説明

Fターム[4G146BC16]の内容

Fターム[4G146BC16]の下位に属するFターム

Fターム[4G146BC16]に分類される特許

61 - 80 / 258


【課題】従来技術と比較して、室温で十分に高いキャリア濃度を有するダイヤモンド半導体及び作製方法を提供すること。
【解決手段】ダイヤモンド基板11(図5(a))上にマイクロ波プラズマCVD装置を用い、メタンを反応ガスとし、基板温度700℃でダイヤモンド薄膜12を1ミクロン積層する(図5(b))。ダイヤモンド薄膜12にイオン注入装置を用い、不純物1(VI族又はII族元素)を打ち込む(図5(c))。その後、不純物2(III族又はV族元素)を打ち込んだが(図5(d))、注入条件は、打ち込んだ不純物がそれぞれ表面から0.5ミクロンの厚さの範囲内で、1×1017cm-3となるようにシミュレーションにより決定した。その後、2種類のイオンが注入されたダイヤモンド薄膜13をアニールすることにより(図5(e))、イオン注入された不純物の活性化を行い、ダイヤモンド半導体薄膜15を得た(図5(f))。 (もっと読む)


所定の長さのカーボンナノチューブ(CNT)を製造するための方法が開示される。方法は、1つまたは複数のCNTを配向させるように電場を生成することと、1つまたは複数の配向されたCNTを所定の位置で切断することとを含む。配向されたCNTのそれぞれを切断することは、1つまたは複数の配向されたCNTの所定の位置をエッチングすることと、1つまたは複数のエッチングされたCNTに電圧を印加することとを含むことができる。
(もっと読む)


【課題】アルミニウム、マグネシウム等のより低廉な素材からなる基板を用いて、屈曲の少ない高品質なカーボンナノチューブを量産することができる方法を提供する。
【解決手段】アルミニウム、マグネシウム、または亜鉛からなる基板11の表面に、金属または金属化合物からなる被膜12を被覆する工程と、被膜12の表面に金属触媒15を配置する工程と、金属触媒15が配置された基板11に炭素含有ガスを供給し、化学気相成長法により、金属触媒15にカーボンナノチューブ18を成長させる工程とを含むカーボンナノチューブの製造方法であって、金属または金属化合物は、基板11を構成する材料よりも融点が高く、かつ、カーボンナノチューブ18の成長工程において金属触媒15とは、合金化しない材料からなる。 (もっと読む)


【課題】DLC膜をコストアップにならずに、導電性と耐食性の両方を備えた導電性基材及びその製造方法を提供する。
【解決手段】基材2と、基材2上に設けられた、ニッケル及びクロムを合計成分割合で30〜76モル%含有するダイヤモンドライクカーボン膜3とを有する導電性基材1により上記課題を解決する。ニッケルとクロムがモル比で1:1〜3:1であることが好ましい。このダイヤモンドライクカーボン膜3は、プラズマ化した昇華ガスをニッケル及びクロム原料に照射してニッケル及びクロムをイオン化し、且つ、前記昇華ガスに炭化水素ガスを接触させて該炭化水素ガスをイオン化し、イオン化したニッケル及びクロムと炭化水素ガスとを基材2上に堆積させて成膜する。 (もっと読む)


少なくとも1つの金属を有する金属マトリックスとカーボンナノチューブ浸出繊維材料とを含有する複合材料が本明細書に記載される。金属マトリックスには、アルミニウム、マグネシウム、銅、コバルト、ニッケル、ジルコニウム、銀、金、チタン、及びこれらの様々な混合物が含まれる。繊維材料には、ガラス繊維、炭素繊維、金属繊維、セラミック繊維、有機繊維、炭化ケイ素繊維、炭化ホウ素繊維、窒化ケイ素繊維、及び酸化アルミニウム繊維が含まれる。複合材料は、少なくともカーボンナノチューブ浸出繊維材料を、任意的には複数のカーボンナノチューブをオーバーコートする保護層を含むことができる。金属マトリックスは、金属マトリックスとカーボンナノチューブ浸出繊維材料との親和性を向上させる少なくとも1つの添加剤を含むことができる。繊維材料は、金属マトリックス中において、均一に、不均一に、又は勾配をもって分布する。不均一な分布は、金属マトリックスの異なる領域に、機械的、電気的又は熱的に異なる性質を付与するために用いられてもよい。 (もっと読む)


【課題】DLC膜の諸性質を、それぞれの用途における要求特性などに応じて、成膜後に改質し用途適正を向上させてなるDLC被覆部材とそれの有利な製造方法を提供する。
【解決手段】基材の表面に、膜厚3μm超の厚膜DLCを被覆してなる部材において、この部材表面における厚膜DLCを、水素が13〜30原子%で残部が炭素からなり、かつ共析金属微粒子を含む微粒子堆積層とし、この層の残留応力が1.0GPa以上、硬さ(Hv)が700〜2800の熱処理DLCの膜にて形成する。 (もっと読む)


