説明

ソースフォロワ回路、ソースフォロワ型フィルタ回路

【課題】入力MOSトランジスタのオーバードライブ電圧が低い場合でも、出力信号が歪まないソースフォロワ回路を提供することを目的とする。
【解決手段】ソースフォロワ回路を、MOSトランジスタ(Tr)1、Tr2でなるTr対、ドレインがTr1のソース及び出力端子17に接続するTr3、ドレインがTr2のソース及び出力端子18に接続するTr4でなるTr対、ゲートとドレインがTr3のゲートに接続してTr3と電流ミラーを構成するTr7、Tr7のドレインに接続してTr7に電流を供給する電流源9、ゲートとドレインがTr4のゲートに接続してTr4と電流ミラーを構成するTr8、Tr8のドレインに接続してTr8に電流を供給する電流源10、Tr7のゲートと出力端子18との間に接続される容量素子11、Tr8のゲートと出力端子17との間に接続される容量素子12によって構成する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、高速で動作するソースフォロワ回路、このソースフォロワ回路を使ったソースフォロワ型フィルタ回路に関する。
【背景技術】
【0002】
ソースフォロワ回路は、バッファ回路として広く用いられている。図8(a)は、全差動型のソースフォロワ回路を示した図である。図中に示した符号51〜54、57、58はMOSトランジスタを示す。また、符号59、60は定電流源、符号63、64は信号が差動入力される入力端子対、符号67、68は信号が差動出力される出力端子対、符号55、56は容量負荷を示している。図8(a)の回路は、全差動回路であるので、全ての構成素子は、左右対称になるように構成されている。このように全差動回路構成にすることで、信号範囲を実質的に2倍にすることができるので、ソースフォロワ回路は、低電源電圧で動作する場合など広く用いられている。なお、このような全作動型のソースフォロワ回路は、例えば、非特許文献1に記載されている。
【0003】
図9は、従来のソースフォロワ回路をベースにしたフィルタ回路である。フィルタ回路は、MOSトランジスタ31〜38、容量素子41、42、電流源39、40から構成される。図9に示した回路もまた左右対称になるように構成されている。このフィルタ回路は、入力信号が、端子43、44から差動信号として入力され、端子47、48から差動信号として出力される。MOSトランジスタ31、32、33、34は2段重ねにしたソースフォロワであり、MOSトランジスタ35、36が電流源として作用する。容量素子42、41は、MOSトランジスタのソース対に接続されており、これら容量値によって通過帯域を決めている。
図9のフィルタ回路は、高速性能を発揮できるという特徴を備えている。なお、このようなフィルタ回路は、例えば、特許文献1、非特許文献2に記載されている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】US2008 157864号公報
【非特許文献】
【0005】
【非特許文献1】Behzad Razavi著/黒田忠広監訳、アナログCMOS集積回路の設計 基礎編、丸善株式会社、2000年7月 82〜91ページ
【非特許文献2】Stefano D'Amico、Matteo Conta、Andrea Baschirotto著 IEEE Journal of Solid State Circuits、 41巻、12号、2713〜2719ページ。論文タイトル「A 4.1-mW 10-MHz Fourth-Order Source Follower-Based Continuous-Time Filter With 79-dB DR」
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかしながら、図8(a)に示した従来のソースフォロワ回路を高速で動作させようとする場合、信号振幅を大きくすると信号が歪むという問題があった。この歪みについて図8(a)を用いて説明する。なお、この説明では、MOSトランジスタ51、53、57と電流源59、容量素子55からなる左半分だけに注目して行う。また、電流源59の電流値をIo、MOSトランジスタ53と57のサイズを同じとする。MOSトランジスタ53、57はカレントミラーを構成しているので、MOSトランジスタ53は、電流値Ioを供給する電流源と同じ作用をする。
【0007】
ここで入力端子63から入力される入力信号Vinを式(1)のように表す。
Vin=V1・sinωt+Va …式(1)
ここでV1は入力信号振幅、ωは入力信号周波数、Vaは入力DC電圧レベルである。周波数ωが低い場合、出力信号は式(2)のように表すことができる。
Vout=V2・sinωt+Vb …式(2)
