説明

セルロースアシレートフィルム及びその製造方法並びに延伸セルロースアシレートフィルム及びその製造方法

【課題】セルロースアシレートフィルムを延伸する場合に延伸破断を起こしにくい未延伸のセルロースアシレートフィルムを溶融製膜法で製造することができるので、高い配向の延伸セルロースアシレートフィルムを得ることができる。
【解決手段】スクリュー圧縮比が2.5〜4.5、L/Dが20〜50の押出機11を用いて、セルロースアシレート樹脂を190°C以上、240°C以下の押出温度でダイ12から冷却ドラム14上にシート状に押し出して冷却固化することにより、未延伸のセルロースアシレートフィルム16を製造し、このフィルム16を延伸して延伸セルロースアシレートフィルムを製造する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明はセルロースアシレートフィルム及びその製造方法並びに延伸セルロースアシレートフィルム及びその製造方法に係り、特に液晶表示装置に好適な品質を有する延伸セルロースアシレートフィルムの延伸前のセルロースアシレートフィルムを溶融製膜法により製造する技術に関する。
【背景技術】
【0002】
従来、セルロースアシレートフィルムを延伸し、面内のレターデーション(Re)、厚み方向のレターデーション(Rth)を発現させ、液晶表示素子の位相差膜として使用し、視野角拡大を図ることが実施されている。
【0003】
このようなセルロースアシレートフィルムを延伸する方法として、フィルムの縦(長手)方向に延伸する方法(縦延伸)や、フィルムの横(幅)方向に延伸する方法(横延伸)、あるいは縦延伸と横延伸を同時に行う方法(同時延伸)が挙げられる。これらのうち、縦延伸は設備がコンパクトなため、従来から多く用いられてきた。通常、縦延伸は、2対以上のニップロールの間でフィルムをガラス転移温度(Tg)以上に加熱し、入口側のニップロールの搬送速度より出口側の搬送速度を速くすることで縦方向に延伸する方法である。
【0004】
特許文献1には、セルロースエステルを縦延伸する方法が記載されている。この特許文献1は、縦延伸する方向を流延製膜方向と逆にすることで遅相軸の角度むらを改良したものである。また、特許文献2には、縦横比(L/W)が0.3以上、2以下の短スパン間に設置したニップローラを延伸ゾーン中に設置して延伸する方法が記載されている。この特許文献2によれば、厚み方向の配向(Rth)を改良することができる。ここで云う縦横比とは、延伸に用いるニップロールの間隔(L)を延伸するセルロースアシレートフィルムの幅(W)で割った値を指す。
【特許文献1】特開2002−311240
【特許文献2】特開2003−315551
【発明の開示】
【発明が解決しようとする課題】
【0005】
しかしながら、特許文献1及び2に記載されている方法で得られた延伸セルロースアシレートフィルムを液晶表示素子の位相差膜として使用すると、微細な表示ムラが発現することがあり、液晶表示素子の位相差膜として未だ充分な品質とは言えない問題がある。
【0006】
従来の溶融製膜法で製造したセルロースアシレートフィルムは、延伸倍率を大きくすると、延伸破断を起こし易く、位相差膜として使用するにあたり、目標とする面内のレターデーション(Re)、厚み方向のレターデーション(Rth)まで延伸倍率を高めることができないために高い配向の延伸セルロースアシレートフィルムを製造できないという欠点がある。
【0007】
本発明はこのような事情に鑑みてなされたもので、セルロースアシレートフィルムを延伸する場合に延伸破断を起こしにくい未延伸のセルロースアシレートフィルムを溶融製膜法で製造することができるので、高い配向の延伸セルロースアシレートフィルムを得ることができるセルロースアシレートフィルム及びその製造方法並びに延伸セルロースアシレートフィルム及びその製造方法を提供することを目的とする。
【課題を解決するための手段】
【0008】
請求項1に記載のセルロースアシレートフィルムの製造方法の発明は、前記目的を達成するために、溶融製膜法によるセルロースアシレートフィルムの製造方法において、スクリュー圧縮比が2.5〜4.5、L/Dが20〜50の押出機を用いて、セルロースアシレート樹脂を190°C以上、240°C以下の押出温度でダイから冷却支持体上にシート状に押し出して冷却固化することを特徴とする。
【0009】
溶融製膜法によりセルロースアシレートフイルムを製造する場合、製造されたセルロースアシレートフィルムに黄色みが出易い為、押出機の押出温度を低く設定することが常識とされてきた。しかし、発明者は上記課題である延伸破断の改善に鑑みて押出条件を鋭意研究した結果、押出温度を低くし過ぎると、微細な結晶が製造後のセルロースアシレートフィルム中に残存し、この結晶が延伸を阻害するために、製造されたセルロースアシレートフィルムを延伸したときに延伸破断を引き起こし易いという知見を得た。また、製造後のセルロースアシレートフィルム中に微細な結晶を残存させないためには、押出機におけるスクリュー圧縮比やL/Dも適切に設定することが重要であるとの知見を得た。本発明はかかる知見に基づいてなされたものである。
【0010】
本発明の請求項1によれば、スクリュー圧縮比が2.5〜4.5、L/Dが20〜50の押出機を用いて、セルロースアシレート樹脂を190°C以上、240°C以下の押出温度(押出機出口温度)でダイから冷却支持体上にシート状に押し出して冷却固化するようにしたので、黄色みが出にくく且つ延伸したときに延伸破断を起こしにくいセルロースアシレートフィルムを製造することができる。ここで、単にセルロースアシレートフィルムと言う場合には、未延伸のセルロースアシレートフィルムを指し、延伸後のセルロースアシレートフィルムは延伸セルロースアシレートフィルムと言う。また、スクリュー圧縮比とは、押出機における供給部と計量部との容積比であり、L/Dとは、押出機のシリンダ内径(D)に対するシリンダ長さ(L)の比である。
【0011】
請求項2に記載のセルロースアシレートフィルムの発明は前記目的を達成するために、ガラス転移温度Tg+10°Cで一軸延伸したときの破断伸度が50%以上であることを特徴とする。
【0012】
請求項2は、液晶表示素子の位相差膜等の機能性フィルムとして使用するのに好適なセルロースアシレートフィルムの破断伸度を規定したもので、ガラス転移温度Tg+10°Cで一軸延伸したときの破断伸度が50%以上であることが必要である。
【0013】
ここで、破断伸度50%以上とは、延伸したときに破断するまでに延伸前を寸法を基準として50%増以上延伸できることを意味し、換言すると、延伸前を1としたときの1.5倍以上である。
【0014】
かかる50%以上の破断伸度の特性を有するセルロースアシレートフィルムは、請求項1に記載の製造方法により製造することができる。また、破断伸度の測定方法は、加熱手段付きの引っ張り装置、例えば東洋精機製の「加熱テンシロン」を用い、フィルムサンプルのTg+10°Cに加熱したオーブン中で1分間予熱した後、チャック間100mm、引っ張り速度100mm/分条件にて、フィルムサンプルが破断するまでの破断伸度(延伸後と延伸前の延伸差)を測定することができる。
【0015】
請求項3のセルロースアシレートフィルムは請求項2において、ヘイズが2.0%以下、イエローネスインデックス(YI値)が10以下であり、DSC(示差走査熱量計)測定においてガラス転移温度Tg以上の領域に現れる吸熱ピークの大きさが4.0J/g以下であることを特徴とする。
【0016】
請求項3は、液晶表示素子の位相差膜等の機能性フィルムとして使用するのに好適なセルロースアシレートフィルムの上記破断伸度以外の特性値を規定したもので、ヘイズが2.0%以下、イエローネスインデックス(YI値)が10以下であり、DSC(示差走査熱量計)測定においてガラス転移温度Tg以上の領域に現れる吸熱ピークの大きさが4.0J/g以下であることが必要である。
【0017】
かかる特性値を有するセルロースアシレートフィルムは、請求項1に記載の製造方法により製造することができる。
【0018】
請求項4に記載のセルロースアシレートフィルムは請求項2又は3において、前記セルロースアシレートフィルムは、Aをアセチル基の置換度、Bをプロピオニル基、ブチリル基、ペンタノイル基、ヘキサノイル基の置換度の総和としたときに、アシレート基が下記の置換度、2.5≦A+B<3.0、1.25≦B<3.0、を満足することを特徴とする。
【0019】
このような置換度を満足するセルロースアシレートフィルムは、融点が低い、延伸し易い、防湿性に優れているという特徴を有するので、上記特性値と相まって、液晶表示素子の位相差膜等の機能性フィルムとして優れた延伸セルロースアシレートフィルムを得ることができる。
【0020】
請求項5のセルロースアシレートフィルムは請求項2〜4の何れか1において、前記セルロースアシレートフイルムの分子量が2万以上、10万以下であることを特徴とする。
【0021】
これは分子量が10万を超えて大きいと溶融粘度が大きくなり、これにより押出温度が高くなるので熱劣化により黄色みが出易くなる。逆に、分子量が2万未満の場合には、フィルムにしたときの力学的強度が低下する。
【0022】
請求項6に記載の延伸セルロースアシレートフィルムの発明は前記目的を達成するために、請求項1により製造された未延伸のセルロースアシレートフィルムを、該フィルムの縦方向と横方向のうちの少なくとも一方向に1倍以上、2.5倍以下に延伸することを特徴とする。
【0023】
請求項6は、請求項1の製造方法により製造されたセルロースアシレートフィルムを延伸した延伸セルロースアシレートフィルムの製造方法であり、本発明のセルロースアシレートフィルムを使用することにより、1倍以上、2.5倍以下の延伸が可能となる。これにより、液晶表示素子の位相差膜等の機能性フィルムとして優れた延伸セルロースアシレートフィルムを得ることができる。
【0024】
請求項7に記載の延伸セルロースアシレートフィルムの発明は前記目的を達成するために、請求項2〜5の何れか1の未延伸のセルロースアシレートフィルムを、該フィルムの縦方向と横方向のうちの少なくとも一方向に1倍以上、2.5倍以下に延伸して成ることを特徴とする。
【0025】
請求項7の延伸セルロースアシレートフィルムは、請求項2〜5の何れか1の特性値を有するセルロースアシレートフィルムを使用して延伸することにより、1倍以上、2.5倍以下の延伸が可能となる。これにより、液晶表示素子の位相差膜等の機能性フィルムとして優れた延伸セルロースアシレートフィルムを得ることができる。
【0026】
請求項8は請求項7において、前記延伸セルロースアシレートフィルムは、厚みが30〜300μm、面内のレターデーション(Re)が0nm以上、500nm以下、厚み方向のレターデーション(Rth)が30nm以上500nm以下であることを特徴とする。
【0027】
請求項8の延伸セルロースアシレートフィルムは、該フィルムの縦方向と横方向のうちの少なくとも一方向に1倍以上、2.5倍以下に延伸することにより、液晶表示素子の位相差膜等の機能性フィルムとして使用するのに好適な、厚みが30〜300μm、面内のレターデーション(Re)が0nm以上、500nm以下、厚み方向のレターデーション(Rth)が30nm以上500nm以下である延伸セルロースアシレートフィルムを得るようにしたものである。
【0028】
請求項9の延伸セルロースアシレートフィルムは請求項8において、前記Re及びRthの幅方向、長手方向の変動がいずれも5%以下であることを特徴とする。
【0029】
請求項9の延伸セルロースアシレートフィルムは、請求項2〜5の何れか1の特性値を有するセルロースアシレートフィルムを使用して延伸することにより、Re及びRthの幅方向、長手方向の変動がいずれも5%以下に小さくすることができる。
【0030】
請求項10は、請求項2〜5の何れか1に記載の未延伸セルロースアシレートフィルムを少なくとも1層積層した偏光板であり、請求項11は、請求項2〜5の何れか1に記載の未延伸セルロースアシレートフィルムを基材に用いた液晶表示板用光学補償フィルムであり、請求項12は、請求項2〜5の何れか1に記載の未延伸セルロースアシレートフィルムを基材に用いた反射防止フィルムである。
【0031】
請求項13は、請求項7〜9の何れか1に記載の延伸セルロースアシレートフィルムを少なくとも1層積層した偏光板であり、請求項14は、請求項7〜9の何れか1に記載の延伸セルロースアシレートフィルムを基材に用いた液晶表示板用光学補償フィルムであり、請求項15は、請求項7〜9の何れか1に記載の延伸セルロースアシレートフィルムを基材に用いた反射防止フィルムである。
【発明の効果】
【0032】
本発明によれば、セルロースアシレートフィルムを延伸する場合に延伸破断を起こしにくい未延伸のセルロースアシレートフィルムを製造することにより、高い配向の延伸セルロースアシレートフィルムを得ることができる。
【0033】
これにより、延伸セルロースアシレートフィルムにおいて良好な光学特性を得ることができるので、液晶表示素子に組み込んで用いた場合に高い配向の位相差膜等の機能性フィルムを得ることができる。
【発明を実施するための最良の形態】
【0034】
以下添付図面に従って本発明に係るセルロースアシレートフィルム及びその製造方法並びに延伸セルロースアシレートフィルム及びその製造方法の好ましい実施の形態について説明する。
【0035】
図1は、延伸セルロースアシレートフィルムの製造装置の概略構成の一例を示している。
【0036】
図1に示すように製造装置は、主として、延伸前のセルロースアシレートフィルムを製造する製膜工程部10と、製膜工程部10で製造された未延伸のセルロースアシレートフィルムを縦延伸する縦延伸工程部20と、横延伸する横延伸工程部30と、巻取工程部40とで構成される。
【0037】
製膜工程部10では、押出機11で溶融させたセルロースアシレート樹脂をダイ12からシート状に押し出し、回転する冷却ドラム14上にキャストして急冷固化したセルロースアシレートフィルム16を得る。このセルロースアシレートフィルム16が、冷却ドラム14から剥離されて縦延伸工程部20、横延伸工程部30に順に送られて延伸された後、巻取工程部40でロール状に巻き取られる。これにより、延伸セルロースアシレートフィルムが製造される。
【0038】
図2に、単軸スクリューの押出機11を示す。図2に示すように、シリンダ26内にはスクリュー軸28にフライト30を有する単軸スクリュー32が配設され、図示しないホッパーからセルロースアシレート樹脂が供給口34を介してシリンダ26内に供給される。シリンダ26内は供給口34側から順に、供給口34から供給されたセルロースアシレート樹脂を定量輸送する供給部(Aで示す領域)と、セルロースアシレート樹脂を混練・圧縮する圧縮部(Bで示す領域)と、混練・圧縮されたセルロースアシレート樹脂を計量する計量部(Cで示す領域)とで構成される。押出機11で溶融されたセルロースアシレート樹脂は、吐出口36からダイに連続的に送られる。
【0039】
