説明

光学部品の製造方法

【課題】多大な工数をかけることなく、光学薄膜の形成後も優れた光学特性を有する光学部品の製造方法を提供すること。
【解決手段】治具板7に設けられた外側の支持部10と中心側の支持部8との相対位置の調整を、外側の支持部10と中心側の支持部8との間の距離の調整で行なう。この調整は、治具板7を基準として行なうので、微小単位で、微少距離まで、再現性良く、任意に調整することができる。その結果、基板2に加える変形も微小単位で、微少量まで、再現性良く、任意に調整することができる。光学薄膜3の形成方法において、基板2と光学薄膜3の材料源や基板2の加熱源等との距離や角度によって、基板2毎の熱膨張や光学薄膜3の残留応力は微妙に異なった値となる。この発明では、基板2毎に調整を行なうので、かかる熱膨張や残留応力に応じた微妙な調整もできる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、基板に光学薄膜を形成する光学部品の製造方法に関する。
【背景技術】
【0002】
光学薄膜としての蒸着膜を施した弾性を有する光学機体(以下、基板と言う)において、光学薄膜の内部応力による反りの量に等しいだけ、予め反対方向に基板の光学薄膜の形成面を凹面または凸面に研磨加工することで、内部応力による基板の反り問題を解決する技術が、開示されている(例えば、特許文献1参照)。
【0003】
【特許文献1】特開昭58−113901(1、2頁、第3図)
【発明の開示】
【発明が解決しようとする課題】
【0004】
しかしながら、基板に光学薄膜の内部応力による反りの量に等しいだけ、予め反対方向へ一枚毎、研磨加工を施す必要があり、この加工に多大の工数がかかっていた。
本発明は、このような点に鑑み成されたものであり、多大な工数をかけることなく、光学薄膜の形成後も優れた光学特性を有する光学部品の製造方法を提供することを目的とする。
【課題を解決するための手段】
【0005】
上述の目的を達成するために、本発明の光学部品の製造方法は、基板に光学薄膜を形成したときに生じる反りの把握の結果に基づいて、前記光学薄膜の形成面を基準面とし、前記形成面が前記基準面に対して前記反りとは略面対称の反りになるように、前記基板に変形を加える事前変形工程と、前記変形を加えた状態で、前記基板に前記光学薄膜を形成する薄膜形成工程とを有することを特徴とする。
この発明によれば、光学薄膜を形成する前に、光学薄膜の形成で生じる反りとは略面対称の反りになるような変形を基板に加えるという簡易な手法で、光学薄膜の形成面に、薄膜形成条件や光学薄膜の影響等による内部応力に吊り合う反対方向の応力を生ぜしめることが可能になる。
これにより、多大な工数をかけることなく優れた光学特性を有する光学部品の製造方法を提供することが可能になる。
尚、薄膜形成条件の影響とは、基板温度の上昇による熱膨張の影響であり、光学薄膜の影響とは、光学薄膜の残留応力による影響である。
【0006】
本発明では、前記変形を加えるために治具を用い、前記治具は、平板状の治具板を備え、前記治具板には、外側の支持部と中心側の支持部とが設けられており、前記外側の支持部を前記基板の外周部に接触させ、前記中心側の支持部を前記基板の中心部に接触させて、前記外側の支持部と前記中心側の支持部との相対位置を調整することで、前記基板に前記変形を加えるのが好ましい。
この発明では、治具板に設けられた外側の支持部と中心側の支持部との相対位置の調整を、外側の支持部と中心側の支持部との間の距離の調整で行なう。この調整は、治具板を基準として行なうので、微小単位で、微少距離まで、再現性良く、任意に調整することが可能である。その結果、基板に加える変形も微小単位で、微少量まで、再現性良く、任意に調整することが可能になる。