ここで、V2は出力信号振幅、Vbは出力DC電圧レベルである。ただし、式(2)で入力信号周波数ωがソースフォロワ回路の帯域内であれば、出力振幅V2は減衰しないので入力信号振幅V1に等しくなる。しかしながら、帯域制限とは別にソースフォロワ回路のスルーレート制限のために、信号振幅が大きくなると、信号周波数がソースフォロワ回路の帯域に達しなくても入力信号と同じ波形が得られなくなる。
【0008】
このような現象は、図8(a)において、MOSトランジスタ53、54が定電流源であるため、出力端子67、68の信号電圧V67、V68が下降できる速度がMOSトランジスタ53、54に流れる電流によって制限を受けることによって起こる。
ここで、簡単にスルーレートについて説明する。図8(b)は、図8(a)に示したソースフォロワ回路のうちの、電流源59、MOSトランジスタ57、51、53、容量素子55の等価回路であって、MOSトランジスタ701、電流源702、容量素子704を含んでいる。MOSトランジスタ701と電流源702との間の出力端子を端子703として示す。
【0009】
図8(b)に示した等価回路において、ソースフォロワ回路のスルーレート(SR)と、MOSトランジスタ701のオーバードライブ電圧(Vgs−Vth)の関係は、以下のように導かれる。なお、以下の説明は、全てstrong inversionの式を用いている。また、この説明中、gmはMOSトランジスタ701のモビリティ、Ioは電流源702を流れる電流、Cは容量素子703の容量値、ωcはカットオフ周波数、ωinは入力信号の周波数、Aoは入力信号の振幅を示している。
gm=2(Io・K)1/2=2Io/(Vgs−Vth) …式(2−2)
ωcとgmとの関係は、
ωc=gm/2πc …式(2−3)
スルーレートSRは、
SR=Io/C …式(2−4)
以上の条件の下、必要なスルーレートは、
SR=2π・ωin・Ao …式(2−5)
【0010】
与えられた周波数ωin、SRの下で可能な最大振幅Aoは、式(2−5)より、以下のように求められる。
Ao=SR/(2π・ωin) …式(2−6)
式(2−6)に、式(2−3)、(2−5)を代入することにより、
Ao=Io/(2π・c・ωin)=(Io/gm)・(ωc/ωin)
=[(Vgs−Vth)/2]・(ωc/ωin) …式(2−7)
ωc=ωinのとき、
Ao=(Vgs−Vth)/2 …式(2−8)
【0011】
図8(a)に示したソースフォロワ回路では、出力端子67における信号の下降する速度(単位時間あたりの電圧変化)が、電流源として動作するMOSトランジスタ53の電流値Ioに比例し、出力端子67の容量値C55に反比例する。すなわちスルーレート値SRは、SR=Io/C55のように表すことができる。もしMOSトランジスタ53、54に流れる電流が不足する場合、出力端子67、68にかかる電圧の下降する速度は、スルーレート値SRよりも大きい速度にならないので出力波形はサイン波に対して、歪むことになる。
【0012】
より具体的には、式(2)で表される出力信号の変化率の最大値は、式(2)を時間で微分することで求められるω・V2となる。すなわち、スルーレート値であるSRがω・V2より小さい場合は、スルーレートが不足するために、出力波形は、理想とする信号波形に対して歪むことになる。このようにソースフォロワ回路は、電流源を用いているために、信号周波数が大きくて、かつ信号振幅が大きい場合に、スルーレートの影響を受けやすくなる。
【0013】
式(2)のように表される出力信号の場合、信号が下降する最大値は、式(2)の微分の式からも分かるように、出力信号が出力DC電圧レベルであるVbをクロスする(信号の値が小さい値から大きい値に連続的変化しながら電圧レベルVbに到達する(上向きにクロスするともいう)、または、信号の値が大きい値から小さい値に連続的変化しながら電圧レベルVbに到達する(下向きにクロスするともいう)ことをいう)ときに得られる。従って、出力信号が、電圧レベルVbを下向きにクロスする時に、電圧が降下できる程度に電流源として動作するMOSトランジスタ53、54の電流値を十分大きくすればよいことになる。
【0014】
しかしながらこの場合、消費電流が大きくなるという問題の他に以下に述べる理由でスルーレートを向上することができなかった。すなわち、入力周波数をωin、ソースフォロワ回路の帯域ωcとすると、式(3)によって出力信号振幅の最大値Aoが与えられる。
Ao=(ωc/ωin)・(Vgs−Vth)/2 …式(3)
【0015】