押出機11のスクリュー圧縮比は、2.5〜4.5に設定され、L/Dは20〜50に設定されている。ここで、スクリュー圧縮比とは、供給部Aと計量部Cとの容積比、即ち供給部Aの単位長さ当たりの容積÷計量部Cの単位長さ当たりの容積で表され、供給部Aのスクリュー軸28の外径d1、計量部Cのスクリュー軸28の外径d2、供給部Aの溝部径a1、及び計量部Cの溝部径a2とを使用して算出される。また、L/Dとは、図2のシリンダ内径(D)に対するシリンダ長さ(L)の比である。また、押出温度は190〜240°Cに設定される。押出機11内での温度が240°Cを超える場合には、押出機11とダイ12との間に冷却機(図示せず)を設けるようにするとよい。
【0040】
上記の如く構成された押出機11を用いて溶融されたセルロースアシレート樹脂は、ダイ12に連続的に供給されて冷却ドラム14にシート状に押し出され、冷却固化する。これにより、縦延伸工程部20及び横延伸工程部30で延伸される前の未延伸のセルロースアシレートフィルムが製造される。尚、冷却ドラム14の代わりに冷却バンドを使用することも可能である。
【0041】
本発明のセルロースアシレートフィルムの製造方法によれば、スクリュー圧縮比が2.5〜4.5、L/Dが20〜50の押出機11を用いて、セルロースアシレート樹脂を190°C以上、240°C以下の押出温度でダイ12から冷却ドラム14上にシート状に押し出して冷却固化するようにしたので、黄色みが出にくく且つ延伸したときに延伸破断しにくいセルロースアシレートフィルムを製造することができる。尚、本発明の製造方法により製造されたセルロースアシレートフィルムは、延伸セルロースアシレートフィルムを製造するための原料フィルムとしてだけではなく、セルロースアシレートフィルム自体を商品とすることも可能なことは勿論である。
【0042】
本発明において、押出機11は、1軸押出機でも2軸押出機でもよいが、スクリュー圧縮比が2.5を下回って小さすぎると、十分に混練されず、未溶解部分が発生したり、剪断発熱小さく結晶の融解が不十分となり、製造後のセルロースアシレートフィルムに微細な結晶が残存し易くなる。また、気泡が混入し易くなる。これにより、セルロースアシレートフィルムを延伸したときに、残存した結晶が延伸性を阻害し、配向を十分に上げることができなくなる。逆に、スクリュー圧縮比が4.5を上回って大きすぎると、剪断応力がかかり過ぎて発熱により樹脂が劣化し易くなるので、製造後のセルロースアシレートフィルムに黄色みが出易くなる。また、剪断応力がかかり過ぎると分子の切断が起こり分子量が低下してフィルムの機械的強度が低下する。従って、製造後のセルロースアシレートフィルムに黄色みが出にくく且つ延伸破断しにくくするためには、スクリュー圧縮比は2.5〜4.5の範囲が良く、より好ましくは2.8〜4.2の範囲、特に好ましくは3.0〜4.0の範囲である。
【0043】
また、L/Dが20を下回って小さすぎると、溶融不足や混練不足となり、圧縮比が小さい場合と同様に製造後のセルロースアシレートフィルムに微細な結晶が残存し易くなる。逆に、L/Dが50を上回って大きすぎると、押出機11内でのセルロースアシレート樹脂の滞留時間が長くなり過ぎ、樹脂の劣化を起こし易くなる。また、滞留時間が長くなると分子の切断が起こり分子量が低下してフィルムの機械的強度が低下する。従って、製造後のセルロースアシレートフィルムに黄色みが出にくく且つ延伸破断しにくくするためには、L/Dは20から50の範囲が良く、好ましくは22〜45の範囲、特に好ましくは24〜40の範囲である。
【0044】
また、押出温度が190°Cを下回って低すぎると、結晶の融解が不十分となり、製造後のセルロースアシレートフィルムに微細な結晶が残存し易くなり、セルロースアシレートフィルムを延伸したときに、延伸性を阻害し、配向を十分に上げることができなくなる。逆に、押出温度が240°Cを超えて高すぎると、セルロースアシレート樹脂が劣化し、黄色み(YI値)の程度が悪化してしまう。従って、製造後のセルロースアシレートフィルムに黄色みが出にくく且つ延伸破断しにくくするためには、押出温度は190°C〜240°Cが良く、好ましくは195°C〜235°Cの範囲、特に好ましくは200°C〜230°Cの範囲である。
【0045】
上記の如く押出条件が設定された押出機11を使用して製膜された本発明のセルロースアシレートフィルムは、ガラス転移温度Tg+10°Cで一軸延伸したときの破断伸度が50%以上(延伸前の1.5倍以上)の良好な延伸性を有していると共に、ヘイズが2.0%以下、イエローネスインデックス(YI値)が10以下であり、DSC(示差走査熱量計)測定においてガラス転移温度Tg以上の領域に現れる吸熱ピークの大きさが4.0J/g以下である特性値を有している。
【0046】
ここで、ヘイズは押出温度が低過ぎないかの指標、換言すると製造後のセルロースアシレートフィルムに残存する結晶の多少を知る指標になり、ヘイズが2.0%を超えると、製造後のセルロースアシレートフィルムに残存する微細な結晶が多くなり、セルロースアシレートフィルムが延伸破断し易くなる。また、イエローネスインデックス(YI値)は、押出温度が高過ぎないかを知る指標になり、イエローネスインデックス(YI値)が10以下であれば黄色みの点で問題ない。また、DSC(示差走査熱量計)測定においてガラス転移温度Tg以上の領域に現れる吸熱ピークは、ヘイズと同様に、押出温度が低過ぎないかの指標になり、吸熱ピークの大きさが4.0J/gを超えると、製造後のセルロースアシレートフィルムに残存する微細な結晶が多くなり、セルロースアシレートフィルムが延伸破断し易くなる。
【0047】
そして、これらの延伸性や特性値を有するセルロースアシレートフィルムを、縦延伸工程部20と、横延伸工程部30とで延伸する。
【0048】
以下に、製膜工程部10で製造したセルロースアシレートフィルムを延伸して延伸セルロースアシレートフィルムを製造するまでの延伸工程について説明する。
【0049】
セルロースアシレートフィルム16の延伸は、セルロースアシレートフィルム16中の分子を配向させ、面内のレターデーション(Re)と厚み方向のレターデーション(Rth)を発現させるために行われる。ここで、レターデーションRe、Rthは、以下の式で求められる。
【0050】
Re(nm)=|n(MD)−n(TD)|×T(nm)
Rth(nm)=|{(n(MD)+n(TD))/2}−n(TH)|×T(nm)
式中のn(MD)、n(TD)、n(TH)は長手方向、幅方向、厚み方向の屈折率を示し、Tはnm単位で表した厚みを示す。
【0051】
図1に示すように、セルロースアシレートフィルム16は、先ず、縦延伸工程部20で長手方向に縦延伸される。縦延伸工程部20では、セルロースアシレートフィルム16が予熱された後、セルロースアシレートフィルム16が加熱された状態で、二つのニップロール22、24に巻き掛けられる。出口側のニップロール24は、入口側のニップロール22よりも早い搬送速度でセルロースアシレートフィルム16を搬送しており、これによって、セルロースアシレートフィルム16が縦方向に延伸される。
【0052】
縦延伸工程部20における予熱温度はTg−40°C以上、Tg+60°C以下が好ましく、Tg−20°C以上、Tg+40°C以下がより好ましく、Tg以上、Tg+30°C以下がさらに好ましい。また、縦延伸工程部20の延伸温度は、Tg以上、Tg+60°C以下が好ましく、Tg+2°C以上、Tg+40°C以下がより好ましく、Tg+5°C以上、Tg+30°C以下がさらに好ましい。縦方向の延伸倍率は1.01倍以上、3倍以下が好ましく、1.05倍以上、2.5倍以下がより好ましく、1.1倍以上、2倍以下がさらに好ましい。
【0053】
縦延伸されたセルロースアシレートフィルム16は、横延伸工程部30に送られ、幅方向に横延伸される。横延伸工程部30では例えばテンターを好適に用いることができ、このテンターによってセルロースアシレートフィルム16の幅方向の両端部をクリップで把持し、横方向に延伸する。この横延伸によって、レターデーションRthを一層大きくすることができる。
【0054】
横延伸は、テンターを用いて実施するのが好ましく、好ましい延伸温度はTg以上、Tg+60°C以下が好ましく、より好ましくはTg+2°C以上、Tg+40°C以下、さらに好ましくはTg+4°C以上、Tg+30°C以下である。好ましい延伸倍率は1.01倍以上、3倍以下、より好ましくは1.05倍以上、2.5倍以下、さらに好ましくは1.1倍以上、2倍以下である。横延伸の後に縦、横のいずれか、または両方に緩和させることも好ましい。これにより幅方向の遅相軸の分布を小さくすることができる。
【0055】
このような延伸により、Reが0nm以上、500nm以下、より好ましくは10nm以上、400nm以下、さらに好ましくは15nm以上、300nm以下、Rthが30nm以上、500nm以下、より好ましくは50nm以上、400nm以下、さらに好ましくは70nm以上、350nm以下である。
【0056】
このうちRe≦Rthを満足するものがより好ましく、さらに好ましくはRe×2≦Rthを満足するものがさらに好ましい。このような高Rth、低Reを実現するためには、上述のように縦延伸したものを、横(幅)方向に延伸するのが好ましい。即ち、縦方向と横方向の配向の差が面内のレターデーションの差(Re)となるが、縦方向に加えその直交方向である横方向にも延伸することで、縦横の配向の差を小さくし面配向(Re)を小さくできる。一方、縦に加え横にも延伸することで面積倍率は増加するため、厚みの減少に伴い厚み方向の配向は増加し、Rthを増加させることができるためである。
【0057】
さらに、Re,Rthの幅方向、長手方向の場所による変動をいずれも5%以下、より好ましくは4%以下、さらに好ましくは3%以下にすることが好ましい。
【0058】
このように、本実施の形態によれば、本発明の製造方法で製造されたセルロースアシレートフィルムを使用して延伸セルロースアシレートフィルムを製造することにより、延伸破断しにくくなるので、高い延伸倍率を得ることができると共に、Re,Rthの幅方向、長手方向の場所による変動を小さくすることができる。これにより、光学特性の優れた延伸セルロースアシレートフィルムを製造することができる。
【0059】
以下に、本発明に適したセルロースアシレート樹脂、延伸前のセルロースアシレートフィルムの製膜方法、セルロースアシレートフィルムの加工方法について手順にそって詳細に説明する。
【0060】
(セルロースアシレート樹脂)
本発明で用いるセルロースアシレートは以下の特徴を有するものが好ましい。
【0061】
アシレート基が、下記の置換度を満足することを特徴とするセルロースアシレートフィルム(Aはアセチル基の置換度、Bはプロピオニル基、ブチリル基、ペンタノイル基、ヘキサノイル基の置換度の総和を示す)。
【0062】
2.5≦A+B<3.0
1.25≦B<3
より好ましくは、
Bの1/2以上がプロピオニル基の場合に、
2.6≦A+B≦2.95
2.0≦B≦2.95
Bの1/2未満がプロピオニル基の場合に、
2.6≦A+B≦2.95
1.3≦B≦2.5
さらに好ましくは、
Bの1/2以上がプロピオニル基の場合に、
2.7≦A+B≦2.95
2.4≦B≦2.9
Bの1/2未満がプロピオニル基の場合に、
2.7≦A+B≦2.95
1.3≦B≦2.0である。
【0063】
本発明では、アシル基の中に占めるアセチル基の置換度を少なくし、プロピオニル基、ブチリル基、ペンタノイル基、ヘキサノイル基の置換度の総和を多くしていることが特徴である。これにより、延伸後の経時のRe,Rth変化を小さくすることができる。これはアセチル基より長いこれらの基を多くすることでフィルムの柔軟性を向上させ延伸性を高くできるため、延伸に伴いセルロースアシレート分子の配向が乱れ難くなり、これにより発現するRe,Rthの経時変化が減少するためである。しかし、アシル基を上記のものより長くすると、ガラス転移温度(Tg)や弾性率を低下させすぎるため好ましくない。このためアセチル基より大きなプロピオニル基、ブチリル基、ペンタノイル基、ヘキサノイル基が好ましく、より好ましくはプロピオニル基、ブチリル基であり、さらに好ましくはブチリル基である。
【0064】
これらのセルロースアシレートの合成方法の基本的な原理は、右田他、木材化学180〜190頁(共立出版、1968年)に記載されている。代表的な合成方法は、カルボン酸無水物−酢酸−硫酸触媒による液相酢化法である。具体的には、綿花リンターや木材パルプ等のセルロース原料を適当量の酢酸で前処理した後、予め冷却したカルボン酸化混液に投入してエステル化し、完全セルロースアシレート(2位、3位および6位のアシル置換度の合計が、ほぼ3.00)を合成する。上記カルボン酸化混液は、一般に溶媒としての酢酸、エステル化剤としての無水カルボン酸および触媒としての硫酸を含む。無水カルボン酸は、これと反応するセルロースおよび系内に存在する水分の合計よりも、化学量論的に過剰量で使用することが普通である。アシル化反応終了後に、系内に残存している過剰の無水カルボン酸の加水分解およびエステル化触媒の一部の中和のために、中和剤(例えば、カルシウム、マグネシウム、鉄、アルミニウムまたは亜鉛の炭酸塩、酢酸塩または酸化物)の水溶液を添加する。次に、得られた完全セルロースアシレートを少量の酢化反応触媒(一般には、残存する硫酸)の存在下で、50〜90°Cに保つことによりケン化熟成し、所望のアシル置換度および重合度を有するセルロースアシレートまで変化させる。所望のセルロースアシレートが得られた時点で、系内に残存している触媒を前記のような中和剤を用いて完全に中和するか、あるいは中和することなく水または希硫酸中にセルロースアシレート溶液を投入(あるいは、セルロースアシレート溶液中に、水または希硫酸を投入)してセルロースアシレートを分離し、洗浄および安定化処理によりセルロースアシレートを得る。
【0065】
本発明で好ましく用いられるセルロースアシレートの重合度は、粘度平均重合度が200〜700、好ましくは250〜550、更に好ましくは250〜400であり、特に好ましくは250〜350である。粘度平均重合度は、宇田らの極限粘度法(宇田和夫、斉藤秀夫、繊維学会誌、第18巻第1号、105〜120頁、1962年)により測定できる。更に特開平9−95538に詳細に記載されている。
【0066】
このような粘度平均重合度の調整には低分子量成分を除去することでも達成できる。低分子成分が除去されると、平均分子量(重合度)が高くなるが、粘度は通常のセルロースアシレートよりも低くなるため有用である。低分子成分の除去は、セルロースアシレートを適当な有機溶媒で洗浄することにより実施できる。さらに重合方法でも分子量を調整できる。例えば、低分子成分の少ないセルロースアシレートを製造する場合、酢化反応における硫酸触媒量を、セルロース100重量に対して0.5〜25質量部に調整することが好ましい。硫酸触媒の量を上記範囲にすると、分子量部分布の点でも好ましい(分子量分布の均一な)セルロースアシレートを合成することができる。
【0067】
本発明で用いられるセルロースアシレートは、重量平均分子量Mw/数平均分子量Mn比が1.5〜5.5のものが好ましく用いられ、更に好ましくは2.0〜5.0であり、特に好ましくは2.5〜5.0であり、最も好ましくは3.0〜5.0のセルロースアシレートが好ましく用いられる。
【0068】
