸部が配列されたことによって形成された凹凸部を形成する凹凸部形成工程と、前記凹凸部の少なくとも一部に微粒子材料からなる微粒子を形成する微粒子形成工程と、形成された微粒子を前記凹凸部から取り出す微粒子取出工程とを含む微粒子の製造方法である。 (もっと読む)


様々な実施の形態は、超高速パルスレーザアブレーションによって、化学純な且つ安定して分散された金属及び金属合金ナノ粒子コロイドを生成する方法を含む。この方法は、液体に沈められた金属又は金属合金ターゲットを、高繰返率の超短レーザパルスによって照射し、照射された領域を含む液体の一部を冷却し、レーザ照射及び液体の冷却によって生成されたナノ粒子を収集する。この方法は、高繰返率の超高速パルスレーザ発生源と、パルスレーザビームを集光し、移動させる光学系と、液体に沈められた金属又は金属合金ターゲットと、レーザ焦点体積を冷却し、ナノ粒子生成物を収集する液体循環装置とによって実行されてもよい。様々なレーザパラメータを制御することによって、オプションの液体の流れの振動によって、この方法は、分散された金属及び金属合金ナノ粒子の安定したコロイドを提供する。様々な実施の形態において、更なる安定化化学物質は、必要とされない。
(もっと読む)


【課題】生物学的液体のための回路であって、きわめて簡潔であり、使い勝手がよく、信頼できる回路を提供すること。
【解決手段】この方法は、バッグをシェル(13、14)の間に締め付け、膨張用コネクタを介して膨張剤を注入することによってパイプ(12)を形成するステップを含む。この回路は、バッグ(126)およびプレス(10)を備えており、プレス(10)が、上記バッグをバッグのフィルム(25、26)の間にパイプ(12)か形成された状態にて締め付ける2つのシェル(13、14)を備える。 (もっと読む)


【課題】ナノクリスタルが集合したナノクリスタル集合体、及びその製造方法を提供する。
【解決手段】1種以上の金属イオンを含む混合溶液やコロイド分散溶液において超音波を照射することにより、粒径が1ナノメートルから20ナノメートルの単結晶粒子の、ナノクリスタルが特定の結晶方位を向いて整列・集合し、集合体の粒径が100ナノメートル〜50マイクロメートルの範囲で揃っているナノクリスタルの集合体を製造する。 (もっと読む)


101 - 120 / 407