ここで、Vgs、Vthは、それぞれソースフォロワ回路の入力トランジスタ(図8のMOSトランジスタ51または52)のゲート・ソース間電圧、閾値電圧であり、(Vgs−Vth)のことを通常オーバードライブ電圧Vovと称している。通常、(Vgs−Vth)は、高いVgsによる移動度劣化を避けるために0.2〜0.5Vで設計されることが多い。例えば、ωin=0.5ωcでかつ(Vgs−Vth)=0.5Vの場合、式(3)より最大振幅Aoは0.5Vでしかない。ωin=ωcの場合は、さらにこの半分の0.25Vになる。スルーレートが不足するような振幅の大きい信号、あるいは周波数の高い信号に対して、出力信号は入力信号に追随できない(=フォローできない)ので、出力信号は大きく歪み、ソースフォロワ回路として機能しなくなる。
【0016】
すなわち、従来のソースフォロワ回路では、信号周波数が高くかつ信号振幅がわずか0.5V程度の場合でもスルーレート制限のために、信号波形が歪むことになる。このように、ソースフォロワ回路は単純な回路で実現できるものの、ドライバ回路として用いる場合は駆動能力が弱いという問題があった。
【0017】
また図9の従来のフィルタ回路も、高速で動作させようとする場合、信号振幅を大きくすると信号が歪むという問題があった。この歪みについて図9を用いて説明する。なお、以下の説明においては、MOSトランジスタ32、33、35、37と電流源39からなる図9の回路の半分だけに注目して行う。また、電流源39の電流値をIo、MOSトランジスタ37と35のサイズを同じとする。MOSトランジスタ37、35はカレントミラーを構成しているので、MOSトランジスタ35は、電流値Ioを供給する電流源と同じ作用をする。
【0018】
ここで入力端子44から入力される入力信号Vinを式(3−2)のように表す。
Vin=V1・sinωt+Ve …式(3−2)
式(3−2)において、V1は入力信号の振幅、ωは入力信号の周波数、Veは入力DC電圧レベルである。周波数ωが低い場合、出力信号は式(3−3)のように表すことができる。
Vout=V2・sinωt+Vf …式(3−3)
【0019】
式(3−3)において、V2は出力信号の振幅、Vfは出力DC電圧レベルである。ただし、式(3−3)で入力信号周波数ωがソースフォロワ回路の帯域内であれば、出力振幅V2は減衰しないので入力信号振幅V1に等しくなる。しかしながら、帯域制限とは別にソースフォロワ回路のスルーレート制限のために、信号振幅が大きくなると信号周波数が、ソースフォロワ回路の帯域に達しなくても入力信号と同じ波形が得られなくなる。それは、図9において、MOSトランジスタ35、36が定電流源であるため、出力端子47、48の信号電圧V47、V48が下降できる速度は、MOSトランジスタ35、36に流れる電流によって制限を受ける。
【0020】
ここで、図9に示した回路におけるスルーレートについて簡単に説明する。図9の出力端子47では信号の下降する速度(単位時間あたりの電圧変化)は、電流源として動作するMOSトランジスタ35の電流値Ioに比例し、端子47の容量値C42の2倍に反比例する。すなわちスルーレート値SRは、SR=Io/(2・C42)のように表すことができる。
【0021】
もしMOSトランジスタ35、36に流れる電流が不足する場合、出力端子47、48にかかる電圧が下降する速度は、スルーレート値SRよりも大きい速度にならない。このため、出力波形はサイン波に対して、歪むことになる。より具体的には、式(3−3)で表される出力信号の変化率の最大値は、式(3−3)を時間で微分することで求められるω・V2となる。すなわち、スルーレート値であるSRがω・V2より小さい場合は、スルーレートが不足するために、出力波形は、理想とする信号波形に対して歪むことになる。
【0022】
このようにソースフォロワ回路は、電流源を用いているために、信号周波数が大きくて、かつ信号振幅が大きい場合に、スルーレートの影響を受けやすくなる。式(3−3)のように表される出力信号の場合、信号が下降する最大値は、式(3−3)の微分の式からも分かるように、信号が出力DC電圧レベルであるVfをクロスするときに得られる。
したがって、出力信号が、電圧レベルVfを下向きにクロスするときに、電圧が降下できる程度に電流源として動作するMOSトランジスタ35、36の電流値を十分大きくすればよいことになる。しかしながらこの場合、消費電流が大きくなるという問題の他に以下に述べる理由でスルーレートを向上することができなかった。
【0023】
すなわち、入力周波数をωin、ソースフォロワ回路のフィルタの帯域をωcとすると、式(3)と同様に計算することで、式(3−4)によって出力信号振幅の最大値Aoが与えられる。
Ao=(ωc/ωin)・(Vgs−Vth)/4Q …式(3−4)
式(3−4)において、Vgs、Vthはソースフォロワ回路の入力トランジスタ(図9のMOSトランジスタ31〜34)のゲート・ソース間電圧、閾値電圧であり、Qは図9に示したフィルタ回路のQ値(クオリティファクタ)である。このように図9のフィルタ回路もソースフォロワ回路をベースにしているために図8のソースフォロワ回路と同様に信号周波数が高く、かつ信号振幅が僅か0.5V程度の信号の場合でもスルーレート制限のために、信号波形が歪む。