これらのセルロースアシレートは1種類のみを用いてもよく、2種以上混合しても良い。また、セルロースアシレート以外の高分子成分を適宜混合したものでもよい。混合される高分子成分はセルロースエステルと相溶性に優れるものが好ましく、フィルムにしたときの透過率が80%以上、更に好ましくは90%以上、更に好ましくは92%以上であることが好ましい。
【0069】
本発明では、セルロースアシレートに可塑剤を添加することにより、セルロースアシレートの結晶融解温度(Tm)を下げることができる。本発明に用いる可塑剤の分子量は特に限定されるものではなく、低分量でもよく高分子量でもよい。可塑剤の種類は、リン酸エステル類、アルキルフタリルアルキルグリコレート類、カルボン酸エステル類、多価アルコールの脂肪酸エステル類などが挙げられる。それらの可塑剤の形状としては固体でもよく油状物でもよい。すなわち、その融点や沸点において特に限定されるものではない。溶融製膜を行う場合は、不揮発性を有するものを特に好ましく使用することができる。
【0070】
リン酸エステルの具体例としては、例えばトリフェニルホスフェート、トリブチルホスフェート、トリブトキシエチルホスフェート、トリクレジルホスフェート、トリオクチルホスフェート、トリナフチルホスフェート、トリキシリルオスフェート、トリスオルト−ビフェニルホスフェート、クレジルフェニルホスフェート、オクチルジフェニルホスフェート、ビフェニルジフェニルホスフェート、1,4―フェニレンーテトラフェニル燐酸エステル等を挙げることができる。また特表平6−501040号公報の請求項3〜7に記載のリン酸エステル系可塑剤を用いることも好ましい。
【0071】
アルキルフタリルアルキルグリコレート類としては、例えばメチルフタリルメチルグリコレート、エチルフタリルエチルグリコレート、プロピルフタリルプロピルグリコレート、ブチルフタリルブチルグリコレート、オクチルフタリルオクチルグリコレート、メチルフタリルエチルグリコレート、エチルフタリルメチルグリコレート、エチルフタリルプロピルグリコレート、メチルフタリルブチルグリコレート、エチルフタリルブチルグリコレート、ブチルフタリルメチルグリコレート、ブチルフタリルエチルグリコレート、プロピルフタリルブチルグリコレート、ブチルフタリルプロピルグリコレート、メチルフタリルオクチルグリコレート、エチルフタリルオクチルグリコレート、オクチルフタリルメチルグリコレート、オクチルフタリルエチルグリコレート等が挙げられる。
【0072】
カルボン酸エステルとしては、例えばジメチルフタレート、ジエチルフタレート、ジブチルフタレート、ジオクチルフタレートおよびジエチルヘキシルフタレート等のフタル酸エステル類、およびクエン酸アセチルトリメチル、クエン酸アセチルトリエチル、クエン酸アセチルトリブチル等のクエン酸エステル類、ジメチルアジペート、ジブチルアジペート、ジイソブチルアジペート、ビス(2−エチルヘキシル)アジペート、ジイソデシルアジペート、ビス(ブチルジグリコールアジペート)等のアジピン酸エステル類、テトラオクチルピロメリテート、トリオクチルトリメリテートなどの芳香族多価カルボン酸エステル類、ジブチルアジペート、ジオクチルアジペート、ジブチルセバケート、ジオクチルセバケート、ジエチルアゼレート、ジブチルアゼレート、ジオクチルアゼレートなどの脂肪族多価カルボン酸エステル類、グリセリントリアセテート、ジグリセリンテトラアセテート、アセチル化グリセライド、モノグリセライド、ジグリセライドなどの多価アルコールの脂肪酸エステル類などを挙げることができる。またその他、オレイン酸ブチル、リシノール酸メチルアセチル、セバシン酸ジブチル、トリアセチン等を単独あるいは併用するのが好ましい。
【0073】
また、ポリエチレンアジペート、ポリブチレンアジペート、ポリエチレンサクシネート、ポリブチレンサクシネートなどのグリコールと二塩基酸とからなる脂肪族ポリエステル類、ポリ乳酸、ポリグリコール酸などのオキシカルボン酸からなる脂肪族ポリエステル類、ポリカプロラクトン、ポリプロピオラクトン、ポリバレロラクトンなどのラクトンからなる脂肪族ポリエステル類、ポリビニルピロリドンなどのビニルポリマー類などの高分子量系可塑剤が挙げられる。可塑剤はこれらを単独もしくは低分量可塑剤と併用して使用することができる。
【0074】
多価アルコール系可塑剤は、セルロース脂肪酸エステルとの相溶性が良く、また熱可塑化効果が顕著に現れるグリセリンエステル、ジグリセリンエステルなどグリセリン系のエステル化合物やポリエチレングリコールやポリプロピレングリコールなどのポリアルキレングリコール、ポリアルキレングリコールの水酸基にアシル基が結合した化合物などである。
【0075】
具体的なグリセリンエステルとして、グリセリンジアセテートステアレート、グリセリンジアセテートパルミテート、グリセリンジアセテートミスチレート、グリセリンジアセテートラウレート、グリセリンジアセテートカプレート、グリセリンジアセテートノナネート、グリセリンジアセテートオクタノエート、グリセリンジアセテートヘプタノエート、グリセリンジアセテートヘキサノエート、グリセリンジアセテートペンタノエート、グリセリンジアセテートオレート、グリセリンアセテートジカプレート、グリセリンアセテートジノナネート、グリセリンアセテートジオクタノエート、グリセリンアセテートジヘプタノエート、グリセリンアセテートジカプロエート、グリセリンアセテートジバレレート、グリセリンアセテートジブチレート、グリセリンジプロピオネートカプレート、グリセリンジプロピオネートラウレート、グリセリンジプロピオネートミスチレート、グリセリンジプロピオネートパルミテート、グリセリンジプロピオネートステアレート、グリセリンジプロピオネートオレート、グリセリントリブチレート、グリセリントリペンタノエート、グリセリンモノパルミテート、グリセリンモノステアレート、グリセリンジステアレート、グリセリンプロピオネートラウレート、グリセリンオレートプロピオネートなどが挙げられるがこれに限定されず、これらを単独もしくは併用して使用することができる。
【0076】
この中でも、グリセリンジアセテートカプリレート、グリセリンジアセテートペラルゴネート、グリセリンジアセテートカプレート、グリセリンジアセテートラウレート、グリセリンジアセテートミリステート、グリセリンジアセテートパルミテート、グリセリンジアセテートステアレート、グリセリンジアセテートオレートが好ましい。
【0077】
ジグリセリンエステルの具体的な例としては、ジグリセリンテトラアセテート、ジグリセリンテトラプロピオネート、ジグリセリンテトラブチレート、ジグリセリンテトラバレレート、ジグリセリンテトラヘキサノエート、ジグリセリンテトラヘプタノエート、ジグリセリンテトラカプリレート、ジグリセリンテトラペラルゴネート、ジグリセリンテトラカプレート、ジグリセリンテトララウレート、ジグリセリンテトラミスチレート、ジグリセリンテトラパルミテート、ジグリセリントリアセテートプロピオネート、ジグリセリントリアセテートブチレート、ジグリセリントリアセテートバレレート、ジグリセリントリアセテートヘキサノエート、ジグリセリントリアセテートヘプタノエート、ジグリセリントリアセテートカプリレート、ジグリセリントリアセテートペラルゴネート、ジグリセリントリアセテートカプレート、ジグリセリントリアセテートラウレート、ジグリセリントリアセテートミスチレート、ジグリセリントリアセテートパルミテート、ジグリセリントリアセテートステアレート、ジグリセリントリアセテートオレート、ジグリセリンジアセテートジプロピオネート、ジグリセリンジアセテートジブチレート、ジグリセリンジアセテートジバレレート、ジグリセリンジアセテートジヘキサノエート、ジグリセリンジアセテートジヘプタノエート、ジグリセリンジアセテートジカプリレート、ジグリセリンジアセテートジペラルゴネート、ジグリセリンジアセテートジカプレート、ジグリセリンジアセテートジラウレート、ジグリセリンジアセテートジミスチレート、ジグリセリンジアセテートジパルミテート、ジグリセリンジアセテートジステアレート、ジグリセリンジアセテートジオレート、ジグリセリンアセテートトリプロピオネート、ジグリセリンアセテートトリブチレート、ジグリセリンアセテートトリバレレート、ジグリセリンアセテートトリヘキサノエート、ジグリセリンアセテートトリヘプタノエート、ジグリセリンアセテートトリカプリレート、ジグリセリンアセテートトリペラルゴネート、ジグリセリンアセテートトリカプレート、ジグリセリンアセテートトリラウレート、ジグリセリンアセテートトリミスチレート、ジグリセリンアセテートトリパルミテート、ジグリセリンアセテートトリステアレート、ジグリセリンアセテートトリオレート、ジグリセリンラウレート、ジグリセリンステアレート、ジグリセリンカプリレート、ジグリセリンミリステート、ジグリセリンオレートなどのジグリセリンの混酸エステルなどが挙げられるがこれらに限定されず、これらを単独もしくは併用して使用することができる。
【0078】
この中でも、ジグリセリンテトラアセテート、ジグリセリンテトラプロピオネート、ジグリセリンテトラブチレート、ジグリセリンテトラカプリレート、ジグリセリンテトララウレートが好ましい。
【0079】
ポリアルキレングリコールの具体的な例としては、平均分子量が200〜1000のポリエチレングリコール、ポリプロピレングリコールなどが挙げられるがこれらに限定されず、これらを単独もしくは併用して使用することができる。
【0080】
ポリアルキレングリコールの水酸基にアシル基が結合した化合物の具体的な例として、ポリオキシエチレンアセテート、ポリオキシエチレンプロピオネート、ポリオキシエチレンブチレート、ポリオキシエチレンバリレート、ポリオキシエチレンカプロエート、ポリオキシエチレンヘプタノエート、ポリオキシエチレンオクタノエート、ポリオキシエチレンノナネート、ポリオキシエチレンカプレート、ポリオキシエチレンラウレート、ポリオキシエチレンミリスチレート、ポリオキシエチレンパルミテート、ポリオキシエチレンステアレート、ポリオキシエチレンオレート、ポリオキシエチレンリノレート、ポリオキシプロピレンアセテート、ポリオキシプロピレンプロピオネート、ポリオキシプロピレンブチレート、ポリオキシプロピレンバリレート、ポリオキシプロピレンカプロエート、ポリオキシプロピレンヘプタノエート、ポリオキシプロピレンオクタノエート、ポリオキシプロピレンノナネート、ポリオキシプロピレンカプレート、ポリオキシプロピレンラウレート、ポリオキシプロピレンミリスチレート、ポリオキシプロピレンパルミテート、ポリオキシプロピレンステアレート、ポリオキシプロピレンオレート、ポリオキシプロピレンリノレートなどが挙げられるがこられに限定されず、これらを単独もしくは併用して使用することができる。
【0081】
可塑剤の添加量は、0〜20重量%とするものが好ましく、より好ましくは2〜18重量%、最も好ましくは4〜15重量%である。可塑剤の含有量が20重量%より多い場合、セルロースアシレートの熱流動性は良好になるもの、可塑剤が溶融製膜したフィルムの表面にしみ出したり、また耐熱性であるガラス転移温度Tgが低下する。
【0082】
更に、本発明におけるセルロースアシレートには、要求される性能を損なわない範囲内で、必要に応じて熱劣化防止用、着色防止用の安定剤を添加することができる。
【0083】
安定剤として、ホスファイト系化合物、亜リン酸エステル化合物、フォスフェイト、チオフォスフェイト、弱有機酸、エポキシ化合物等を単独または2種類以上混合して添加してもよい。ホスファイト系安定剤の具体例としては、特開2004−182979の段落〜[0039]に記載の化合物をより好ましく用いることが出来る。亜リン酸エステル系安定剤の具体例としては、特開昭51−70316号公報、特開平10−306175号公報、特開昭57−78431号公報、特開昭54−157159号公報、特開昭55−13765号公報に記載の化合物を用いることが出来る。
【0084】
本発明における安定剤の添加量は、セルロースアシレートに対し0.005〜0.5重量%であるのが好ましく、より好ましくは0.01〜0. 4重量%以上、さらに好ましくは0.05〜0. 3重量%である。添加量を0.005重量%未満の場合、溶融製膜時の劣化防止及び着色抑制の効果が不十分であるため、好ましくない。一方、0.5重量%以上の場合、溶融製膜したセルロースアシレートフィルムの表面にしみ出し、好ましくない。
【0085】
また、劣化防止剤及び酸化防止剤を添加することも好ましい。フェノール系化合物、チオエーテル系化合物、リン系化合物などは劣化防止剤もしくは酸化防止剤として添加することにより、劣化及び酸化防止に相乗効果が現れる。さらに、その他の安定剤としては、発明協会公開技報(公技番号2001−1745、2001年3月15日発行、発明協会)17頁〜22頁に詳細に記載されている素材を好ましく用いることができる。
【0086】
更に、本発明におけるセルロースアシレートには、紫外線防止剤を含有することができ、1種または2種以上の紫外線吸収剤を含有させてもよい。液晶用紫外線吸収剤は、液晶の劣化防止の観点から、波長380nm以下の紫外線の吸収能に優れ、かつ、液晶表示性の観点から、波長400nm以上の可視光の吸収が少ないものが好ましい。例えば、オキシベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリチル酸エステル系化合物、ベンゾフェノン系化合物、シアノアクリレート系化合物、ニッケル錯塩系化合物などが挙げられる。特に好ましい紫外線吸収剤は、ベンゾトリアゾール系化合物やベンゾフェノン系化合物である。中でも、ベンゾトリアゾール系化合物は、セルロースエステルセルロースアシレートに対する不要な着色が少ないことから、好ましい。
【0087】
好ましい紫外線防止剤として、2,6−ジ−tert−ブチル−p−クレゾール、ペンタエリスリチル−テトラキス〔3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート〕、トリエチレングリコール−ビス〔3−(3−tert−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート〕、1,6−ヘキサンジオール−ビス〔3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート〕、2,4−ビス−(n−オクチルチオ)−6−(4−ヒドロキシ−3,5−ジ−tert−ブチルアニリノ)−1,3,5−トリアジン、2,2−チオ−ジエチレンビス〔3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート〕、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、N,N’−ヘキサメチレンビス(3,5−ジ−tert−ブチル−4−ヒドロキシ−ヒドロシンナミド)、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)ベンゼン、トリス−(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)−イソシアヌレイトなどが挙げられる。
【0088】