光学薄膜の形成方法において、基板と光学薄膜の材料源や基板の加熱源等との距離や角度によって、基板毎の熱膨張や光学薄膜の残留応力は微妙に異なった値となる。この発明では、基板毎に調整を行なうので、かかる熱膨張や残留応力に応じた微妙な調整も可能になる。
【0007】
本発明では、前記中心側の支持部の先端部には、粘着剤層または接着剤層を有する結合層が設けられており、前記結合層を前記基板に接触させるのが好ましい。
この発明では、中心側の支持部と基板の中心部との接触のための基板への加工が不要で、中心側の支持部と基板の中心部が簡易に接触及び分離される。
【0008】
本発明では、前記中心側の支持部の先端部に設けられた磁力により接合する接合部材と接合対部材とを、前記基板を間に介して対抗配置して、前記基板に接触させることが好ましい。
この発明では、中心側の支持部と基板の中心部との接触のための基板への加工が不要で、中心側の支持部と基板の中心部が簡易に接触及び分離される。
【0009】
本発明では、前記中心側の支持部の先端部には、接触部材が設けられ、前記基板の中心部には、孔が設けられており、前記中心側の支持部を前記孔に挿入させ、前記接触部材を前記基板の表面に接触させるのが好ましい。
この発明では、比較的、基板が形状として小さい場合、厚い場合、基板の剛性が大きい場合、または光学薄膜の応力が大きい場合、事前の基板の変形に比較的大きな物理力を要するが、比較的小さな物理力で充分な場合と同様に、確実、正確に再現性良く変形を加えることが可能になる。
【発明を実施するための最良の形態】
【0010】
以下、本発明の光学部品としての光学薄膜フィルタ1の製造方法に係る実施形態について図面に従って説明する。
(第1の実施形態)
【0011】
図1は、本実施形態で得られる光学薄膜フィルタ1を示す断面図である。
図1において、光学薄膜フィルタ1は光を透過する基板2と、基板2の片面に形成した光学薄膜3とで構成されている。
基板2は光透過性に優れた材料であれば良く、アクリル系樹脂やポリカーボネート系樹脂等のプラスチックや、BK7、サファイヤガラス、ホウケイ酸ガラス、白板ガラス、青板ガラス、SF3、及びSF7であっても良く、一般に市販されている光学ガラスが使用でき、更に水晶であっても良い。
また基板2の平面形状は、矩形でも円形であっても良く、また基板2の表裏面は、平坦な平面でも曲面であっても良く、さらに基板2の表裏面は、互いが平行関係でも非平行関係であっても良い。
光学薄膜3は、1層以上の誘電体から成り、例えば屈折率を相互に異にする第1の材料と第2の材料を交互に積層させた誘電体層から成る。そして反射防止膜、UV−IRカット膜(Ultraviolet-Infrared cut)、またはIRカット(Infrared cut)膜から選ばれる1種以上である。
尚、光学薄膜3は、基板2の両面に形成しても良い。
【0012】
次に、本実施形態の光学薄膜フィルタ1の製造方法について説明する。
図2は、本実施形態の光学薄膜フィルタ1の製造方法を示す工程図である。
図3、図4(a)及び図4(b)は、反りの把握を示す断面図である。
図5は、事前変形工程で用いる変形用治具6を示す断面図である。
図6(a)及び(b)は、事前変形工程を示す断面図である。
図7(a)及び(b)は、薄膜形成工程を示す断面図である。
図8は、本実施形態の事前変形工程における中心側の支持部8の先端部17近傍の部分断面図である。
【0013】
図2に示すように、本実施形態の光学薄膜フィルタ1の製造方法は、反りの把握とその結果に基づく事前変形工程及び薄膜形成工程とを有する。
光学薄膜3形成後の反りは、基板2の材質及び形状、光学薄膜3の材質及び膜厚ならびに薄膜形成条件等によって変化する。したがって、これらの条件が変わらない場合には、反りの把握は、必ずしも行なう必要はない。
【0014】
図3は、反りの把握で用いる平置き治具4と基板2を示している。