【0024】
本発明は、このような点に鑑みてなされたもので、入力MOSトランジスタのオーバードライブ電圧が0.2〜0.5V程度と低い場合でも、出力信号が歪まないソースフォロワ回路、このソースフォロワ回路をベースにした、フィルタの出力信号レベルが大きいソースフォロワ型フィルタ回路を提供することを目的とする。
なお、図8(a)の回路において出力端子67、68の信号電圧が上昇する場合は、端子63、64からの入力信号が上昇する。このとき、MOSトランジスタ51、52のゲート端子にかかる電圧も上昇して電流が電源69から供給されるので電圧が上昇するときは制限を受けることはない。
【0025】
同様に、図9の回路において端子47、48及び端子45、46の信号電圧が上昇する。このとき、端子43、44からの入力信号が上昇しており、MOSトランジスタ31、32のゲート端子にかかる電圧も上昇して電流を電源81から供給されるので電圧が上昇するときは制限を受けることはない。
【課題を解決するための手段】
【0026】
以上の課題を解決するため、請求項1に記載のソースフォロワ回路は、ゲートに第1入力信号が入力される第1MOSトランジスタ(例えば図1に示したMOSトランジスタ1)と、ゲートに第2入力信号が入力される第2MOSトランジスタ(例えば図1に示したMOSトランジスタ2)と、を備える第1トランジスタ対と、ドレインが前記第1MOSトランジスタのソース及び第1出力信号が出力される第1出力端子(例えば図1に示した出力端子17)に接続する第3MOSトランジスタ(例えば図1に示したMOSトランジスタ3)と、ドレインが前記第2MOSトランジスタのソース及び第2出力信号が出力される第2出力端子(例えば図1に示した出力端子18)に接続する第4MOSトランジスタ(例えば図1に示したMOSトランジスタ4)と、を備える第2トランジスタ対と、ゲートとドレインが前記第3MOSトランジスタのゲートに接続して前記第3MOSトランジスタと電流ミラーを構成する第5MOSトランジスタ(例えば図1に示したMOSトランジスタ7)と、前記第5MOSトランジスタのドレインと接続して前記第5MOSトランジスタに電流を供給する第1電流源(例えば図1に示した電流源9)と、ゲートとドレインが前記第4MOSトランジスタのゲートに接続して前記第4MOSトランジスタと電流ミラーを構成する第6MOSトランジスタ(例えば図1に示したMOSトランジスタ8)と、前記第6MOSトランジスタのドレインと接続して前記第6MOSトランジスタに電流を供給する第2電流源(例えば図1に示した電流源10)と、前記第5MOSトランジスタのゲートと前記第2出力端子との間に接続される第1容量素子(例えば図1に示した容量素子11)と、前記第6MOSトランジスタのゲートと前記第1出力端子との間に接続される第2容量素子(例えば図1に示した容量素子12)と、を含むことを特徴とする。
【0027】
また、本発明のソースフォロワ回路は、上記した発明において、前記第2出力端子と入力端子が接続され、前記第1容量素子と出力端子が接続される第1増幅器(例えば、図3に示した増幅器22)と、前記第1出力端子と入力端子が接続され、前記第2容量素子と出力端子が接続される第2増幅器(例えば、図3に示した増幅器21)と、をさらに含むことが望ましい。
【0028】
本発明のソースフォロワ型フィルタ回路は、第1入力信号を入力するゲートを有する第1MOSトランジスタ(例えば図5に示したMOSトランジスタ31)と、第2入力信号を入力するゲートを有する第2MOSトランジスタ(例えば図5に示したMOSトランジスタ32)と、を備える第1トランジスタ対と、前記第1MOSトランジスタのソースに接続するドレインを有する第3MOSトランジスタ(例えば図5に示したMOSトランジスタ33)と、前記第2MOSトランジスタのソースに接続するドレインを有する第4MOSトランジスタ(例えば図5に示したMOSトランジスタ34)と、を備え、前記第3MOSトランジスタのゲートが前記第4MOSトランジスタの前記ドレインに接続され、前記第4MOSトランジスタのゲートが前記第3MOSトランジスタの前記ドレインに接続される第2トランジスタ対と、前記第1MOSトランジスタ乃至前記第4MOSトランジスタのソースの各々に接続される容量素子(例えば図5に示した容量素子41、42)と、ドレインが前記第3MOSトランジスタのソース及び第1出力信号が出力される第1出力端子に接続する第5MOSトランジスタ(例えば図5に示したMOSトランジスタ35)と、ドレインが前記第4MOSトランジスタのソース及び第2出力信号が出力される第2出