また、2,6−ジ−tert−ブチル−p−クレゾール、ペンタエリスリチル−テトラキス〔3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート〕、トリエチレングリコール−ビス〔3−(3−tert−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート〕が好ましい。また例えば、N,N′−ビス〔3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオニル〕ヒドラジンなどのヒドラジン系の金属不活性剤やトリス(2,4−ジ−tert−ブチルフェニル)フォスファイトなどの燐系加工安定剤を併用してもよい。これらの化合物の添加量は、セルロースエステルセルロースアシレートに対して質量割合で1ppm〜3.0%が好ましく、10ppm〜2%がさらに好ましい。
【0089】
これらの紫外線吸収剤は、市販品として下記のものがあり利用できる。
ベンゾトリアゾール系としてはTINUBIN P (チバ・スペシャリティ・ケミカルズ)、TINUBIN 234 (チバ・スペシャリティ・ケミカルズ)、TINUBIN 320 (チバ・スペシャリティ・ケミカルズ)、TINUBIN 326 (チバ・スペシャリティ・ケミカルズ)、TINUBIN 327 (チバ・スペシャリティ・ケミカルズ)、TINUBIN 328 (チバ・スペシャリティ・ケミカルズ)、スミソーブ340 (住友化学)などがある。また、ベンゾフェノン系紫外線吸収剤としては、シーソーブ100 (シプロ化成)、シーソーブ101 (シプロ化成)、シーソーブ101S(シプロ化成)、シーソーブ102 (シプロ化成)、シーソーブ103 (シプロ化成)、アデカスタイプLA-51 (旭電化)、ケミソープ111 (ケミプロ化成)、UVINUL D-49(BASF)などを挙げられる。オキザリックアシッドアニリド系紫外線吸収剤としては、TINUBIN 312 (チバ・スペシャリティ・ケミカルズ)やTINUBIN 315 (チバ・スペシャリティ・ケミカルズ)がある。またサリチル酸系紫外線吸収剤としては、シーソーブ201 (シプロ化成)やシーソーブ202 (シプロ化成)が上市されており、シアノアクリレート系紫外線吸収剤としてはシーソーブ501 (シプロ化成)、UVINUL N-539 (BASF)がある。
【0090】
また、本発明における未延伸セルロースアシレートフィルム、及び延伸セルロースアシレートフィルムは次のRe,Rthを有することが好ましい。
【0091】
即ち、本発明の未延伸セルロースアシレートフィルムのReとRthは下式を満足することが好ましい。
【0092】
0≦Re≦20
0≦Rth≦80
より好ましくは
0≦Re≦15
0≦Rth≦70
さらに好ましくは
0≦Re≦10
0≦Rth≦60
また、本発明の延伸したセルロースアシレートフィルムのReとRthは下式を満足することが好ましい。
【0093】
0≦Re≦500
30≦Rth≦500
より好ましくは
10≦Re≦400
50≦Rth≦400
さらに好ましくは
15≦Re≦300
70≦Rth≦350
(溶融製膜)
(1) 乾燥
セルロースアシレート樹脂は粉体のまま用いても良いが、製膜の厚み変動を少なくするためにはペレット化したものを用いるのがより好ましい。
【0094】
セルロースアシレート樹脂は含水率を1%以下、より好ましくは0.5%以下、さらに好ましくは0.1%以下にした後、押出機のホッパーに投入する。このときホッパーの温度をTg−50°C以上、Tg+30°C以下、より好ましくはTg−40°C以上、Tg+10°C以下、さらに好ましくはTg−30°C以上、Tg以下にする。これによりホッパー内での水分の再吸着を抑制し、上記乾燥の効率をより発現し易くできる。さらに、ホッパー内を脱水した空気や不活性気体(例えば窒素)を吹き込むこともより好ましい。
【0095】
(2) 混練押出し
190°C以上、240°C以下、より好ましくは195°C以上、235°C以下、さらに好ましくは200°C以上、230°C以下で混練し溶融する。この時、溶融温度は一定温度で行ってもよく、いくつかに分割して制御しても良い。好ましい混練時間は2分以上、60分以下であり、より好ましくは3分以上、40分以下であり、さらに好ましくは4分以上、30分以下である。さらに、押出機内を不活性(窒素等)気流中、あるいはベント付き押出機を用い真空排気しながら実施するのも好ましい。
【0096】
(3) キャスト
溶融したセルロースアシレート樹脂をギヤポンプに通し、押出機11の脈動を除去した後、金属メッシュフィルター等でろ過を行い、この後ろに取り付けたT型のダイ12から冷却ドラム14上にシート状に押し出す。押出しは単層で行ってもよく、マルチマニホールドダイやフィードブロックダイを用いて複数層押出しても良い。この時、ダイ12のリップの間隔を調整することで幅方向の厚みむらを調整することができる。
【0097】
この後、冷却ドラム14上に押出す。この時、静電印加法、エアナイフ法、エアーチャンバー法、バキュームノズル法、タッチロール法等の方法を用い、冷却ドラム14と溶融押出ししたシートの密着を上げることが好ましい。このような密着向上法は、溶融押出しシートの全面に実施してもよく、一部(例えば両端のみ)に実施しても良い。
【0098】
冷却ドラム14は、60°C以上、160°C以下が好ましく、より好ましくは70°C以上、150°C以下、さらに好ましくは80°C以上、140°C以下である。この後、シートを冷却ドラム14から剥ぎ取り、ニップロール22、24及びテンターを経た後巻き取る。巻き取り速度は10m/分以上、100m/分以下が好ましく、より好ましくは15m/分以上、80m/分以下、さらに好ましくは20m/分以上、70m/分以下である。
【0099】
製膜幅は1m以上、5m以下、さらに好ましくは1.2m以上、4m以下、さらに好ましくは1.3m以上、3m以下が好ましい。このようにして得られた未延伸のセルロースアシレートフィルムの厚みは30μm以上、400μm以下が好ましく、より好ましくは40μm以上、300μm以下、さらに好ましくは50μm以上、200μm以下である。
【0100】
このようにして得たセルロースアシレートフィルム16は両端をトリミングし、一旦、巻取機40に巻き取ることが好ましい。トリミングされた部分は、粉砕処理された後、或いは必要に応じて造粒処理や解重合・再重合等の処理を行った後、同じ品種のセルロースアシレートフィルム用原料として又は異なる品種のセルロースアシレートフィルム用原料として再利用してもよい。また、巻き取り前に、少なくとも片面にラミフィルムを付けることも、傷防止の観点から好ましい。
【0101】
このようにして得られたセルロースアシレートフィルムのガラス転移温度(Tg)は70°C以上、180°C以下が好ましく、より好ましくは80°C以上、160°C以下、さらに好ましくは90°C以上、150°C以下である。
【0102】
(セルロースアシレートフィルムの加工)
上述の方法で製膜したセルロースアシレートフィルムを、上述の方法で1軸または2軸に延伸し、延伸セルロースアシレートフィルムを作成する。これは単独で使用してもよく、これらと偏光板を組み合わせて使用してもよく、これらの上に液晶層や屈折率を制御した層(低反射層)やハードコート層を設けて使用しても良い。これらは以下の工程により達成できる。
【0103】
(1)表面処理
セルロースアシレートフィルムは表面処理を行うことによって、各機能層(例えば、下塗層およびバック層)との接着を向上させることができる。例えばグロー放電処理、紫外線照射処理、コロナ処理、火炎処理、酸またはアルカリ処理を用いることができる。ここでいうグロー放電処理とは、10-3〜10-20 Torrの低圧ガス下でおこる低温プラズマでもよく、更にまた大気圧下でのプラズマ処理も好ましい。プラズマ励起性気体とは上記のような条件においてプラズマ励起される気体をいい、アルゴン、ヘリウム、ネオン、クリプトン、キセノン、窒素、二酸化炭素、テトラフルオロメタンの様なフロン類及びそれらの混合物などがあげられる。これらについては、詳細が発明協会公開技報(公技番号 2001−1745、2001年3月15日発行、発明協会)にて30頁〜32頁に詳細に記載されている。なお、近年注目されている大気圧でのプラズマ処理は、例えば10〜1000Kev下で20〜500Kgyの照射エネルギーが用いられ、より好ましくは30〜500Kev下で20〜300Kgyの照射エネルギーが用いられる。
これらの中でも特に好ましくは、アルカリ鹸化処理である。
【0104】
アルカリ鹸化処理は、鹸化液に浸漬しても良く(浸漬法)、鹸化液を塗布しても良い(塗布法)。浸漬法の場合は、NaOHやKOH等のpH10〜14の水溶液を20°C〜80°Cに加温した槽を0.1分から10分通過させたあと、中和、水洗、乾燥することで達成できる。
【0105】
塗布方法の場合、ディップコーティング法、カーテンコーティング法、エクストルージョンコーティング法、バーコーティング法およびE型塗布法を用いることができる。アルカリ鹸化処理塗布液の溶媒は、鹸化液の透明支持体に対して塗布するために濡れ性が良く、また鹸化液溶媒によって透明支持体表面に凹凸を形成させずに、面状を良好なまま保つ溶媒を選択することが好ましい。具体的には、アルコール系溶媒が好ましく、イソプロピルアルコールが特に好ましい。また、界面活性剤の水溶液を溶媒として使用することもできる。アルカリ鹸化塗布液のアルカリは、上記溶媒に溶解するアルカリが好ましく、KOH、NaOHがさらに好ましい。鹸化塗布液のpHは10以上が好ましく、12以上がさらに好ましい。アルカリ鹸化時の反応条件は、室温で1秒以上、5分以下が好ましく、5秒以上、5分以下がさらに好ましく、20秒以上、3分以下が特に好ましい。アルカリ鹸化反応後、鹸化液塗布面を水洗あるいは酸で洗浄したあと水洗することが好ましい。また、塗布式鹸化処理と後述の配向膜解塗設を、連続して行うことができ、工程数を減少できる。これらの鹸化方法は、具体的には、例えば、特開2002−82226号公報、WO02/46809号公報に内容の記載が挙げられる。
【0106】
機能層との接着のため下塗り層を設けることも好ましい。この層は上記表面処理をした後、塗設しても良く、表面処理なしで塗設しても良い。下塗層についての詳細は、発明協会公開技報(公技番号 2001−1745、2001年3月15日発行、発明協会)にて32頁に記載されている。
【0107】
これらの表面処理、下塗り工程は、製膜工程の最後に組み込むこともでき、単独で実施することもでき、後述の機能層付与工程の中で実施することもできる。
(機能層の付与)
本発明のセルロースアシレートフィルムに、発明協会公開技報(公技番号 2001−1745、2001年3月15日発行、発明協会)にて32頁〜45頁に詳細に記載されている機能性層を組み合わせることが好ましい。中でも好ましいのが、偏光層の付与(偏光板)、光学補償層の付与(光学補償シート)、反射防止層の付与(反射防止フィルム)である。
【0108】
(イ)偏光層の付与(偏光板の作成)
偏光膜(層)の保護膜の厚みは、25〜350μmが好ましく、より好ましくは30〜200、さらに好ましくは40〜120μmである。本発明のセルロースアシレートフィルムは偏光膜の保護膜として使用する場合は未延伸フィルム、延伸フィルムいずれも用いることができる。また、本発明の延伸したセルロースアシレートフィルムは偏光膜の保護膜機能として使用でき、かつ位相差補償機能として使用することも好ましい。
【0109】
得られた偏光板は以下のような構成を有することが好ましい。
偏光板A:未延伸セルロースアシレートフィルム/偏光膜/フジタック
偏光板B:未延伸セルロースアシレートフィルム/偏光膜/未延伸セルロースアシレートフィルム
偏光板C:延伸セルロースアシレートフィルム/偏光膜/フジタック
偏光板D:延伸セルロースアシレートフィルム/偏光膜/未延伸セルロースアシレートフィルム
偏光板E:延伸セルロースアシレートフィルム/偏光膜/延伸セルロースアシレートフィルム
(イー1) 使用素材
現在、市販の偏光層は、延伸したポリマーを、浴槽中のヨウ素もしくは二色性色素の溶液に浸漬し、バインダー中にヨウ素、もしくは二色性色素を浸透させることで作製されるのが一般的である。偏光膜は、Optiva Inc.に代表される塗布型偏光膜も利用できる。偏光膜におけるヨウ素および二色性色素は、バインダー中で配向することで偏向性能を発現する。二色性色素としては、アゾ系色素、スチルベン系色素、ピラゾロン系色素、トリフェニルメタン系色素、キノリン系色素、オキサジン系色素、チアジン系色素あるいはアントラキノン系色素が用いられる。二色性色素は、水溶性であることが好ましい。二色性色素は、親水性置換基(例、スルホ、アミノ、ヒドロキシル)を有することが好ましい。例えば、発明協会公開技法、公技番号2001−1745号、58頁(発行日2001年3月15日)に記載の化合物が挙げられる。
【0110】
偏光膜のバインダーは、それ自体架橋可能なポリマーあるいは架橋剤により架橋されるポリマーのいずれも使用することができ、これらの組み合わせを複数使用することができる。バインダーには、例えば特開平8−338913号公報の明細書中段落番号0022に記載のメタクリレート系共重合体、スチレン系共重合体、ポリオレフィン、ポリビニルアルコールおよび変性ポリビニルアルコール、ポリ(N−メチロールアクリルアミド)、ポリエステル、ポリイミド、酢酸ビニル共重合体、カルボキシメチルセルロース、ポリカーボネート等が含まれる。シランカップリング剤をポリマーとして用いることができる。水溶性ポリマー(例、ポリ(N−メチロールアクリルアミド)、カルボキシメチルセルロース、ゼラチン、ポリビニルアルコール、変性ポリビニルアルコール)が好ましく、ゼラチン、ポリビニルアルコールおよび変性ポリビニルアルコールがさらに好ましく、ポリビニルアルコールおよび変性ポリビニルアルコールが最も好ましい。重合度が異なるポリビニルアルコールまたは変性ポリビニルアルコールを2種類併用することが特に好ましい。ポリビニルアルコールの鹸化度は、70〜100%が好ましく、80〜100%がさらに好ましい。ポリビニルアルコールの重合度は、100〜5000であることが好ましい。変性ポリビニルアルコールについては、特開平8−338913号公報、同9−152509号公報及び同9−316127号公報の各公報に記載がある。ポリビニルアルコールおよび変性ポリビニルアルコールは、2種以上を併用してもよい。
【0111】
バインダー厚みの下限は、10μmであることが好ましい。厚みの上限は、液晶表示装置の光漏れの観点からは、薄ければ薄い程よい。現在市販の偏光板(約30μm)以下であることが好ましく、25μm以下が好ましく、20μm以下がさらに好ましい。
【0112】
偏光膜のバインダーは架橋していてもよい。架橋性の官能基を有するポリマー、モノマーをバインダー中に混合しても良く、バインダーポリマー自身に架橋性官能基を付与しても良い。架橋は、光、熱あるいはpH変化により行うことができ、架橋構造をもったバインダーを形成することができる。架橋剤については、米国再発行特許23297号明細書に記載がある。また、ホウ素化合物(例、ホウ酸、硼砂)も、架橋剤として用いることができる。バインダーの架橋剤の添加量は、バインダーに対して、0.1乃至20質量%が好ましい。偏光素子の配向性、偏光膜の耐湿熱性が良好となる。
【0113】