反りの把握では、図3に示す平置き治具4に配置された基板2の片面である形成面5に光学薄膜3を形成する。
ここで、基板2は、ひとつの光学フィルタ1の基板でも、後から分割して複数の光学フィルタ1を得るための基板であっても良い。
形成方法は、蒸着法、イオンアシスト蒸着法、イオンプレーテイング法やスパッタ法を用いることができ、材料源はSiO2、TiO2等の酸化物、MgF2、CaF2等の弗化物、ZnSのような硫化物及びKI,NaBr等のハロゲン化物を用いることができる。尚、材料源の位置は、図3の基板2の下側になる。
光学薄膜3の形成後の状態を図4に示す。図4(a)及び(b)において、基板2は、薄膜形成条件や光学薄膜3の影響等による内部応力が圧縮か引張りかによって、反り幅Aまたは反り幅Bの反りが生じる。
【0015】
事前変形工程では、治具として図5に示した変形用治具6を用いる。図5において、変形用治具6は、平板状の治具板7を備え、平板状の治具板7には、治具の中心側の支持部8と治具の外側の支持部10とが設けられている。外側の支持部10は、受け板11と押え板12とを備える。
また、一体とした治具板7と外側の支持部10とに対して、中心側の支持部8の位置を決めて固定する距離調整固定部9を備える。
【0016】
以下に、光学薄膜3の形成後の反り幅AとBの場合について、分けて事前変形工程を説明する。
反り幅Aである図4(a)の場合は、図6(a)に示すように、基板2の外周部16に変形用治具6の受け板11を接触させ、且つ基板2の中心部15に中心側の支持部8を接触させる。そして、中心側の支持部8を矢印方向に反り幅Aに相当する距離数だけ移動することで、外側の支持部10の第1の基準点14と中心側の支持部8の第2の基準点13との間の距離を調整し、基板2を変形して、その後、距離調整固定部9で中心側の支持部8を固定する。
反り幅Bである図4(b)の場合は、図6(b)に示すように、基板2の外周部16に変形用治具6の押え板12を接触させ、且つ基板2の中心部15に中心側の支持部8を接触させる。そして、中心側の支持部8を矢印方向に反り幅Bに相当する距離数だけ移動することで、外側の支持部10の第1の基準点14と中心側の支持部8の第2の基準点13との間の距離を調整し、基板2を変形して、その後、距離調整固定部9で中心側の支持部8を固定する。
以上のように、事前変形工程では、光学薄膜3の形成面5を基準面とし、基板2の光学薄膜3の形成面5が基準面に対して、上述の反りとは略面対称の反りになるように、基板に変形を加える。
【0017】
薄膜形成工程では、図6(a)及び(b)それぞれに対応して、図7(a)及び(b)に示すように、基板2の形成面5に、光学薄膜3を形成する。薄膜形成方法、薄膜形成条件等は、反りの把握で記述した内容と同様である。
【0018】
ここで中心側の支持部8と基板2の中心部15との接触、固定及び分離について、図8に従って詳しく説明する。中心側の支持部8の先端部17には、粘着剤または接着剤を有する結合層18が設けられている。
基板2に加えるべき変形の量は、一般的に僅かな量であることから、固定力は少なくて良い。
以上から、粘着剤または接着剤の材質に特に制約が必要ではなく、アクリル系またはビニル系等の粘着剤またはアクリル系、エポキシ系またはポリイミド系等の接着剤が使用でき、使用量は僅かで良い。
【0019】
結合層18がアクリル系またはビニル系等の粘着剤を有する場合、中心側の支持部8と基板2との接触による固定において、また結合層18へのUV(Ultraviolet)照射による粘着剤収縮後の中心側の支持部8と基板2との分離において、接触、固定及び分離が共に小さな力で達成することができる。
結合層18がアクリル系、エポキシ系またはポリイミド系等の接着剤を有する場合、中心側の支持部8と基板2との接触の後において、結合層18へのUV(Ultraviolet)照射または加熱を行い接着剤を硬化し、中心側の支持部8と基板2とを固定する。