力端子に接続する第6MOSトランジス(例えば図5に示したMOSトランジスタ36)タと、を備える第3トランジスタ対と、ゲートとドレインが前記第5MOSトランジスタのゲートに接続し、前記第5MOSトランジスタと電流ミラーを構成する第7MOSトランジスタ(例えば図5に示したMOSトランジスタ37)と、前記第7MOSトランジスタのドレインと接続し、前記第7MOSトランジスタに電流を供給する第1電流源と(例えば図5に示した電流源39)、ゲートとドレインが前記第6MOSトランジスタのゲートに接続し、前記第6MOSトランジスタと電流ミラーを構成する第8MOSトランジスタ(例えば図5に示したMOSトランジスタ38)と、前記第8MOSトランジスタのドレインと接続し、前記第8MOSトランジスタに電流を供給する第2電流源(例えば図5に示した電流源40)と、前記第7MOSトランジスタのゲートと前記第2出力端子との間に接続される第1容量素子(例えば図5に示した容量素子153)と、前記第8MOSトランジスタのゲートと前記第1出力端子との間に接続される第2容量素子(例えば図5に示した容量素子154)と、を含むことを特徴とする。
【0029】
また、本発明のソースフォロワ型フィルタ回路は、上記した発明において、前記第2出力端子と入力端子が接続され、前記第1容量素子と出力端子が接続される第1増幅器(例えば図7に示した増幅器122)と、前記第1出力端子と入力端子が接続され、前記第2容量素子と出力端子が接続される第2増幅器(例えば図7に示した増幅器121)と、をさらに含むことが望ましい。
【発明の効果】
【0030】
本発明によれば、スルーレートが最も大きい値が望まれる点においてソースフォロワ回路の電流源の電流値を大きくすることができる。このため、従来のソースフォロワ回路に比べて無信号時の電流値を増加させることなく、より周波数の高い信号あるいはより振幅の大きな信号に対してもスルーレートの制限を受けることなく、すなわち歪むことなく信号を出力することができるソースフォロワ回路、このソースフォロワ回路を用いたソースフォロワ型のフィルタ回路を提供することができる。
【図面の簡単な説明】
【0031】
【図1】本発明の実施形態1のソースフォロワ回路の回路図である。
【図2】本発明の実施形態1のソースフォロワ回路の動作を説明するための信号波形図である。
【図3】本発明の実施形態2のソースフォロワ回路の回路図である。
【図4】本発明の実施形態2のソースフォロワ回路の動作を説明するための信号波形図である。
【図5】本発明の実施形態3のソースフォロワ回路をベースにしたフィルタ回路の回路図である。
【図6】本発明の実施形態3のフィルタ回路の動作を説明するための信号波形図である。
【図7】本発明の実施形態3のフィルタ回路の変形例を説明するための図である。
【図8】従来のソースフォロワ回路及び、この等価回路を説明するための図である。
【図9】従来のソースフォロワ回路をベースにしたフィルタ回路の回路図である。
【発明を実施するための形態】
【0032】
以下、図を参照して本発明に係る実施形態1ないし実施形態3のソースフォロワ回路と、ソースフォロワ回路をベースにしたソースフォロワ型フィルタ回路を説明する。
(実施形態1)
1 構成
図1は、本発明の実施形態1のソースフォロワ回路を説明するための回路図である。なお、図1に示した実施形態1のソースフォロワ回路の構成は、図8に示した従来のソースフォロワ回路に容量値がC1である容量素子11、12を加えたものである。
すなわち、図1に示したソースフォロワ回路は、NMOSトランジスタ1〜4、7、8と、電流源9、10と容量素子5、6、11、12から構成される。
【0033】
2 動作
次に、図1のソースフォロワ回路の動作について説明する。図1のソースフォロワ回路の入力端子13、14から周波数ωの信号が入力され、出力端子17、18から出力される信号電圧V17、V18は、式(4)、(5)で示される。
V17=A・sinωt …式(4)
V18=A・sin(ωt+π) …式(5)
式(4)、(5)で表される信号が出力されると、出力端子17、18は差動出力端子であるので、それぞれの信号関係は振幅が同じで位相がπ(180度)だけずれたもの、すなわち反転関係になっている。
【0034】
図2(a)は、信号電圧V17、V18の波形を示した図である。ここで、端子15の信号電圧V15について説明する。端子15は出力端子18に対して、容量値がC1である容量素子11により出力端子18と結合され、さらに抵抗値がR7の抵抗素子と等価とみなされるMOSトランジスタ7を通して電源20に接続している。このような場合、出力端子18を入力端子、端子15を出力端子とするカットオフ周波数ωcが1/(R7・C1)であるHPF(高域通過フィルタ)回路が形成されていることになる。