架橋反応が終了後でも、未反応の架橋剤は1.0質量%以下であることが好ましく、0.5質量%以下であることがさらに好ましい。このようにすることで、耐候性が向上する。
【0114】
(イー2) 偏光層の延伸
偏光膜は、偏光膜を延伸するか(延伸法)、もしくはラビングした(ラビング法)後に、ヨウ素、二色性染料で染色することが好ましい。
【0115】
延伸法の場合、延伸倍率は2.5乃至30.0倍が好ましく、3.0乃至10.0倍がさらに好ましい。延伸は、空気中でのドライ延伸で実施できる。また、水に浸漬した状態でのウェット延伸を実施してもよい。ドライ延伸の延伸倍率は、2.5乃至5.0倍が好ましく、ウェット延伸の延伸倍率は、3.0乃至10.0倍が好ましい。延伸はMD方向に平行に行っても良く(平行延伸)、斜め方向におこなっても良い(斜め延伸)。これらの延伸は、1回で行っても、数回に分けて行ってもよい。数回に分けることによって、高倍率延伸でもより均一に延伸することができる。
【0116】
a)平行延伸法
延伸に先立ち、PVAフィルムを膨潤させる。膨潤度は1.2〜2.0倍(膨潤前と膨潤後の重量比)である。この後、ガイドロール等を介して連続搬送しつつ、水系媒体浴内や二色性物質溶解の染色浴内で、15〜50°C、就中17〜40°Cの浴温で延伸する。延伸は2対のニップロールで把持し、後段のニップロールの搬送速度を前段のそれより大きくすることで達成できる。延伸倍率は、延伸後/初期状態の長さ比(以下同じ)に基づくが前記作用効果の点より好ましい延伸倍率は1.2〜3.5倍、就中1.5〜3.0倍である。この後、50°Cから90°Cにおいて乾燥させて偏光膜を得る。
【0117】
b)斜め延伸法
これには特開2002−86554号公報に記載の斜め方向に傾斜め方向に張り出したテンターを用い延伸する方法を用いることができる。この延伸は空気中で延伸するため、事前に含水させて延伸しやすくすることが必用である。好ましい含水率は5%以上、100%以下、より好ましくは10%以上、100%以下である。
【0118】
延伸時の温度は40°C以上、90°C以下が好ましく、より好ましくは50°C以上、80°C以下である。湿度は50%rh以上、100%rh以下が好ましく、より好ましくは70%rh以上、100%rh以下、さらに好ましくは80%rh以上、100%rh以下である。長手方向の進行速度は、1m/分以上が好ましく、より好ましくは3m/分以上である。延伸の終了後、50°C以上、100°C以下、より好ましくは60°C以上、90°C以下で、0.5分以上10分以下乾燥する。より好ましくは1分以上5分以下である。
【0119】
このようにして得られた偏光膜の吸収軸は10度から80度が好ましく、より好ましくは30度から60度であり、さらに好ましくは実質的に45度(40度から50度)である。
【0120】
(イー3) 貼り合せ
上記鹸化後のセルロースアシレートフィルムと、延伸して調製した偏光層を貼り合わせ偏光板を調製する。張り合わせる方向は、セルロースアシレートフィルムの流延軸方向と偏光板の延伸軸方向が45度になるように行うのが好ましい。
【0121】
貼り合わせの接着剤は特に限定されないが、PVA系樹脂(アセトアセチル基、スルホン酸基、カルボキシル基、オキシアルキレン基等の変性PVAを含む)やホウ素化合物水溶液等が挙げられ、中でもPVA系樹脂が好ましい。接着剤層厚みは乾燥後に0.01乃至10μmが好ましく、0.05乃至5μmが特に好ましい。
【0122】
このようにして得た偏光板の光線透過率は高い方が好ましく、偏光度も高い方が好ましい。偏光板の透過率は、波長550nmの光において、30乃至50%の範囲にあることが好ましく、35乃至50%の範囲にあることがさらに好ましく、40乃至50%の範囲にあることが最も好ましい。偏光度は、波長550nmの光において、90乃至100%の範囲にあることが好ましく、95乃至100%の範囲にあることがさらに好ましく、99乃至100%の範囲にあることが最も好ましい。
【0123】
さらに、このようにして得た偏光板はλ/4板と積層し、円偏光を作成することができる。この場合λ/4の遅相軸と偏光板の吸収軸を45度になるように積層する。この時、λ/4 は特に限定されないが、より好ましくは低波長ほどレターデーションが小さくなるような波長依存性を有するものがより好ましい。さらには長手方向に対し20度〜70度傾いた吸収軸を有する偏光膜、および液晶性化合物からなる光学異方性層から成るλ/ 4板を用いることが好ましい。
【0124】
(ロ) 光学補償層の付与(光学補償シートの作成)
光学異方性層は、液晶表示装置の黒表示における液晶セル中の液晶化合物を補償するためのものであり、セルロースアシレートフィルムの上に配向膜を形成し、さらに光学異方性層を付与することで形成される。
【0125】
(ロー1) 配向膜
上記表面処理したセルロースアシレートフィルム上に配向膜を設ける。この膜は、液晶性分子の配向方向を規定する機能を有する。しかし、液晶性化合物を配向後にその配向状態を固定してしまえば、配向膜はその役割を果たしているために、本発明の構成要素としては必ずしも必須のものではない。即ち、配向状態が固定された配向膜上の光学異方性層のみを偏光子上に転写して本発明の偏光板を作製することも可能である。
配向膜は、有機化合物(好ましくはポリマー)のラビング処理、無機化合物の斜方蒸着、マイクログルーブを有する層の形成、あるいはラングミュア・ブロジェット法(LB膜)による有機化合物(例、ω- トリコサン酸、ジオクタデシルメチルアンモニウムクロライド、ステアリル酸メチル)の累積のような手段で設けることができる。さらに、電場の付与、磁場の付与あるいは光照射により、配向機能が生じる配向膜も知られている。
【0126】
配向膜は、ポリマーのラビング処理により形成することが好ましい。配向膜に使用するポリマーは、原則として、液晶性分子を配向させる機能のある分子構造を有する。
【0127】
本発明では、液晶性分子を配向させる機能に加えて、架橋性官能基(例、二重結合)を有する側鎖を主鎖に結合させるか、あるいは、液晶性分子を配向させる機能を有する架橋性官能基を側鎖に導入することが好ましい。
【0128】
配向膜に使用されるポリマーは、それ自体架橋可能なポリマーあるいは架橋剤により架橋されるポリマーのいずれも使用することができ、これらの組み合わせを複数使用することができる。ポリマーの例には、例えば特開平8−338913号公報の明細書中段落番号0022に記載のメタクリレート系共重合体、スチレン系共重合体、ポリオレフィン、ポリビニルアルコールおよび変性ポリビニルアルコール、ポリ(N−メチロールアクリルアミド)、ポリエステル、ポリイミド、酢酸ビニル共重合体、カルボキシメチルセルロース、ポリカーボネート等が含まれる。シランカップリング剤をポリマーとして用いることができる。水溶性ポリマー(例、ポリ(N−メチロールアクリルアミド)、カルボキシメチルセルロース、ゼラチン、ポリビニルアルコール、変性ポリビニルアルコール)が好ましく、ゼラチン、ポリビニルアルコールおよび変性ポリビニルアルコールがさらに好ましく、ポリビニルアルコールおよび変性ポリビニルアルコールが最も好ましい。重合度が異なるポリビニルアルコールまたは変性ポリビニルアルコールを2種類併用することが特に好ましい。ポリビニルアルコールの鹸化度は、70〜100%が好ましく、80〜100%がさらに好ましい。ポリビニルアルコールの重合度は、100〜5000であることが好ましい。
【0129】
液晶性分子を配向させる機能を有する側鎖は、一般に疎水性基を官能基として有する。具体的な官能基の種類は、液晶性分子の種類および必要とする配向状態に応じて決定する。例えば、変性ポリビニルアルコールの変性基としては、共重合変性、連鎖移動変性またはブロック重合変性により導入できる。変性基の例には、親水性基(カルボン酸基、スルホン酸基、ホスホン酸基、アミノ基、アンモニウム基、アミド基、チオール基等)、炭素数10〜100個の炭化水素基、フッ素原子置換の炭化水素基、チオエーテル基、重合性基(不飽和重合性基、エポキシ基、アジリニジル基等)、アルコキシシリル基(トリアルコキシ、ジアルコキシ、モノアルコキシ)等が挙げられる。これらの変性ポリビニルアルコール化合物の具体例として、例えば特開2000−155216号公報の明細書中の段落番号0022〜0145、同2002−62426号公報の明細書中の段落番号0018〜0022に記載のもの等が挙げられる。
【0130】
架橋性官能基を有する側鎖を配向膜ポリマーの主鎖に結合させるか、あるいは、液晶性分子を配向させる機能を有する側鎖に架橋性官能基を導入すると、配向膜のポリマーと光学異方性層に含まれる多官能モノマーとを共重合させることができる。その結果、多官能モノマーと多官能モノマーとの間だけではなく、配向膜ポリマーと配向膜ポリマーとの間、そして多官能モノマーと配向膜ポリマーとの間も共有結合で強固に結合される。従って、架橋性官能基を配向膜ポリマーに導入することで、光学補償シートの強度を著しく改善することができる。
【0131】
配向膜ポリマーの架橋性官能基は、多官能モノマーと同様に、重合性基を含むことが好ましい。具体的には、例えば特開2000−155216号公報の明細書中の段落番号0080〜0100に記載のもの等が挙げられる。配向膜ポリマーは、上記の架橋性官能基とは別に、架橋剤を用いて架橋させることもできる。
【0132】
架橋剤としては、アルデヒド、N−メチロール化合物、ジオキサン誘導体、カルボキシル基を活性化することにより作用する化合物、活性ビニル化合物、活性ハロゲン化合物、イソオキサゾールおよびジアルデヒド澱粉が含まれる。2種類以上の架橋剤を併用してもよい。具体的には、例えば特開2002−62426号公報の明細書中の段落番号0023〜0024記載の化合物等が挙げられる。反応活性の高いアルデヒド、特にグルタルアルデヒドが好ましい。
【0133】
架橋剤の添加量は、ポリマーに対して0.1〜20質量%が好ましく、0.5〜15質量%がさらに好ましい。配向膜に残存する未反応の架橋剤の量は、1.0質量%以下であることが好ましく、0.5質量%以下であることがさらに好ましい。このように調節することで、配向膜を液晶表示装置に長期使用、或は高温高湿の雰囲気下に長期間放置しても、レチキュレーション発生のない充分な耐久性が得られる。
【0134】
配向膜は、基本的に、配向膜形成材料である上記ポリマー、架橋剤を含む透明支持体上に塗布した後、加熱乾燥(架橋させ)し、ラビング処理することにより形成することができる。架橋反応は、前記のように、透明支持体上に塗布した後、任意の時期に行って良い。ポリビニルアルコールのような水溶性ポリマーを配向膜形成材料として用いる場合には、塗布液は消泡作用のある有機溶媒(例、メタノール)と水の混合溶媒とすることが好ましい。その比率は質量比で水:メタノールが0:100〜99:1が好ましく、0:100〜91:9であることがさらに好ましい。これにより、泡の発生が抑えられ、配向膜、更には光学異方層の層表面の欠陥が著しく減少する。
【0135】
配向膜の塗布方法は、スピンコーティング法、ディップコーティング法、カーテンコーティング法、エクストルージョンコーティング法、ロッドコーティング法またはロールコーティング法が好ましい。特にロッドコーティング法が好ましい。また、乾燥後の膜厚は0.1乃至10μmが好ましい。加熱乾燥は、20°C〜110°Cで行なうことができる。充分な架橋を形成するためには60°C〜100°Cが好ましく、特に80°C〜100°Cが好ましい。乾燥時間は1分〜36時間で行なうことができるが、好ましくは1分〜30分である。pHも、使用する架橋剤に最適な値に設定することが好ましく、グルタルアルデヒドを使用した場合は、pH4.5〜5.5で、特にpH5.0が好ましい。
【0136】
配向膜は、透明支持体上又は上記下塗層上に設けられる。配向膜は、上記のようにポリマー層を架橋したのち、表面をラビング処理することにより得ることができる。
【0137】
前記ラビング処理は、LCDの液晶配向処理工程として広く採用されている処理方法を適用することができる。即ち、配向膜の表面を、紙やガーゼ、フェルト、ゴムあるいはナイロン、ポリエステル繊維などを用いて一定方向に擦ることにより、配向を得る方法である。一般的には、長さおよび太さが均一な繊維を平均的に植毛した布などを用いて数回程度ラビングを行うことにより実施される。
【0138】
工業的に実施する場合、搬送している偏光層のついたフィルムに対し、回転するラビングロールを接触させることで達成するが、ラビングロールの真円度、円筒度、振れ(偏芯)はいずれも30μm以下であることが好ましい。ラビングロールへのフィルムのラップ角度は、0.1°乃至90゜が好ましい。ただし、特開平8−160430号公報に記載されているように、360゜以上巻き付けることで、安定なラビング処理を得ることもできる。フィルムの搬送速度は1〜100m/minが好ましい。ラビング角は0〜60゜の範囲で適切なラビング角度を選択することが好ましい。液晶表示装置に使用する場合は、40乃至50゜が好ましい。45゜が特に好ましい。
【0139】
このようにして得た配向膜の膜厚は、0.1乃至10μmの範囲にあることが好ましい。
【0140】
次に、配向膜の上に光学異方性層の液晶性分子を配向させる。その後、必要に応じて、配向膜ポリマーと光学異方性層に含まれる多官能モノマーとを反応させるか、あるいは、架橋剤を用いて配向膜ポリマーを架橋させる。
【0141】
光学異方性層に用いる液晶性分子には、棒状液晶性分子および円盤状液晶性分子が含まれる。棒状液晶性分子および円盤状液晶性分子は、高分子液晶でも低分子液晶でもよく、さらに、低分子液晶が架橋され液晶性を示さなくなったものも含まれる。
【0142】
(ロー2) 棒状液晶性分子
棒状液晶性分子としては、アゾメチン類、アゾキシ類、シアノビフェニル類、シアノフェニルエステル類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類およびアルケニルシクロヘキシルベンゾニトリル類が好ましく用いられる。
【0143】
なお、棒状液晶性分子には、金属錯体も含まれる。また、棒状液晶性分子を繰り返し単位中に含む液晶ポリマーも、棒状液晶性分子として用いることができる。言い換えると、棒状液晶性分子は、(液晶)ポリマーと結合していてもよい。
【0144】
棒状液晶性分子については、季刊化学総説第22巻液晶の化学(1994)日本化学会編の第4章、第7章および第11章、および液晶デバイスハンドブック日本学術振興会第142委員会編の第3章に記載がある。
【0145】
棒状液晶性分子の複屈折率は、0.001乃至0.7の範囲にあることが好ましい。棒状液晶性分子は、その配向状態を固定するために、重合性基を有することが好ましい。重合性基は、ラジカル重合性不飽基或はカチオン重合性基が好ましく、具体的には、例えば特開2002−62427号公報の明細書中の段落番号0064〜0086に記載の重合性基、重合性液晶化合物が挙げられる。
【0146】
(ロー3) 円盤状液晶性分子