【課題】プラズマダメージや被処理体(基板)の変形を防ぎ、カーボンナノチューブを成長させることが可能なカーボンナノチューブの製造装置を提供する。
【解決手段】マイクロ波導入手段11を備え、内部空間に炭素含有のプロセスガスを導入しながら所定の圧力状態を維持する真空処理室10と、前記内部空間にあって、前記マイクロ波導入手段11に付設された平板状のマイクロ波導入窓16に対向配置されるように、平板状の被処理体2を載置する支持体12と、前記支持体に内蔵された温度制御手段13と、を少なくとも備えたカーボンナノチューブの製造装置であって、前記マイクロ波導入窓16から導入したマイクロ波を前記プロセスガスに照射して生起させたプラズマ20から見て、前記被処理体を覆うように、可視光より長い波長をもつ光の透過率が5%未満で、気孔率が70%より大きく95%未満である板材18が配置されている。 (もっと読む)


複合材料は、巻取り可能な寸法の金属繊維材料と、金属繊維材料の周囲に等角的に配置されるバリアコーティングと、金属繊維材料に浸出されるカーボンナノチューブ(CNT)と、を含むカーボンナノチューブ(CNT)浸出金属繊維材料を含んで構成される。連続CNT浸出プロセスは、(a)巻取り可能な寸法の金属繊維材料の表面にバリアコーティング及びカーボンナノチューブ(CNT)形成触媒を配置することと、(b)金属繊維材料上にカーボンナノチューブを合成し、これによりカーボンナノチューブ浸出繊維材料を形成することと、を含んで構成される。 (もっと読む)


【課題】極めて短時間で緻密な炭素材料が得られるというSPS法の利点を十分に発揮しつつ、硬さと物性値の向上を図ることができる炭素材料及びその製造方法を提供することを目的としている。
【解決手段】型内に炭素骨材及びバインダーを混合した混合粉を充填する第1ステップと、上記混合粉を加圧しつつ、放電プラズマ焼結法にて焼結する第2ステップと、により作製される炭素材料であって、ショア硬さのHSD値が60以上で、熱膨張率の異方比、電気抵抗率の異方比、又は熱伝導率の異方比が1.5以上であることを特徴とする。 (もっと読む)


【課題】原子内包フラーレン塩を必要十分な程度まで分離・精製する簡便・高収率・高効率な方法がない。
【解決手段】分離・精製向上の妨げが内包処理後の原子内包フラーレンのクラスター構造にあることから、このクラスター構造をなす原子内包フラーレンを脱電子酸化して生成した原子内包フラーレン塩を、移動相として電解質を添加した溶液を用いるHPLC法で分離・精製するようにした。 (もっと読む)


【課題】下層の触媒金属を微粒にかつ高密度に形成して低欠陥で高密度のカーボンナノチューブ膜を形成することができるカーボンナノチューブ膜の成膜方法を提供すること。
【解決手段】表面に金属触媒層が形成された被処理基板を準備し(工程1)、金属触媒層に酸素プラズマ処理を施し(工程2)、酸素プラズマ処理後の金属触媒層に水素含有プラズマ処理を施して、金属触媒層の表面を活性化し(工程3)、その後、金属触媒層の上にプラズマCVDによりカーボンナノチューブ膜を成膜する(工程5)。 (もっと読む)


【課題】高硬度で緻密な炭素膜を均一な厚みで形成することが可能な炭素膜の形成方法を提供する。
【解決手段】減圧された成膜室101内に炭素を含む原料の気体Gを導入し、この原料の気体Gを、通電により加熱されたフィラメント状のカソード電極104と、その周囲に設けられたアノード電極105との間で放電によりイオン化し、このイオン化した気体を基板Dの表面に加速照射するときに、マグネット109によって成膜室101内の励起空間に磁場を印加すると共に、この励起空間の周囲に配置されたマグネット109を周方向に回転させながら、炭素膜の形成を行う。 (もっと読む)


【課題】フィラメント状のカソード電極の寿命を高めると共に、高硬度で緻密な炭素膜を形成することを可能とした炭素膜の形成方法を提供する。
【解決手段】減圧した成膜室101内に炭素を含む原料の気体Gを導入し、この気体Gを通電により加熱されたフィラメント状のカソード電極104と、その周囲に設けられたアノード電極105との間で放電によりイオン化し、このイオン化した気体Gを加速して基板Dの表面に照射することによって、基板Dの表面に炭素膜を形成する炭素膜の形成方法であって、カソード電極104を回転させながら炭化処理した後に、この炭化処理されたカソード電極104を用いて、炭素膜の形成を行う。 (もっと読む)