分離については、変形用治具6と基板2とを一体とした状態で熱ショックを与え、中心側の支持部8と基板2とを分離する。
この接触、固定及び分離も、共に極めて小さな力で達成することができる。
【0020】
複数の光学フィルタ1を得る場合、薄膜形成工程の後、基板2を適宜分割する。
【0021】
尚、熱ショックとは、例えば80℃以上に一定時間保持後、即座に常温以下に放置することを指す。
また、図8に図示しないが、中心側の支持部8と基板2との分離の時点では、基板2に光学薄膜3が形成されている。
また、図6(b)に示すような方向に基板2に事前の変形を加える場合、結合層18は無くても良い。
以上のようにして、反りの少ない光学薄膜フィルタ1が得られる。
【0022】
以下、第1の実施形態の効果を記載する。
(1)光学薄膜3を形成する前に、光学薄膜3の形成で生じる反りとは略面対称の反りになるような変形を基板2に加えるという簡易な手法で、光学薄膜3の形成面5に、薄膜形成条件や光学薄膜3の影響等による内部応力に吊り合う反対方向の応力を生ぜしめることができる。
これにより、多大な工数をかけることなく優れた光学特性を有する光学部品の製造方法を提供することができる。
(2)治具板7に設けられた外側の支持部10と中心側の支持部8との相対位置の調整を、外側の支持部10と中心側の支持部8との間の距離の調整で行なう。この調整は、治具板7を基準として行なうので、微小単位で、微少距離まで、再現性良く、任意に調整することができる。その結果、基板2に加える変形も微小単位で、微少量まで、再現性良く、任意に調整することができる。
光学薄膜3の形成方法において、基板2と光学薄膜3の材料源や基板2の加熱源等との距離や角度によって、基板2毎の熱膨張や光学薄膜3の残留応力は微妙に異なった値となる。この発明では、基板2毎に調整を行なうので、かかる熱膨張や残留応力に応じた微妙な調整もできる。
(3)中心側の支持部8と基板2の中心部15との接触のための基板2への加工が不要で、中心側の支持部8と基板2の中心部15が簡易に接触及び分離できる。
(第2の実施形態)
【0023】
第2の実施形態は、第1の実施形態の中心側の支持部8と基板2の中心部15との接触の仕方のみが異なる。
これより、異なる点のみ説明し、第1の実施形態と同じ内容については、説明を省く。
【0024】
図9は、本実施形態の事前変形工程における中心側の支持部8の先端部17近傍の部分断面図である。
【0025】
図9において、先端部17に設けられた磁力により接合する接合部材19と接合対部材20とを、基板2を間に介して対抗配置し、基板2に接触させることによって、中心側の支持部8と基板2の中心部15とを接触する。
ここでは、接合部材19または接合対部材20の両方を磁石とするか、または一方を磁石として他方を磁性体とする。
磁石はフェライト磁石またはネオジム磁石等の永久磁石を使用することができ、また磁性体は純鉄、パーマロイ、またはセンダスト合金等を使用することができ、必要に応じニッケルの耐食メッキが施される。
一般に広く用いられる永久磁石及び磁性体による磁力を活用した固定であり、接触、固定及び分離は、共に小さな力で達成することができる。
尚、図6(b)に示すような方向に基板2に事前の変形を加える場合、接合対部材20は無くても良い。
【0026】
以下、第2の実施形態の効果を記載する。
(4)中心側の支持部8と基板2の中心部15との接触のための基板2への加工が不要で、中心側の支持部8と基板2の中心部15が簡易に接触及び分離できる。
(第3の実施形態)
【0027】
第3の実施形態は、第1の実施形態及び第2の実施形態の中心側の支持部8と基板2の中心部15との接触の仕方が異なる。具体的には、基板2に孔24を設け、孔24を活用して固定する。
これより、異なる点のみ説明し、第1及び第2の実施形態と同じ内容については、説明を省く。