円盤状(ディスコティック)液晶性分子には、C.Destradeらの研究報告、Mol.Cryst.71巻、111頁(1981年)に記載されているベンゼン誘導体、C.Destradeらの研究報告、Mol.Cryst.122巻、141頁(1985年)、Physicslett,A,78巻、82頁(1990)に記載されているトルキセン誘導体、B.Kohneらの研究報告、Angew.Chem.96巻、70頁(1984年)に記載されたシクロヘキサン誘導体及びJ.M.Lehnらの研究報告、J.Chem.Commun.,1794頁(1985年)、J.Zhangらの研究報告、J.Am.Chem.Soc.116巻、2655頁(1994年)に記載されているアザクラウン系やフェニルアセチレン系マクロサイクルが含まれる。
【0147】
円盤状液晶性分子としては、分子中心の母核に対して、直鎖のアルキル基、アルコキシ基、置換ベンゾイルオキシ基が母核の側鎖として放射線状に置換した構造である液晶性を示す化合物も含まれる。分子または分子の集合体が、回転対称性を有し、一定の配向を付与できる化合物であることが好ましい。円盤状液晶性分子から形成する光学異方性層は、最終的に光学異方性層に含まれる化合物が円盤状液晶性分子である必要はなく、例えば、低分子の円盤状液晶性分子が熱や光で反応する基を有しており、結果的に熱、光で反応により重合または架橋し、高分子量化し液晶性を失った化合物も含まれる。円盤状液晶性分子の好ましい例は、特開平8−50206号公報に記載されている。また、円盤状液晶性分子の重合については、特開平8−27284公報に記載がある。
【0148】
円盤状液晶性分子を重合により固定するためには、円盤状液晶性分子の円盤状コアに、置換基として重合性基を結合させる必要がある。円盤状コアと重合性基は、連結基を介して結合する化合物が好ましく、これにより重合反応においても配向状態を保つことが出来る。例えば、特開2000−155216号公報の明細書中の段落番号0151〜0168に記載の化合物等が挙げられる。
【0149】
ハイブリッド配向では、円盤状液晶性分子の長軸(円盤面)と偏光膜の面との角度が、光学異方性層の深さ方向でかつ偏光膜の面からの距離の増加と共に増加または減少している。角度は、距離の増加と共に減少することが好ましい。さらに、角度の変化としては、連続的増加、連続的減少、間欠的増加、間欠的減少、連続的増加と連続的減少を含む変化、あるいは、増加及び減少を含む間欠的変化が可能である。間欠的変化は、厚さ方向の途中で傾斜角が変化しない領域を含んでいる。角度は、角度が変化しない領域を含んでいても、全体として増加または減少していればよい。さらに、角度は連続的に変化することが好ましい。
【0150】
偏光膜側の円盤状液晶性分子の長軸の平均方向は、一般に円盤状液晶性分子あるいは配向膜の材料を選択することにより、またはラビング処理方法を選択することにより、調整することができる。また、表面側(空気側)の円盤状液晶性分子の長軸(円盤面)方向は、一般に円盤状液晶性分子あるいは円盤状液晶性分子と共に使用する添加剤の種類を選択することにより調整することができる。円盤状液晶性分子と共に使用する添加剤の例としては、可塑剤、界面活性剤、重合性モノマー及びポリマーなどを挙げることができる。長軸の配向方向の変化の程度も、上記と同様に、液晶性分子と添加剤との選択により調整できる。
【0151】
(ロー4) 光学異方性層の他の組成物
上記の液晶性分子と共に、可塑剤、界面活性剤、重合性モノマー等を併用して、塗工膜の均一性、膜の強度、液晶分子の配向性等を向上することが出来る。液晶性分子と相溶性を有し、液晶性分子の傾斜角の変化を与えられるか、あるいは配向を阻害しないことが好ましい。
【0152】
重合性モノマーとしては、ラジカル重合性若しくはカチオン重合性の化合物が挙げられる。好ましくは、多官能性ラジカル重合性モノマーであり、上記の重合性基含有の液晶化合物と共重合性のものが好ましい。例えば、特開2002−296423号公報の明細書中の段落番号0018〜0020に記載のものが挙げられる。上記化合物の添加量は、円盤状液晶性分子に対して一般に1〜50質量%の範囲にあり、5〜30質量%の範囲にあることが好ましい。
【0153】
界面活性剤としては、従来公知の化合物が挙げられるが、特にフッ素系化合物が好ましい。具体的には、例えば特開2001−330725号公報の明細書中の段落番号0028〜0056に記載の化合物が挙げられる。
【0154】
円盤状液晶性分子とともに使用するポリマーは、円盤状液晶性分子に傾斜角の変化を与えられることが好ましい。
【0155】
ポリマーの例としては、セルロースエステルを挙げることができる。セルロースエステルの好ましい例としては、特開2000−155216号公報の明細書中の段落番号0178に記載のものが挙げられる。液晶性分子の配向を阻害しないように、上記ポリマーの添加量は、液晶性分子に対して0.1〜10質量%の範囲にあることが好ましく、0.1〜8質量%の範囲にあることがより好ましい。
【0156】
円盤状液晶性分子のディスコティックネマティック液晶相−固相転移温度は、70〜300℃が好ましく、70〜170℃がさらに好ましい。
【0157】
(ロー5) 光学異方性層の形成
光学異方性層は、液晶性分子および必要に応じて後述の重合性開始剤や任意の成分を含む塗布液を、配向膜の上に塗布することで形成できる。
【0158】
塗布液の調製に使用する溶媒としては、有機溶媒が好ましく用いられる。有機溶媒の例には、アミド(例、N,N−ジメチルホルムアミド)、スルホキシド(例、ジメチルスルホキシド)、ヘテロ環化合物(例、ピリジン)、炭化水素(例、ベンゼン、ヘキサン)、アルキルハライド(例、クロロホルム、ジクロロメタン、テトラクロロエタン)、エステル(例、酢酸メチル、酢酸ブチル)、ケトン(例、アセトン、メチルエチルケトン)、エーテル(例、テトラヒドロフラン、1,2−ジメトキシエタン)が含まれる。アルキルハライドおよびケトンが好ましい。2種類以上の有機溶媒を併用してもよい。
【0159】
塗布液の塗布は、公知の方法(例、ワイヤーバーコーティング法、押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、ダイコーティング法)により実施できる。
【0160】
光学異方性層の厚さは、0.1乃至20μmであることが好ましく、0.5乃至15μmであることがさらに好ましく、1乃至10μmであることが最も好ましい。
【0161】
(ロー6) 液晶性分子の配向状態の固定
配向させた液晶性分子を、配向状態を維持して固定することができる。固定化は、重合反応により実施することが好ましい。重合反応には、熱重合開始剤を用いる熱重合反応と光重合開始剤を用いる光重合反応とが含まれる。光重合反応が好ましい。
【0162】
光重合開始剤の例には、α−カルボニル化合物(米国特許2367661号、同2367670号の各明細書記載)、アシロインエーテル(米国特許2448828号明細書記載)、α−炭化水素置換芳香族アシロイン化合物(米国特許2722512号明細書記載)、多核キノン化合物(米国特許3046127号、同2951758号の各明細書記載)、トリアリールイミダゾールダイマーとp−アミノフェニルケトンとの組み合わせ(米国特許3549367号明細書記載)、アクリジンおよびフェナジン化合物(特開昭60−105667号公報、米国特許4239850号明細書記載)およびオキサジアゾール化合物(米国特許4212970号明細書記載)が含まれる。
【0163】
光重合開始剤の使用量は、塗布液の固形分の0.01乃至20質量%の範囲にあることが好ましく、0.5乃至5質量%の範囲にあることがさらに好ましい。
【0164】
液晶性分子の重合のための光照射は、紫外線を用いることが好ましい。
【0165】
照射エネルギーは、20mJ/cm2 乃至50J/cm2 の範囲にあることが好ましく、20乃至5000mJ/cm2 の範囲にあることがより好ましく、100乃至800mJ/cm2 の範囲にあることがさらに好ましい。また、光重合反応を促進するため、加熱条件下で光照射を実施してもよい。
【0166】
保護層を、光学異方性層の上に設けてもよい。
【0167】
この光学補償フィルムと偏光層を組み合わせることも好ましい。具体的には、上記のような光学異方性層用塗布液を偏光膜の表面に塗布することにより光学異方性層を形成する。その結果、偏光膜と光学異方性層との間にポリマーフイルムを使用することなく、偏光膜の寸度変化にともなう応力(歪み×断面積×弾性率)が小さい薄い偏光板が作成される。本発明に従う偏光板を大型の液晶表示装置に取り付けると、光漏れなどの問題を生じることなく、表示品位の高い画像を表示することができる。
【0168】
偏光層と光学補償層の傾斜角度は、LCDを構成する液晶セルの両側に貼り合わされる2枚の偏光板の透過軸と液晶セルの縦または横方向のなす角度にあわせるように延伸することが好ましい。通常の傾斜角度は45゜である。しかし、最近は、透過型、反射型および半透過型LCDにおいて必ずしも45゜でない装置が開発されており、延伸方向はLCDの設計にあわせて任意に調整できることが好ましい。
【0169】
(ロー7) 液晶表示装置
このような光学補償フィルムが用いられる各液晶モードについて説明する。
【0170】
(TNモード液晶表示装置)
カラーTFT液晶表示装置として最も多く利用されており、多数の文献に記載がある。TNモードの黒表示における液晶セル中の配向状態は、セル中央部で棒状液晶性分子が立ち上がり、セルの基板近傍では棒状液晶性分子が寝た配向状態にある。
(OCBモード液晶表示装置)
棒状液晶性分子を液晶セルの上部と下部とで実質的に逆の方向に(対称的に)配向させるベンド配向モードの液晶セルである。ベンド配向モードの液晶セルを用いた液晶表示装置は、米国特許4583825号、同5410422号の各明細書に開示されている。棒状液晶性分子が液晶セルの上部と下部とで対称的に配向しているため、ベンド配向モードの液晶セルは、自己光学補償機能を有する。そのため、この液晶モードは、OCB(Optically Compensatory Bend) 液晶モードとも呼ばれる。
【0171】
OCBモードの液晶セルもTNモード同様、黒表示においては、液晶セル中の配向状態は、セル中央部で棒状液晶性分子が立ち上がり、セルの基板近傍では棒状液晶性分子が寝た配向状態にある。
【0172】
(VAモード液晶表示装置)
電圧無印加時に棒状液晶性分子が実質的に垂直に配向しているのが特徴であり、VAモードの液晶セルには、(1)棒状液晶性分子を電圧無印加時に実質的に垂直に配向させ、電圧印加時に実質的に水平に配向させる狭義のVAモードの液晶セル(特開平2−176625号公報記載)に加えて、(2)視野角拡大のため、VAモードをマルチドメイン化した(MVAモードの)液晶セル(SID97、Digest of tech. Papers(予稿集)28(1997)845記載)、(3)棒状液晶性分子を電圧無印加時に実質的に垂直配向させ、電圧印加時にねじれマルチドメイン配向させるモード(n−ASMモード)の液晶セル(日本液晶討論会の予稿集58〜59(1998)記載)および(4)SURVAIVALモードの液晶セル(LCDインターナショナル98で発表)が含まれる。
【0173】
(IPSモード液晶表示装置)
電圧無印加時に棒状液晶性分子が実質的に面内に水平に配向しているのが特徴であり、これが電圧印加の有無で液晶の配向方向を変えることでスイッチングするのが特徴である。具体的には特開2004−365941号公報、特開2004−12731号公報、特開2004−215620号公報、特開2002−221726号公報、特開2002−55341号公報、及び特開2003−195333号公報に記載のものなどを使用できる。
【0174】
(その他液晶表示装置)
ECBモードおよびSTNモードに対しても、上記と同様の考え方で光学的に補償することができる。
【0175】
(ハ) 反射防止層の付与(反射防止フィルム)
反射防止膜は、一般に、防汚性層でもある低屈折率層、及び低屈折率層より高い屈折率を有する少なくとも一層の層(即ち、高屈折率層、中屈折率層)とを透明基体上に設けて成る。
【0176】
屈折率の異なる無機化合物(金属酸化物等)の透明薄膜を積層させた多層膜として、化学蒸着(CVD)法や物理蒸着(PVD)法、金属アルコキシド等の金属化合物のゾルゲル方法でコロイド状金属酸化物粒子皮膜を形成後に後処理(紫外線照射:特開平9−157855号公報、プラズマ処理:特開2002−327310号公報)して薄膜を形成する方法が挙げられる。
【0177】
一方、生産性が高い反射防止膜として、無機粒子をマトリックスに分散されてなる薄膜を積層塗布してなる反射防止膜が各種提案されている。
【0178】
上述したような塗布による反射防止フィルムに最上層表面が微細な凹凸の形状を有する防眩性を付与した反射防止層から成る反射防止フィルムも挙げられる。
【0179】
本発明のセルロースアシレートフィルムは上記いずれの方式にも適用できるが、特に好ましいのが塗布による方式(塗布型)である。
【0180】
(ハー1) 塗布型反射防止フィルムの層構成
基体上に少なくとも中屈折率層、高屈折率層、低屈折率層(最外層)の順序の層構成から成る反射防止膜は、以下の関係を満足する屈折率を有する様に設計される。
【0181】
高屈折率層の屈折率>中屈折率層の屈折率>透明支持体の屈折率>低屈折率層の屈折率の順である。また、透明支持体と中屈折率層の間に、ハードコート層を設けてもよい。更には、中屈折率ハードコート層、高屈折率層及び低屈折率層からなってもよい。
【0182】
例えば、特開平8−122504号公報、同8−110401号公報、同10−300902号公報、特開2002−243906号公報、特開2000−111706号公報等が挙げられる。また、各層に他の機能を付与させてもよく、例えば、防汚性の低屈折率層、帯電防止性の高屈折率層としたもの(例、特開平10−206603号公報、特開2002−243906号公報等)等が挙げられる。
【0183】
反射防止膜のヘイズは、5%以下あることが好ましく、3%以下がさらに好ましい。また膜の強度は、JIS K5400に従う鉛筆硬度試験でH以上であることが好ましく、2H以上であることがさらに好ましく、3H以上であることが最も好ましい。
【0184】
(ハー2) 高屈折率層および中屈折率層
反射防止膜の高い屈折率を有する層は、平均粒径100nm以下の高屈折率の無機化合物超微粒子及びマトリックスバインダーを少なくとも含有する硬化性膜から成る。
【0185】
高屈折率の無機化合物微粒子としては、屈折率1.65以上の無機化合物が挙げられ、好ましくは屈折率1.9以上のものが挙げられる。例えば、Ti、Zn、Sb、Sn、Zr、Ce、Ta、La、In等の酸化物、これらの金属原子を含む複合酸化物等が挙げられる。
【0186】
このような超微粒子とするには、粒子表面が表面処理剤で処理されること(例えば、シランカップリング剤等:特開平11 −295503号公報、同11 −153703号公報、特開2000−9908、アニオン性化合物或は有機金属カップリング剤:特開2001−310432号公報等)、高屈折率粒子をコアとしたコアシェル構造とすること(:特開2001−166104号公報等)、特定の分散剤併用(例、特開平11−153703号公報、特許番号US6210858B1、特開2002−2776069号公報等)等挙げられる。
【0187】
マトリックスを形成する材料としては、従来公知の熱可塑性樹脂、硬化性樹脂皮膜等が挙げられる。
【0188】