【0035】
ここで抵抗値R7は、MOSトランジスタ7のトランスコンダクタンス値gm7の逆数である1/gm7に等しい。HPFの出力信号は、よく知られているように入力信号に対して90度位相が進んでいる。すなわち図1における信号電圧V18に対して信号電圧V15は、HPFの出力なので、図2(a)に示すように位相が90度進んでいる。
図2(a)の矢印で示した時刻t1において、出力端子18は点線で示した電圧レベルVbをクロスしている。ここで、Vbは無信号時の出力端子18、17の電圧レベルでもある。また信号電圧V15の場合、無信号時の電圧レベルはVbとは異なる値になるが、図2(a)においては、電圧波形V17、V18との位相関係を分かりやすくするために、無信号時の電圧レベルをV17、V18に揃えて表示している。
【0036】
図8で説明したように、従来技術では、端子67の電圧がこの電圧Vbとクロスして下降する時間t1で、電流源として動作するMOSトランジスタ53の電流を最も多く必要とする。一方、図1の場合、HPFの作用によって、端子15の電圧が、図2(a)に示す時刻t1で最大値になっている。また、端子15は、電流源であるMOSトランジスタ3のゲートに電流を供給しているので、信号がゼロの場合(無信号時)に比べてより多くの電流を供給することができるようになっている。このような実施形態1の機能は、図8のMOSトランジスタ53の場合に問題となっていた電流不足を解消する方向に働く。
【0037】
しかも、端子15の時刻t1におけるピーク電圧は、出力電圧(=入力電圧)が大きい場合にはより大きくなる。このため、実施形態1では、よりスルーレート値を大きくすることができる。すなわち、信号振幅が大きくなると、スルーレート値もまた大きくなるので、従来の回路で見られた大振幅でのスルーレート不足になりやすいという問題を解消していることになる。さらには、周波数が高い場合は、HPFの周波数特性より出力がより大きくなるので、容量素子11、12を設置したことで、大振幅、高い周波数で問題となっていたスルーレートが不足するという問題を同時に解消することができる。
【0038】
(実施形態2)
1 構成
先ず、実施形態2の説明に先立って、実施形態2のソースフォロワ回路が目的とする実施形態1の改善すべき点について説明する。このため、ここでは、図1に示した回路について、より詳細に説明する。
図1のソースフォロワ回路では、信号電圧V15は、信号電圧V17が下降して無信号電圧レベルであるVbをクロスした時(図2の時刻t1)のレベルが高ければ高いほど、MOSトランジスタ3の電流が大きくなるので、より効果が高くなる。
【0039】
図2(a)においては、動作をわかりやすくするために、端子15の電圧振幅と出力端子17の電圧振幅を同じにしたが、実際はHPFの作用により、信号電圧V15は、図2(b)のように信号電圧V17に比較すると減衰している。HPFによる信号振幅の減衰量を抑えるためには、HPFのカットオフ周波数を信号周波数に近づける、或いは同じにする方法がある。この場合、図2(c)に示すように位相の進み量が90より小さい値になり、信号周波数がカットオフ周波数と同じだと位相進み量は45度となる。
【0040】
図2(c)から分かるように、時刻t1において、端子15の電圧は位相進み量が小さいため、信号電圧V15のピーク電圧とはならない。このため、実施形態1は、スルーレート向上の作用はあるものの、信号電圧V15の値は最大にならず、実際の回路では、位相進み量が図2(b)と図2(c)の間の中間のいずれかで最適なスルーレート値となる。
そこで、実施形態2では、位相進み量を90度に保ちつつ、時刻t1で端子15にかかる信号電圧V15が最大になるようにしたものである。
【0041】
1 構成
図3は、本発明の実施形態2のソースフォロワ回路を説明するための回路図である。なお、図3に示した実施形態2の構成は、図1に示したソースフォロワ回路に増幅率がGである増幅器21、22を加えたものである。また、実施形態2では、図3に示した構成のうち、図1に示した構成と同様の構成については同様の符号を付し、その説明を一部略すものとする。
すなわち、図3に示したソースフォロワ回路は、NMOSトランジスタ1〜4、7、8と、電流源9、10と容量素子11、12と増幅器21、22から構成される。
【0042】
2 動作
次に、図3のソースフォロワ回路の動作について説明する。図1と図3の違いは、増幅率がGである増幅器21、22が追加されている点である。実施形態2では、このように増幅器21、22の追加によって、端子15、16の振幅レベルは図1の場合に比べてG倍だけ大きくなる。すなわち、増幅器が存在しない場合、端子15の信号電圧V15は、図2(b)に示すように振幅が小さいものであった。しかし、実施形態2では、増幅器の追加によって、図4に示すように、信号電圧V15の振幅を、位相進み量に影響を与えることなく、より大きくすることができる。それにより、実施形態2では、実施形態1で説明した図1の回路に比べ、スルーレートをG倍大きくすることが可能になる。