【課題】カーボンナノチューブを含む熱伝導体によって、被熱処理体に、熱を均一かつ安定して伝導すること。
【解決手段】金属触媒8が外周面に被覆された複数の円筒部T1〜T3と、金属触媒が非被覆の円筒部T4を、円板状基板1面に略垂直かつ同心円状かつ入れ子状に配置して熱伝導体用構造体を得た後、この熱伝導体用構造体を、CVD用真空チャンバ内に配置する。そして、CVD法によってカーボンナノチューブ前駆体である炭素材を前記金属触媒8上に形成し、それと同時に熱伝導体用構造体のラジアル方向に電場及び/又は磁場を印加する(参照符号9A、9Bが電極又は磁極を指す)。その結果、多数本のカーボンナノチューブCNTが、円筒部T1〜T3の外周からラジアル方向に向けて配向・成長し、かつ、鉛直方向に形成されたサセプタ10(熱伝導体)を得る。 (もっと読む)


【課題】機械的な振動に対する高い減衰性能を有する高分子ナノ複合材料を提供する。
【解決手段】 高分子材料からなる母材と、母材に分散した複数のカーボンナノウォールとを含む。 (もっと読む)


【課題】常温の不活性ガス雰囲気中で、かつ大気圧下でカーボンナノ構造体を製造することができる、新しい原理に基づくカーボンナノ構造体の製造技術を提供する。
【解決手段】ターゲット原料をチャンバー内にセットし、常温の不活性ガス雰囲気中で、かつ、大気圧下で、電子加速器から放出される連続電子ビームをターゲット原料に照射することにより、ターゲット原料を溶融、ガス化させる。ついで、ガス化されたターゲット原料を冷却させることによりグラファイトと触媒金属との共存高温ガスとし、この共存高温ガス状態を一定時間維持した後、冷却することによりカーボンナノ構造体を生成させる。 (もっと読む)


【課題】新規な炭素膜製造装置を提供することを目的とする。
【解決手段】本発明の炭素膜製造装置は、供給ガスに電子ビームを照射し、プラズマを発生させる電子ビーム発生装置7と、炭素源を収容し、炭素源を加熱して気化させる炭素源容器4と、炭素膜を堆積させる基板3を有する。ここで、供給ガスは、アルゴンガスであることが好ましい。また、電子ビーム発生装置7の電子通過量は10〜100Aの範囲内にあることが好ましい。また、炭素源は、フラーレンC60、フラーレンC70、その他ナノメートルスケールのカーボン粒子であることが好ましい。また、基板3の広さは1〜100cm2 の範囲内にあることが好ましい。また、基板3のバイアス電圧は-500〜0Vの範囲内にあることが好ましい。 (もっと読む)


【課題】種々の炭素質膜に対応して、親水性の炭素質膜を容易に製造できるようにする。
【解決手段】親水性炭素質膜の製造装置は、炭素質膜を成膜するための炭素源となるガスのプラズマ及び酸素のプラズマを発生させるプラズマ生成部11と、炭素源となるガスのプラズマを用いて基材21の表面に炭素質膜を成膜し、成膜した炭素質膜へ酸素を含むプラズマを照射するためのチャンバ12と、酸素を含むプラズマの照射中に、炭素質膜の赤外吸収を測定する赤外吸収測定部13とを備えている。 (もっと読む)


【課題】工業的規模で安定的にナノダイヤモンドを製造できる方法を提供する。
【解決手段】液体中で炭素電極間に放電させることにより、ナノダイヤモンドを生成させる。放電は、不連続放電(典型的にはパルスプラズマ放電)によるものである。放電電流量は2A以上、200A以下であり、パルス間隔は、特に制限されるものではないが、100ミリ秒以下であることが好ましく、50ミリ秒以下であることがより好ましい。使用できる液体(溶媒)としては、特に限定されるものではないが、水、飽和炭化水素、芳香族炭化水素およびアルコール類が好ましい。 (もっと読む)


【課題】 非晶質炭素被覆部材において、基材をArイオンでエッチングした後に非晶質炭素膜を基材上に被覆する方法ではエッチング効果が低く、中間層を基材と非晶質炭素膜の間に形成する方法でも、機械部品や、切削工具、金型に対して実用可能な密着性が得られないという問題を有していた。
【解決手段】 基材に負のバイアス電圧を印加することにより、基材表面に周期律表第IIIa、IVa、Va、VIa、IIIb、IVb族元素から選択される1種以上の元素イオン、あるいは、該元素イオンとKr、Xe、CH4、C2H2、C2H4、C6H6、CF4から選択される1種以上のガスを少なくとも含む雰囲気ガスによるガスイオンを複数組み合わせて照射した後、基材上に非晶質炭素膜を被覆する。 (もっと読む)


61 - 80 / 258