【0028】
図10(a)は、基板2に孔24を設けるための加工を示す平面図であり、(b)は(a)のC−C線断面図である。
図11(a)及び(b)は、本実施形態の事前変形工程における中心側の支持部8の先端部17近傍の部分断面図である。
【0029】
基板2に孔24を設けるには、化学的な方法や機械的な方法で行なうことができる。
図10(a)及び(b)において、基板2の表面にスパッタ法で耐食膜22を形成し、更に孔あけ目的箇所21以外にレジスト膜23を形成する。耐食膜22はCr膜とAu膜を有する。
次に孔あけ目的箇所21のAuをI2、KIを主成分とするエッチング液で、Crを硝酸第二セリウムアンモニウムを主成分とするエッチング液で溶解、除去する。
次に基板2をエッチングする薬液(基板がガラスの場合には、水酸化カリウム水溶液、水晶の場合には、弗化水素水溶液と弗化アンモニウム水溶液の混合液)で化学的に、基板2の孔あけ目的箇所21を溶解、除去し、その後レジスト剥離液で、レジスト膜23を除去する。
その他の方法として、超音波穴あけ加工法で機械的に孔あけを行なうこともできる。
【0030】
以下に、図4における光学薄膜3の形成後の反り幅AとBの場合について、分けて接触方法を説明する。
反り幅Aの場合、図11(a)(図6(a)と同じ方向に基板2を変形する場合とする)において、先端部17に接触部材25を設けた中心側の支持部8を基板2の孔24に紙面上の下側から挿入させ、接触部材25を基板2の表面(紙面上の下側の表面)に接触させる。
反り幅Bの場合、図11(b)(図6(b)と同じ方向に基板2を変形する場合とする)において、先端部17に接触部材25を設けた中心側の支持部8を基板2の孔24に紙面上の上側から挿入させ、接触部材25を基板2の表面(紙面上の上側の表面)に接触させる。
【0031】
以下、第3の実施形態の効果を記載する。
(5)比較的、基板2が形状として小さい場合、厚い場合、基板2の剛性が大きい場合、または光学薄膜3の応力が大きい場合、事前の基板2の変形に比較的大きな物理力を要するが、比較的小さな物理力で充分な場合と同様に、確実、正確に再現性良く変形を加えることができる。
【0032】
以下、実施例に基づき本発明をより詳しく説明する。
(実施例1)
【0033】
本実施例は、可視波長域の光を透過し、所定波長以下の紫外波長域と所定波長以上の赤外波長域での光の吸収が少ない良好な反射特性を有し、基板2が水晶であることにより光学ローパスフィルタ機能を有する光学薄膜フィルタ1(UV−IRカットフィルタ)に適用した例である。
基板2、光学薄膜3、反りの把握ならびに中心側の支持部8と基板2の中心部15との接触、固定及び分離に関係する事項は、下述の通りとして、その他は第1の実施形態と同じとした。
【0034】
基板2は、直径45mm(屈折率n=1.52)、厚さは0.43mmの水晶板を用いた。
光学薄膜3の形成方法は通常の蒸着法を用いた。
光学薄膜3として、基板2の片面に高屈折材料(H)であるTiO2(屈折率n=2.40)と、低屈折率材料(L)であるSiO2(屈折率n=1.46)とを交互に積層して形成した。
【0035】
光学薄膜3の膜構成の詳細を説明する。
以下に説明する膜厚構成の表記は、高屈折率材料層(H)の膜厚を光学膜厚nd=1/4λの値を1Hとして表記し、低屈折率材料層(L)を同様に1Lと表記する。また、(xH、yL)SのSの表記は、スタック数と呼ばれる繰り返しの回数で、括弧内の構成を周期的に繰り返すことを表している。