【0043】
(実施形態3)
1 構成
図5は、本発明の実施形態3のソースフォロワ回路をベースにしたフィルタ回路を説明するための回路図である。なお、図5に示した実施形態3の構成は、図9に示した従来のソースフォロワ回路に容量素子153、154を加えたものである。また、図5に示した構成のうち、図9に示した従来のソースフォロワ回路と同様の構成については同様の符号を付し、その説明を一部略すものとする。
すなわち、図5のフィルタ回路は、MOSトランジスタ31〜38、容量素子41、42、53、54、電流源39、40から構成される。
【0044】
2 動作
次に、図5のフィルタ回路の動作について説明する。
ソースフォロワ回路をベースにした図5のフィルタ回路の入力端子43、44から周波数ωの信号が入力される。このとき、出力端子47、48から出力される信号電圧V47、V48は、式(6)、(7)で示される。
V47=A・sinωt …式(6)
V48=A・sin(ωt+π) …式(7)
式(6)、(7)で表される信号が出力されるとき、出力端子47、48は差動出力端子であるので、それぞれの信号関係は振幅が同じで位相がπ(180度)だけずれたもの、すなわち反転関係になっている。図6は、信号電圧V47、V48、V49の波形を示した図である。
【0045】
また、端子49の信号電圧V49について説明する。端子49は、容量値がC53である容量素子153によって出力端子48と結合され、さらに抵抗値R37と等価とみなされるMOSトランジスタ37を介して電源82に接続している。このような場合、入力端子48を入力端子、端子49を出力端子とするカットオフ周波数ωcが1/(R37・C53)であるHPF(高域通過フィルタ)回路が形成されていることになる。
【0046】
ここで抵抗値R37は、MOSトランジスタ37のトランスコンダクタンス値gm37の逆数である1/gm37に等しい。HPFの出力信号は、よく知られているように入力信号に対して90度位相が進んでいる。すなわち、信号電圧V49は、HPFの出力なので、図5に示した信号電圧V48に対し、図6に示すように位相が90度進んでいる。
図6中の矢印で示した時刻t1において、出力端子48は点線で示した電圧レベルVfをクロスしている。ここで、Vfは、無信号時の出力端子48、47の電圧レベルでもある。また信号電圧V49の場合、無信号時の電圧レベルはVfとは異なる値になるが、図6においては、電圧波形V47、V48との位相関係を分かりやすくするために、無信号時の電圧レベルをV47、V48に揃えて表示している。
【0047】
図8(a)で説明したように、従来技術では、この電圧Vfとクロスして下降する時間t1で電流源として動作するMOSトランジスタ53の電流を最も多く必要とする。一方、図5に示したソースフォロワ型フィルタ回路では、HPFの作用によって、端子49の信号電圧V49は、図6に示すように時刻t1で最大値になっている。また、この端子49は、電流源であるMOSトランジスタ35のゲートに電圧を供給しているので、信号がゼロの場合(無信号時)に比べてより多くの電流を供給することができるようになっている。このような実施形態3の機能は、図8(a)に示したMOSトランジスタ53の場合に問題となっていた電流不足を解消する方向に働く。
【0048】
しかも、端子49の時刻t1におけるピーク電圧は、出力電圧(=入力電圧)が大きい場合にはより大きくなるので、よりスルーレート値を大きくできる。すなわち、信号振幅が大きくなると、スルーレート値もまた大きくなるので、従来の回路で見られた大振幅でのスルーレート不足になりやすいという問題を解消していることになる。さらには、周波数が高い場合は、HPFの周波数特性より出力がより大きくなるので、実施形態3は、容量素子153、154を設置したことで、大振幅、高い周波数で問題となっていたスルーレートが不足するという問題を同時に解消することができる。
【0049】
なお、本発明の実施形態3は、以上述べた構成に限定されるものではない。例えば、図7に示したように、図6に示したソースフォロワ回路に、増幅器121、122を設けるようにしてもよい。このような構成によれば、実施形態2と同様に、実施形態3のソースフォロワ型フィルタ回路のスルーレートをさらに大きくすることができる。
【産業上の利用可能性】
【0050】
本発明は、ソースフォロワ回路及びソースフォロワ回路をベースにしたフィルタ回路のスルーレートを向上できるので、大きな振幅でかつ高い周波数の信号であっても歪むことなく信号を出力できるので、ソースフォロワ回路を負荷容量が大きい場合に使用する、あるいは低消費電流で高速動作させたいフィルタ回路に用いることができる。