更に、ラジカル重合性及び/ 又はカチオン重合性の重合性基を少なくとも2 個以上含有の多官能性化合物含有組成物、加水分解性基を含有の有機金属化合物及びその部分縮合体組成物から選ばれる少なくとも1種の組成物が好ましい。例えば、特開2000−47004号公報、同2001−315242号公報、同2001−31871号公報、同2001−296401号公報等に記載の化合物が挙げられる。
【0189】
また、金属アルコキドの加水分解縮合物から得られるコロイド状金属酸化物と金属アルコキシト゛組成物から得られる硬化性膜も好ましい。例えば、特開2001−293818号公報等に記載されている。
【0190】
高屈折率層の屈折率は、−般に1.70〜2.20である。高屈折率層の厚さは、5nm〜10μmであることが好ましく、10nm〜1μmであることがさらに好ましい。
【0191】
中屈折率層の屈折率は、低屈折率層の屈折率と高屈折率層の屈折率との間の値となるように調整する。中屈折率層の屈折率は、1.50〜1.70であることが好ましい。
【0192】
(ハー3) 低屈折率層
低屈折率層は、高屈折率層の上に順次積層して成る。低屈折率層の屈折率は1.20〜1.55である。好ましくは1.30〜1.50である。
【0193】
耐擦傷性、防汚性を有する最外層として構築することが好ましい。耐擦傷性を大きく向上させる手段として表面への滑り性付与が有効で、従来公知のシリコーンの導入、フッ素の導入等から成る薄膜層の手段を適用できる。
【0194】
含フッ素化合物の屈折率は1.35〜1.50であることが好ましい。より好ましくは1.36〜1.47である。また、含フッ素化合物はフッ素原子を35〜80質量%の範囲で含む架橋性若しくは重合性の官能基を含む化合物が好ましい。
【0195】
例えば、特開平9−222503号公報の明細書中の段落番号0018〜0026、同11−38202号公報の明細書中の段落番号0019〜0030、特開2001−40284号公報の明細書中の段落番号0027〜0028、特開2000−284102号公報等に記載の化合物が挙げられる。
【0196】
シリコーン化合物としてはポリシロキサン構造を有する化合物であり、高分子鎖中に硬化性官能基あるいは重合性官能基を含有して、膜中で橋かけ構造を有するものが好ましい。例えば、反応性シリコーン(例、サイラプレーン(チッソ(株)製等)、両末端にシラノール基含有のポリシロキサン(特開平11−258403号公報等)等が挙げられる。
【0197】
架橋又は重合性基を有する含フッ素及び/又はシロキサンのポリマーの架橋又は重合反応は、重合開始剤、増感剤等を含有する最外層を形成するための塗布組成物を塗布と同時または塗布後に光照射や加熱することにより実施することが好ましい。
【0198】
また、シランカップリング剤等の有機金属化合物と特定のフッ素含有炭化水素基含有のシランカップリング剤とを触媒共存下に縮合反応で硬化するゾルゲル硬化膜も好ましい。例えば、ポリフルオロアルキル基含有シラン化合物またはその部分加水分解縮合物(特開昭58−142958号公報、同58−147483号公報、同58−147484号公報、特開平9−157582号公報、同11−106704号公報記載等記載の化合物)、フッ素含有長鎖基であるポリ「パーフルオロアルキルエーテル」基を含有するシリル化合物(特開2000−117902号公報、同2001−48590号公報、同2002−53804号公報記載の化合物等)等が挙げられる。
【0199】
低屈折率層は、上記以外の添加剤として充填剤(例えば、二酸化珪素(シリカ)、含フッ素粒子(フッ化マグネシウム,フッ化カルシウム,フッ化バリウム)等の一次粒子平均径が1〜150nmの低屈折率無機化合物、特開平11−3820公報の段落番号[ 0020] 〜[ 0038] に記載の有機微粒子等)、シランカップリング剤、滑り剤、界面活性剤等を含有することができる。
【0200】
低屈折率層が最外層の下層に位置する場合、低屈折率層は気相法(真空蒸着法、スパッタリング法、イオンプレーティング法、プラズマCVD法等)により形成されても良い。安価に製造できる点で、塗布法が好ましい。低屈折率層の膜厚は、30〜200nmであることが好ましく、50〜150nmであることがさらに好ましく、60〜120nmであることが最も好ましい。
【0201】
(ハー4) ハードコート層
ハードコート層は、反射防止フィルムに物理強度を付与するために、透明支持体の表面に設ける。特に、透明支持体と前記高屈折率層の間に設けることが好ましい。
【0202】
ハードコート層は、光及び/又は熱の硬化性化合物の架橋反応、又は、重合反応により形成されることが好ましい。
【0203】
硬化性官能基としては、光重合性官能基が好ましく、又加水分解性官能基含有の有機金属化合物は有機アルコキシシリル化合物が好ましい。
【0204】
これらの化合物の具体例としては、高屈折率層で例示したと同様のものが挙げられる。ハードコート層の具体的な構成組成物としては、例えば、特開2002−144913号公報、同2000−9908号公報、WO0/46617号公報等記載のものが挙げられる。
【0205】
高屈折率層はハードコート層を兼ねることができる。このような場合、高屈折率層で記載した手法を用いて微粒子を微細に分散してハードコート層に含有させて形成することが好ましい。ハードコート層は、平均粒径0.2〜10μmの粒子を含有させて防眩機能(アンチグレア機能)を付与した防眩層(後述)を兼ねることもできる。
【0206】
ハードコート層の膜厚は用途により適切に設計することができる。ハードコート層の膜厚は、0.2〜10μmであることが好ましく、より好ましくは0.5〜7μmである。ハードコート層の強度は、JIS K5400に従う鉛筆硬度試験で、H以上であることが好ましく、2H以上であることがさらに好ましく、3H以上であることが最も好ましい。又、JISK5400に従うテーバー試験で、試験前後の試験片の摩耗量が少ないほど好ましい。
【0207】
(ハー5) 前方散乱層
前方散乱層は、液晶表示装置に適用した場合の、上下左右方向に視角を傾斜させたときの視野角改良効果を付与するために設ける。上記ハードコート層中に屈折率の異なる微粒子を分散することで、ハードコート機能と兼ねることもできる。
例えば、前方散乱係数を特定化した特開11−38208号公報、透明樹脂と微粒子の相対屈折率を特定範囲とした特開2000−199809号公報、ヘイズ値を40%以上と規定した特開2002−107512号公報等が挙げられる。
【0208】
(ハー6) その他の層
上記の層以外に、プライマー層、帯電防止層、下塗り層や保護層等を設けてもよい。
【0209】
(ハー7) 塗布方法
反射防止フィルムの各層は、ディップコート法、エアーナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート、マイクログラビア法やエクストルージョンコート法(米国特許2681294号明細書)により、塗布により形成することができる。
【0210】
(ハー8) アンチグレア機能
反射防止膜は、外光を散乱させるアンチグレア機能を有していてもよい。アンチグレア機能は、反射防止膜の表面に凹凸を形成することにより得られる。反射防止膜がアンチグレア機能を有する場合、反射防止膜のヘイズは、3〜30%であることが好ましく、5〜20%であることがさらに好ましく、7〜20%であることが最も好ましい。
【0211】
反射防止膜表面に凹凸を形成する方法は、これらの表面形状を充分に保持できる方法であればいずれの方法でも適用できる。例えば、低屈折率層中に微粒子を使用して膜表面に凹凸を形成する方法(例えば、特開2000−271878号公報等)、低屈折率層の下層(高屈折率層、中屈折率層又はハードコート層)に比較的大きな粒子(粒径0.05〜2μm)を少量(0.1〜50質量%)添加して表面凹凸膜を形成し、その上にこれらの形状を維持して低屈折率層を設ける方法(例えば、特開2000−281410号公報、同2000−95893号公報、同2001−100004号公報、同2001−281407号公報等)、最上層(防汚性層)を塗設後の表面に物理的に凹凸形状を転写する方法(例えば、エンボス加工方法として、特開昭63−278839号公報、特開平11−183710号公報、特開2000−275401号公報等記載)等が挙げられる。
【0212】
以下に本発明で使用した測定法について記載する。
【0213】
[1]Re、Rth測定法
サンプルフィルムを温度5°C、湿度60%rhに3時間以上調湿後、自動複屈折計(KOBRA-21ADH/PR:王子計測器(株)製)を用いて、25°C、60%rhにおいて、サンプルフィルム表面に対し垂直方向および、フィルム面法線から±40°傾斜させて方向から波長550nmにおけるレターデーション値を測定する。垂直方向から面内のレターデーション(Re)、垂直方向、±40°方向の測定値から厚み方向のレターデーション(Rth)を算出する。
【0214】
[2]R e、Rth、幅方向、長手方向のR e、Rth変動
(1)MD方向サンプリング
フィルムの長手方向に0.5m間隔で100点、1cm正方形の大きさに切り出す。
【0215】
(2)TD方向サンプリング
フィルムの製膜全幅にわたり、1cm正方形の大きさに50点、等間隔で切り出す。
【0216】
(3)Re,Rth、測定
サンプルフィルムを温度5°C、湿度60%rhに3時間以上調湿後、自動複屈折計(KOBRA-21ADH/PR:王子計測器(株)製)を用いて、25°C、60%rhにおいて、サンプルフィルム表面に対し垂直方向および、フィルム面法線から±40°傾斜させて方向から波長550nmにおけるレターデーション値を測定する。垂直方向から面内のレターデーション(Re)、垂直方向、±40°方向の測定値から厚み方向のレターデーション(Rth)を算出する。
【0217】
上記サンプリング点の全平均をRe,Rthとする。
【0218】
(4)Re,Rth、の変動
これらの、上記MD方向100点、TD方向50点の各最大値と最小値の差を、各平均値で割り、百分率で示したものをRe,Rth変動とした。
【0219】
[3]テンシロン延伸による破断伸度
東洋精機製、加熱テンシロンを用い、それぞれのサンプルのTg+10°Cに加熱したオーブン中で1分間予熱した後、チャック間100mm、引っ張り速度100mm/min条件にて破断するまで延伸し、破断伸度を求めた。
【0220】
[4]セルロースアシレートの置換度
セルロースアシレートのアシル置換度は、Carbohydr.Res.273(1995)83−91(手塚他)に記載の方法で13C−NMRにより求めた。
【0221】
[5]DSC結晶融解ピーク熱量
島津製作所製 DSC−50を用い昇温速度10℃/minで測定し、Tg直後に現 れる吸熱ピークの熱量をJ/gで算出した。同時にTgも測定した。
【0222】
[6]ヘイズ
日本電色工業(株)製、濁度計 NDH−1001DPを用いて測定した。
【0223】
[7]イエローネスインデックス(YI値)
Z−II OPTICAL SENSOR を用い(JIS K7105 6.3)に 従い黄色味(YI;イエローネスインテ゛ックス)を測定した
ペレットは反射法で測定し、フイルムは透過法にて三刺激値、X、Y、Zを測定した。さらに三刺激値X、Y、Zを用い下記式によりYI値を算出した。
【0224】
YI={(1.28X−1.06Z)/Y}×100
さらにフィルムのYI値は上記式にて算出したYI値を、そのフィルムの厚みで割り、1mm当たりに換算して比較した。
【0225】
[7]分子量
フイルムサンプルをジクロロメタンに溶解し、GPCを用いて測定した。
【実施例】
【0226】
[セルロースアシレート樹脂]
図3の表1に記載のアシル基の種類、置換度の異なるセルロースアシレートを調製した。これは、触媒として硫酸(セルロース100重量部に対し7.8重量部)を添加し、アシル置換基の原料となるカルボン酸を添加し40°Cでアシル化反応を行った。この時、カルボン酸の種類、量を調整することで、アシル基の種類、置換度を調整した。またアシル化後の40°Cで熟成を行った。このようにして得たセルロースアシレートの重合度は下記の方法で求め、図3の表に記載した。
【0227】
(重合度測定法)
絶乾したセルロースアシレート約0.2gを精秤し、メチレンクロリド:エタノール=9:1(質量比)の混合溶剤100mlに溶解した。これをオストワルド粘度計にて25°Cで落下秒数を測定し、重合度を以下の式により求めた。
【0228】
ηrel =T/T0 T :測定試料の落下秒数
[η]=(1nηrel )/C T0 :溶剤単独の落下秒数
DP=[η]/Km C :濃度(g/l)
Km:6×10-4
これらのTgは以下の方法で測定し、図3の表に記載した。なお、可塑剤を添加したものは、可塑剤添加後に測定した値を示した。
【0229】
(Tg測定)
DSCの測定パンにサンプルを20mg入れる。これを窒素気流中で、10°C/分で30°Cから250°Cまで昇温した後(1st-run)、30°Cまで−10°C/分で冷却する。この後、再度30°Cから250°Cまで昇温する(2nd-run)。2nd-runでベースラインが低温側から偏奇し始める温度をガラス転移温度(Tg)とし図3の表に記載した。また、全水準に二酸化珪素部粒子(アエロジルR972V)0.05質量%を添加した。
【0230】
[溶融製膜]
上記セルロースアシレート樹脂を直径3mm長さ5mmの円柱状のペレットに成形した。この際、可塑剤は以下の中から選定し(図3の表に記載)ペレットに混練した。これを110°Cの真空乾燥機で乾燥し、含水率を0.1%以下とした後、Tg−10°Cになるように調整してホッパーに投入した。図3の表において、TPP:トリフェニルフォスフェート、BDP:ビフェニルジフェニルフォスフェート、DOA:ビス(2−エチルヘキシル)アジペート、PTP:1,4−フェニレン−テトラフェニルリン酸エステルを示している。
【0231】
溶融粘度が1000Pa・sとなるように溶融温度を調整し、210°Cに設定した1軸の押出機11を用いて溶融し、溶融温度と同温度に設定したT型ダイ12からTg−5°Cに設定した冷却ドラム14上にシート状に押出し冷却固化してセルロースアシレートフィルムとした。この時、各水準静電印加法(10kVのワイヤーをメルトの冷却ドラム14への着地点から10cmのところに設置)を用いた。固化したシートを剥ぎ取り、巻き取った。なお、巻き取り直前に両端(全幅の各3%)をトリミングした後、両端に幅10mm、高さ50μm の厚みだし加工(ナーリング)をつけた。各水準とも、幅は1.5mで30m/分で3000m巻き取った。
【0232】
[延伸]
上記溶融製膜で製造されたセルロースアシレートフィルムを予熱ロールで予熱した後、図3の表に記載の温度で、表に記載の縦横比で延伸した。なお、延伸温度はいずれも各実施例及び比較例の各樹脂のTgに対し、何°C高いか低いかをそれぞれ+、−の温度で表に「対Tg」として示した。また、縦延伸、横延伸は同じ温度で実施し、表には「延伸温度」として示した。
【0233】
そして、図3の表に示した実施例1−1〜1−24及び比較例1−1〜1−2について、表に記載される製膜条件で製造されたセルロースアシレートフィルムを使用して、延伸セルロースアシレートフィルムを製造したときの、延伸セルロースアシレートフィルムの品質評価を行った。延伸セルロースアシレートフィルムの品質評価項目としては、Re及びその変動率、Rth及びその変動率、ヘイズ、YI値、フィルム厚み、延伸破断伸度である。