光学薄膜3の膜厚構成は、設計波長λは550nm、基板2の上面第1層の高屈折率材料のTiO2膜3H1が0.60H、第2層の低屈折率材料のSiO2膜3L1が0.20L、以下、順次1.05H、0.37L、(0.68H、0.53L)4、0.69H、0.42L、0.59H、1.92L、(1.38H、1.38L)6、1.48H、1.52L、1.65H、1.71L、1.54H、1.59L、1.42H、1.58L、1.51H、1.72L、1.84H、1.80L、1.67H、1.77L、(1.87H、1.87L)7、1.89H、1.90L、1.90H、最上層の低屈折率材料のSiO2膜3L30が0.96Lの、計60層を形成した。
【0036】
次に、反りの把握について説明する。
光学薄膜3が形成された基板2は、低屈折率材料層のSiO2の強い圧縮応力と高屈折率材料層のTiO2の弱い引張応力により、光学薄膜3の形成面5が凸になるように、反り幅Aの反りが生じたことを把握した。
したがって、事前変形工程では、反りの把握の結果に基づき、光学薄膜3の形成面5を基準面とし、光学薄膜3の形成面5が基準面に対して、上述の反りとは略面対称の反りになるように、基板2に変形を加えた。
【0037】
次に、中心側の支持部8と基板2の中心部15との接触、固定及び分離について説明する。
中心側の支持部8の先端部17の結合層18には、UV硬化型ダイシングテープ(型番:Adwill D−638、メーカー:リンテック株式会社)の基材部をエポキシ系接着剤で貼り合わせて両面を粘着剤層としたテープを用いた。
上述の粘着剤層はUV硬化型アクリル系粘着剤から成り、接触、固定は粘着剤層の押付けで充分であり、特別な処理は不要であった。
分離は、結合層18にUV照射(主波長365nm、照度220mw/cm2、光量160mJ/cm2)することで粘着力を弱めた後に行なった。
分離後の基板2に粘着剤層が実用上問題になる水準で残留することはなかった。
【0038】
本実施例における基板(各治具でのNo1とNo2の2枚ずつ)の反り幅の測定結果を表1に示す。尚、反り幅は、光学薄膜3の形成面5を上にして、基板2の光学薄膜3の形成面5の外周部15をゼロ基準に、基板2の外周部15以外の形成面5が、反りによって上側となる場合をプラス数値で、下側となる場合をマイナス数値で表わし、単位はμmである。そして反り幅の測定は、高精度フラットネステスタFT−900((株)ニデック製)を使用した。
【0039】
【表1】

【0040】
以上のように、反りの少ない1枚の水晶板から成る光学ローパスフィルタ機能を有する光学薄膜フィルタ1(UV−IRカットフィルタ)の作製が可能になった。
【0041】
次に、光学特性を評価するために、この光学薄膜フィルタ1(UV−IRカットフィルタ)を含む複数枚の水晶板を用いた積層の光学ローパスフィルタを作製した。
【0042】
図12は、積層の光学ローパスフィルタ30を示す断面図である。
図13は、積層の光学ローパスフィルタ30の光学軸、光線の進行方向を示す模式図である。
【0043】
積層の光学ローパスフィルタ30の構造は、図12に示すように、複屈折板としての2つの水晶板40,50と、1/4波長板60を含んで構成されており、2つの水晶板40,50の間に、これも水晶からなる1/4波長板60を挿入した3層構造となっている。
水晶板40は、上述の基板が水晶からなる光学薄膜フィルタ1であり、水晶板40の片面に光学薄膜が形成されている。3層構造を構成する水晶板40と、1/4波長板60と、水晶板50とは、それぞれが貼り合わされて一体構造になっている。
【0044】
水晶板40には、薄膜形成時に図5の変形用治具6を用いたものと、比較として図3の平置き治具4を用いたものである表1に示した光学薄膜フィルタを用い、3層構造を構成する積層の光学ローパスフィルタ30を作製した。前者を評価用光学ローパスフィルタと、後者を比較用光学ローパスフィルタと呼ぶ。
光学薄膜フィルタは、表1の各治具でのNo1とNo2の2枚ずつを使用し、適用した積層の光学ローパスフィルタも対応してNo1とNo2とする。
各々の積層の光学ローパスフィルタ30の透過波面収差値の測定結果を表2に示す。
尚、測定は、レーザー干渉計を使用した。