【符号の説明】
【0051】
1〜4、7、8、31〜38 MOSトランジスタ
5、6、11、12、41、42、153、154 容量素子
9、10、39、40 電流源
13、14、43、44 入力端子
15、16、45、49 端子
17、18、47、48 出力端子
20、82 電源
21、22 増幅器

【特許請求の範囲】
【請求項1】
ゲートに第1入力信号が入力される第1MOSトランジスタと、ゲートに第2入力信号が入力される第2MOSトランジスタと、を備える第1トランジスタ対と、
ドレインが前記第1MOSトランジスタのソース及び第1出力信号が出力される第1出力端子に接続する第3MOSトランジスタと、ドレインが前記第2MOSトランジスタのソース及び第2出力信号が出力される第2出力端子に接続する第4MOSトランジスタと、を備える第2トランジスタ対と、
ゲートとドレインが前記第3MOSトランジスタのゲートに接続して前記第3MOSトランジスタと電流ミラーを構成する第5MOSトランジスタと、
前記第5MOSトランジスタのドレインと接続して前記第5MOSトランジスタに電流を供給する第1電流源と、
ゲートとドレインが前記第4MOSトランジスタのゲートに接続して前記第4MOSトランジスタと電流ミラーを構成する第6MOSトランジスタと、
前記第6MOSトランジスタのドレインと接続して前記第6MOSトランジスタに電流を供給する第2電流源と、
前記第5MOSトランジスタのゲートと前記第2出力端子との間に接続される第1容量素子と、
前記第6MOSトランジスタのゲートと前記第1出力端子との間に接続される第2容量素子と、
を含むことを特徴とするソースフォロワ回路。
【請求項2】
前記第2出力端子と入力端子が接続され、前記第1容量素子と出力端子が接続される第1増幅器と、
前記第1出力端子と入力端子が接続され、前記第2容量素子と出力端子が接続される第2増幅器と、
を、さらに含むことを特徴とする請求項1に記載のソースフォロワ回路。
【請求項3】
第1入力信号を入力するゲートを有する第1MOSトランジスタと、第2入力信号を入力するゲートを有する第2MOSトランジスタと、を備える第1トランジスタ対と、
前記第1MOSトランジスタのソースに接続するドレインを有する第3MOSトランジスタと、前記第2MOSトランジスタのソースに接続するドレインを有する第4MOSトランジスタとを備え、前記第3MOSトランジスタのゲートが前記第4MOSトランジスタの前記ドレインに接続され、前記第4MOSトランジスタのゲートが前記第3MOSトランジスタの前記ドレインに接続される第2トランジスタ対と、
前記第1MOSトランジスタ乃至前記第4MOSトランジスタのソースの各々に接続される容量素子と、
ドレインが前記第3MOSトランジスタのソース及び第1出力信号が出力される第1出力端子に接続する第5MOSトランジスタと、ドレインが前記第4MOSトランジスタのソース及び第2出力信号が出力される第2出力端子に接続する第6MOSトランジスタと、を備える第3トランジスタ対と、
ゲートとドレインが前記第5MOSトランジスタのゲートに接続し、前記第5MOSトランジスタと電流ミラーを構成する第7MOSトランジスタと、
前記第7MOSトランジスタのドレインと接続し、前記第7MOSトランジスタに電流を供給する第1電流源と、
ゲートとドレインが前記第6MOSトランジスタのゲートに接続し、前記第6MOSトランジスタと電流ミラーを構成する第8MOSトランジスタと、
前記第8MOSトランジスタのドレインと接続し、前記第8MOSトランジスタに電流を供給する第2電流源と、
前記第7MOSトランジスタのゲートと前記第2出力端子との間に接続される第1容量素子と、
前記第8MOSトランジスタのゲートと前記第1出力端子との間に接続される第2容量素子と、
を含むことを特徴とするソースフォロワ型フィルタ回路。
【請求項4】
前記第2出力端子と入力端子が接続され、前記第1容量素子と出力端子が接続される第1増幅器と、
前記第1出力端子と入力端子が接続され、前記第2容量素子と出力端子が接続される第2増幅器と、
をさらに含むことを特徴とする請求項3に記載のソースフォロワ型フィルタ回路。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2011−259233(P2011−259233A)
【公開日】平成23年12月22日(2011.12.22)
【国際特許分類】
【出願番号】特願2010−132242(P2010−132242)
【出願日】平成22年6月9日(2010.6.9)
【出願人】(303046277)旭化成エレクトロニクス株式会社 (840)
【Fターム(参考)】