【0234】
《延伸セルロースアシレートフィルムの品質評価》
尚、図3の表枠上に記載される数値は、製膜条件、延伸条件、延伸セルロースアシレートフィルムの品質合格値であり、次の通りである。
【0235】
・押出機のスクリュー圧縮比:2.5〜4.5
・押出機のL/D :20〜50
・押出温度 :190〜240°C
・縦延伸の予熱温度 :Tg−40〜Tg+60
・縦延伸の延伸倍率 :1.01〜3.0
・横延伸の延伸倍率 :1.0〜2.5
・DSC吸熱ピークの大きさ:4.0J/g以下
・Re :0nm以上、500nm以下
・Reの変動率 :5%以下
・Rth :30nm以上、500nm以下
・Rthの変動率 :5%以下
・ヘイズ値 :2%以下
・YI値 :10以下
・フィルム厚み :30〜300μm
・延伸破断伸度 :50%(延伸前の1.5倍)以上
図3の表において、実施例1−1〜1−3は、セルロースアシレートフィルム(未延伸)を製造する際の押出温度を、本発明の範囲である190°C(下限)、220°C、240°C(上限)に変えた場合である。また、比較例1−1〜1−2は押出温度を、本発明の範囲外である185°C(本発明の下限以下)及び245°C(本発明の上限以上)にした場合である。
【0236】
これら実施例及び比較例の押出温度条件で製造された延伸前のセルロースアシレートフィルムを使用して、延伸セルロースアシレートフィルムを製造した場合、実施例1−1〜1−3の延伸したときの破断伸度は70%(延伸前の1.7倍)〜180%(延伸前の2.8倍)と延伸性が良かった。この延伸性の改良は、セルロースアシレートフィルムに残存する微細な結晶の多少の指標である、DSC吸熱ピークの大きさが4J/g以下、ヘイズ値が1.5%以下であり、製膜されたセルロースアシレートフィルムに微細な結晶が殆ど残存していないことからも分かる。その結果、延伸セルロースアシレートフィルムのReは40〜50(変動率2〜4%)であると共に、Rthは240〜260(変動率2〜4%)と良い結果であった。また、押出温度を240°C以下にしたことにより、YI値は3〜6で良好な評価で殆ど黄色みが発現していなかった。
【0237】
これに対し、比較例1−1は延伸破断伸度が47%(延伸前の1.47倍)で合格ラインの50%(延伸前の1.5倍)に足りず、延伸工程において破断してしまっために、延伸セルロースアシレートフィルムを製膜することができなかった。このことは、セルロースアシレートフィルムに残存する微細な結晶の多少の指標である、DSC吸熱ピークが5.4J/gと4J/gを超えており、ヘイズ値も2.3%で2%を超えていたこととも一致している。また、比較例1−2は、溶融押出温度が245°Cと240°Cを超えていることから、延伸したときの破断伸度は220%(延伸前の2.2倍)と良い結果であるが、YI値が11と合格ラインの10を超えて高く、セルロースアシレートフィルムに黄色みが強く発現していた。
【0238】
実施例1−4〜1−8は、押出温度を230°Cで一定にして、縦延伸の予熱温度をTg−40°C〜Tg+60°C変えた場合であり、製造されたセルロースアシレートフィルムを使用して延伸した延伸セルロースアシレートフィルムのRe及びその変動率、Rth及びその変動率、ヘイズ、YI値、フィルム厚み、延伸破断伸度ともに適正範囲であった。
【0239】
実施例1−9〜1−13は、押出温度を230°Cで一定にして、スクリュー圧縮比を本発明の範囲である2.5〜4.5の範囲で変えた場合であるが、製造されたセルロースアシレートフィルムを使用して延伸した延伸セルロースアシレートフィルムのRe及びその変動率、Rth及びその変動率、ヘイズ、YI値、フィルム厚み、延伸破断伸度ともに品質合格内であった。
【0240】
実施例1−14〜1−18は、スクリュー圧縮比を3.5、L/Dを本発明の上限であり50に一定にし、押出温度を本発明の範囲である190〜240°Cに変えた場合であるが、製造されたセルロースアシレートフィルムを使用して延伸した延伸セルロースアシレートフィルムのRe及びその変動率、Rth及びその変動率、ヘイズ、YI値、フィルム厚み、延伸破断伸度ともに品質合格内であった。
【0241】
実施例1−19〜1−24は、セルロースアシレートの置換度や分子量を変えて、セルロースアシレート樹脂のガラス転移温度を120°C〜170°Cの間で変えた場合であるが、製造されたセルロースアシレートフィルムを使用して延伸した延伸セルロースアシレートフィルムのRe及びその変動率、Rth及びその変動率、ヘイズ、YI値、フィルム厚み、延伸破断伸度ともに品質合格内であった。
【0242】
尚、図3の表には、スクリュー圧縮比が2.5〜4.5の範囲を満足する場合しか示さなかったが、スクリュー圧縮比を4.5を超えて大きくしたところ、分子の切断が起こり分子量が低下して製造されたセルロースアシレートフィルムの機械的強度が著しく低下したので、その後の延伸工程を行わなかった。また、スクリュー圧縮比を2.5未満に小さくしたところ、溶融不十分となり未溶融ツブが発生したり気泡が混入したので、その後の延伸工程は行わなかった。
【0243】
また、図3の表には、L/Dが20〜50の範囲を満足する場合しか示さなかったが、L/Dを20未満にしたところ、未溶融ツブが発生したので、その後の延伸工程は行わなかった。また、L/Dを50を超えて大きくしたところ、分子の切断が起こり分子量が低下して製造されたセルロースアシレートフィルムの機械的強度が著しく低下したので、その後の延伸工程を行わなかった。
【0244】
[偏光板の作成]
(1)偏光板の作成
図3の表1の実施例1の製膜条件で延伸前の未延伸フィルムを、図4の表2に記載のようにフィルム材料(置換度、重合度、及び可塑剤)を変えて製造し、以下の偏向板を作成した。
【0245】
(1-1 )セルロースアシレートフィルムの鹸化
未延伸セルロースアシレートフィルムを下記の浸漬鹸化法で鹸化を行った。なお、下記の塗布鹸化法を行ったものもほぼ同じ結果が得られた。
【0246】
(i) 塗布鹸化
iso- プロパノール80質量部に水20質量部を加え、これにKOHを2.5規定となるように溶解し、これを60°Cに調温したものを鹸化液として用いた。
これを60°Cのセルロースアシレートフィルム上に10g/m2 塗布し、1分間鹸化した。この後、50°Cの温水スプレーを用い、10L /m2 ・分で1分間吹きかけ洗浄した。
【0247】
(ii)浸漬鹸化
NaOHの2.5規定水溶液を鹸化液として用いた。
【0248】
これを60°Cに調温し、セルロースアシレートフィルムを2分間浸漬した。
【0249】
この後、0.1Nの硫酸水溶液に30秒浸漬した後、水洗浴を通した。
【0250】
(1-2 )偏光層の作成
特開平2001−141926号の実施例1に従い、2対のニップロール間に周速差を与え、長手方向に延伸し、厚み20μmの偏光層を調製した。
【0251】
(1-3 )貼り合わせ
このようにして得た偏光層と、上記鹸化処理した未延伸および延伸セルロースアシレートフィルムならびに鹸化処理したフジタック(未延伸トリアセテートフィルム)を、PVA((株)クラレ製PVA−117H)3%水溶液を接着剤として、偏光膜の延伸方向とセルロースアシレートの製膜流れ方向(長手方法)に下記組み合わせで張り合わせた。
偏光板A:未延伸セルロースアシレートフィルム/偏光層/フジタック
偏光板B:未延伸セルロースアシレートフィルム/偏光層/未延伸セルロースアシレー
トフィルム
(1-4 )偏光板の色調変化
このようにして得た偏光板の色調変化の大小を10段階(大きいものほど色調変化が大きい)で評価した。本発明を実施して作成した偏光版はいずれも良い評価となった。
【0252】
(1-5 )湿度カールの評価
このようにして得た偏光板を上記の方法で測定した。偏光板に加工した後も本発明を実施したものは良好な特性(低い湿度カール)を示した。
また、偏光軸とセルロースアシレートフィルムの長手方向が、直交、45度となるように貼り合せたものを作成し、同様の評価を行った。いずれも上記平行に貼り合せたときと同様の結果であった。
【0253】
(2)光学補償フィルム・液晶表示素子の作成
VA型液晶セルを使用した22インチの液晶表示装置(シャープ(株)製)に設けられている観察者側の偏光板を剥がし、代わりに上記位相差偏光板A,Bの場合は偏光板を外し、セルロースアシレートフィルムが液晶セル側となるように粘着剤を介して、観察者側に貼り付けた。観察者側の偏光板の透過軸とバックライト側の偏光板の透過軸が直交するように配置して、液晶表示装置を作成した。
【0254】
この際にも本発明を実施した場合は湿度カールが小さく貼り合せ易いため、貼り合せた際のズレが少なかった。
【0255】
さらに、特開平11−316378号の実施例1の液晶層を塗布したセルロースアセテートフィルムの代わりに、本発明セルロースアシレートフィルムを使用しても、湿度カールの少ない良好な光学補償フィルムを作成できた。
【0256】
特開平7−333433号の実施例1の液晶層を塗布したセルロースアセテートフィルムに代わって、本発明セルロースアシレートフィルムに変更し光学補償フィルターフィルムを作製しても、湿度カールの少ない良好な光学補償フィルムを作成できた。
【0257】
さらに本発明の偏光板、位相差偏光板を、特開平10−48420号公報の実施例1に記載の液晶表示装置、特開平9−26572号公報の実施例1に記載のディスコティック液晶分子を含む光学的異方性層、ポリビニルアルコールを塗布した配向膜、特開2000−154261号公報の図2〜9に記載の20インチVA型液晶表示装置、特開2000−154261号公報の図10〜15に記載の20インチOCB型液晶表示装置、特開2004−12731の図11に記載のIPS型液晶表示装置に用いたところ、湿度カールの少ない良好な液晶表示素子が得られた。
【0258】
(3)低反射フィルムの作成
本発明のセルロースアシレートフィルムを発明協会公開技報(公技番号2001−1745)の実施例47に従い低反射フィルムを作成した。これを上述の方法に従い湿度カールを測定した。本発明を実施したものは、偏光板の時と同様の良好な結果が得られた。
【0259】
さらに本発明の低反射フィルムを、特開平10−48420号公報の実施例1に記載の液晶表示装置、特開2000−154261号公報の図2〜9に記載の20インチVA型液晶表示装置、特開2000−154261号公報の図10〜15に記載の20インチOCB型液晶表示装置、特開2004−12731の図11に記載のIPS型液晶表示装置の最表層に貼り評価を行ったところ、良好な液晶表示素子を得た。
【図面の簡単な説明】
【0260】
【図1】本発明が適用されるフィルム製造装置の構成図
【図2】押出機の構成を示す概略図
【図3】本発明の実施例の説明図
【図4】本発明の実施例の偏光板に関する説明図
【符号の説明】
【0261】
10…製膜工程部、11…押出機、12…ダイ、14…冷却ドラム、16…セルロースアシレートフィルム(未延伸)、20…縦延伸工程部、22、24…ニップローラ、26…シリンダ、28…スクリュー軸、30…横延伸工程部、31…フライト、32…単軸スクリュー、34…供給口、36…吐出口、40…巻取工程部、A…押出機の供給部、B…押出機の圧縮部、C…押出機の計量部

【特許請求の範囲】
【請求項1】
溶融製膜法によるセルロースアシレートフィルムの製造方法において、
スクリュー圧縮比が2.5〜4.5、L/Dが20〜50の押出機を用いて、セルロースアシレート樹脂を190°C以上、240°C以下の押出温度でダイから冷却支持体上にシート状に押し出して冷却固化することを特徴とするセルロースアシレートフィルムの製造方法。
【請求項2】
ガラス転移温度Tg+10°Cで一軸延伸したときの破断伸度が50%以上であることを特徴とするセルロースアシレートフィルム。
【請求項3】
前記セルロースアシレートフィルムは、ヘイズが2.0%以下、イエローネスインデックス(YI値)が10以下であり、DSC(示差走査熱量計)測定においてガラス転移温度Tg以上の領域に現れる吸熱ピークの大きさが4.0J/g以下であることを特徴とする請求項2に記載のセルロースアシレートフィルム。
【請求項4】
前記セルロースアシレートフィルムは、Aをアセチル基の置換度、Bをプロピオニル基、ブチリル基、ペンタノイル基、ヘキサノイル基の置換度の総和としたときに、アシレート基が下記の置換度、
2.5≦A+B<3.0、
1.25≦B<3.0、
を満足することを特徴とする請求項2又は3に記載のセルロースアシレートフィルム。
【請求項5】
前記セルロースアシレートフイルムの分子量が2万以上、10万以下であることを特徴とする請求項2〜4の何れか1に記載のセルロースアシレートフイルム。
【請求項6】
請求項1により製造された未延伸のセルロースアシレートフィルムを、該フィルムの縦方向と横方向のうちの少なくとも一方向に1倍以上、2.5倍以下に延伸することを特徴とする延伸セルロースアシレートフィルムの製造方法。
【請求項7】
請求項2〜5の何れか1の未延伸のセルロースアシレートフィルムを、該フィルムの縦方向と横方向のうちの少なくとも一方向に1倍以上、2.5倍以下に延伸して成ることを特徴とする延伸セルロースアシレートフィルム。
【請求項8】
前記延伸セルロースアシレートフィルムは、厚みが30〜300μm、面内のレターデーション(Re)が0nm以上、500nm以下、厚み方向のレターデーション(Rth)が30nm以上500nm以下であることを特徴とする請求項7に記載の延伸セルロースアシレートフィルム。
【請求項9】
前記延伸セルロースアシレートフィルムは、前記Re及びRthの幅方向、長手方向の変動がいずれも5%以下であることを特徴とする請求項8に記載の延伸セルロースアシレートフィルム。
【請求項10】
請求項2〜5の何れか1に記載の未延伸のセルロースアシレートフィルムを少なくとも1層積層したことを特徴とする偏光板。
【請求項11】
請求項2〜5の何れか1に記載の未延伸セルロースアシレートフィルムを基材に用いたことを特徴とする液晶表示板用光学補償フィルム。
【請求項12】
請求項2〜5の何れか1に記載の未延伸セルロースアシレートフィルムを基材に用いたことを特徴とする反射防止フィルム。
【請求項13】
請求項7〜9の何れか1に記載の延伸セルロースアシレートフィルムを少なくとも1層積層したことを特徴とする偏光板。
【請求項14】
請求項7〜9の何れか1に記載の延伸セルロースアシレートフィルムを基材に用いたことを特徴とする液晶表示板用光学補償フィルム。
【請求項15】
請求項7〜9の何れか1に記載の延伸セルロースアシレートフィルムを基材に用いたことを特徴とする反射防止フィルム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2006−116945(P2006−116945A)
【公開日】平成18年5月11日(2006.5.11)
【国際特許分類】
【出願番号】特願2005−183621(P2005−183621)
【出願日】平成17年6月23日(2005.6.23)
【出願人】(000005201)富士写真フイルム株式会社 (7,609)
【Fターム(参考)】