【0045】
【表2】

【0046】
ここで図13に基づいて積層の光学ローパスフィルタ30の光学軸と光線の進行方向について説明する。
光入射側に配置される水晶板40は、光入射面と直交し、且つ紙面と平行な面(x−z平面)において、z軸と約45度の方位角をなす方向(矢印A1で示す方向)に光学軸(光学的主軸)を有している。この水晶板40に入射した光線L1は、水晶板40の有する複屈折性によって、2つの光線L11、L12に分離されて出射する。これらの光線L11、L12は、それぞれ偏向状態が直線偏向に変化して射出する。
1/4波長板60は、光入射面(x−y平面)において、x軸と約45度の方位角をなす方向(矢印A2で示す方向)に光学軸を有している。これにより、1/4波長板60に入射した光線L11、L12は、それぞれ直線偏向から円偏向に偏向状態が変えられ、2つの光線L13、L14となって出射する。
光出射側に配置される水晶板50は、光入射面と直交し、且つ紙面と直交する面(y−z平面)において、y軸と約45度の方位角をなす方向(矢印A3で示す方向)に光学軸を有している。この水晶板50に入射した光線L13は、水晶板50の有する複屈折性によって、2つの光線L15、L16に分離されて出射する。水晶板50に入射した光線L14は、前記水晶板40と同様に、2つの光線L17、L18に分離されて出射する。これらの光線L15、L16、L17、L18は、それぞれ偏向状態が直線偏向に変化して出射する。
【0047】
次に、上述の3層構造を構成する積層の光学ローパスフィルタ30を撮像素子と駆動部とで一体とした撮像モジュールとし、更に撮像モジュールをデジタルスチルカメラに組み込み、風景や人物の撮影を行い、目視で映像の確認を行なった。評価用光学ローパスフィルタを用いたものと比較用光学ローパスフィルタを用いたものでは、前者に映像の鮮明さが、後者に映像のボケが確認された。
(実施例2)
【0048】
本実施例は、可視波長域の光を透過し、所定波長以上の赤外波長域での光の吸収が少い良好な反射特性を有する光学薄膜フィルタ1(IRカットフィルタ)に適用した例である。
基板2及び反りの把握に関係する事項は、下述の通りとして、その他は第1の実施形態と同じとした。
【0049】
基板2は直径45mm(屈折率n=1.52)、厚さは0.3mmのガラス板を用いた。
光学薄膜3の形成方法は通常の蒸着法を用いた。
光学薄膜3として、基板2の片面に、高屈折率材料(H)であるTiO2と低屈折率材料層(L)であるMgF2を交互に積層して形成した。
【0050】
光学薄膜3の膜構成の詳細を説明する。
光学薄膜3の膜厚構成は、設計波長λは755nm、基板2側から1.14H、1.09L、1.03H、1.01L、(0.99H、0.99L)6、1.02H、1.08L、1.31H、0.18L、1.37H、1.24L、1.27H、1.28L、(1.28H、1.28L)6、1.26H、1.28L、1.25H、0.63Lの40層が形成されている。
【0051】
次に、反りの把握について説明する。
光学薄膜3が形成された基板2は、低屈折率材料層のMgF2の強い引張り応力と高屈折率材料層のTiO2の弱い引張応力により、光学薄膜3の形成面5が凹になるように反り幅Bの反りが生じた。
したがって、事前変形工程では、反りの把握の結果に基づき、光学薄膜3の形成面5を基準面とし、光学薄膜3の形成面5が基準面に対して、上述の反りとは略面対称の反りになるように、基板2に変形を加えた。
尚、結合層18は用いなかった。
【0052】
本実施例における基板2(各治具でのNo1とNo2の2枚ずつ)の反り幅の測定結果を表3に示す。
【0053】
【表3】

【0054】
以上のように、基板2がガラス基板である、例えばCCD(電荷結合素子)などの映像素子の防塵ガラスとして、CCDの入射面に貼り合わせて一体に構成した、IRカットフィルタ機能を含む光学薄膜フィルタ1の作製が可能になった。
【0055】
尚、本発明は上述の実施形態及び実施例に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
例えば、図5、図6(a)、図6(b)、図7(a)及び図7(b)に示す中心側の支持部8の第2の基準点及び外側の支持部10の第1の基準点は、中心側の支持部8及び受け板11の頂点であるが、頂点以外の点であっても良い。
【図面の簡単な説明】
【0056】
【図1】本発明の実施形態に係る光学薄膜フィルタを示す断面図。
【図2】本発明の実施形態に係る光学薄膜フィルタの製造方法を示す工程図。
【図3】反りの把握を示す断面図。
【図4】(a)及び(b)は、反りの把握を示す断面図。
【図5】事前変形工程で用いる変形用治具を示す断面図。
【図6】(a)及び(b)は、事前変形工程を示す断面図。
【図7】(a)及び(b)は、薄膜形成工程を示す断面図。
【図8】本発明の第1の実施形態の事前変形工程における中心側の支持部の先端部近傍の部分断面図。
【図9】本発明の第2の実施形態の事前変形工程の中心側の支持部の先端部の部分断面図。
【図10】(a)は、孔を設けるための加工を示す平面図であり、(b)は(a)のC−C線断面図。
【図11】(a)及び(b)は、本発明の第3の実施形態の事前変形工程における中心側の支持部の先端部近傍の部分断面図。
【図12】積層の光学ローパスフィルタを示す断面図。
【図13】積層の光学ローパスフィルタの光学軸、光線の進行方向を示す模式図。
【符号の説明】
【0057】
1…光学部品としての光学薄膜フィルタ、2…基板、3…光学薄膜、5…形成面(基準面)、6…治具としての変形用治具、7…治具板、8…中心側の支持部、10…外側の支持部、15…基板の中心部、16…基板の外周部、17…中心側の支持部の先端部、18…結合層、19…接合部材、20…接合対部材、24…孔、25…接触部材。

【特許請求の範囲】
【請求項1】
基板に光学薄膜を形成したときに生じる反りの把握の結果に基づいて、
前記光学薄膜の形成面を基準面とし、前記形成面が前記基準面に対して前記反りとは略面対称の反りになるように、前記基板に変形を加える事前変形工程と、
前記変形を加えた状態で、前記基板に前記光学薄膜を形成する薄膜形成工程とを有する
ことを特徴とする光学部品の製造方法。
【請求項2】
請求項1に記載の光学部品の製造方法において、
前記変形を加えるために治具を用い、
前記治具は、平板状の治具板を備え、
前記治具板には、外側の支持部と中心側の支持部とが設けられており、
前記外側の支持部を前記基板の外周部に接触させ、前記中心側の支持部を前記基板の中心部に接触させて、
前記外側の支持部と前記中心側の支持部との相対位置を調整することで、前記基板に前記変形を加える
ことを特徴とする光学部品の製造方法。
【請求項3】
請求項2に記載の光学部品の製造方法において、
前記中心側の支持部の先端部には、粘着剤または接着剤を有する結合層が設けられており、
前記結合層を前記基板に接触させる
ことを特徴とする光学部品の製造方法。
【請求項4】
請求項2に記載の光学部品の製造方法において、
前記中心側の支持部の先端部に設けられた磁力により接合する接合部材と、
接合対部材とを、
前記基板を間に介して対抗配置して、前記基板に接触させる
ことを特徴とする光学部品の製造方法。
【請求項5】
請求項2に記載の光学部品の製造方法において、
前記中心側の支持部の先端部には、接触部材が設けられ、
前記基板の中心部には、孔が設けられており、
前記中心側の支持部を前記孔に挿入させ、
前記接触部材を前記基板の表面に接触させる
ことを特徴とする光学部品の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate


【公開番号】特開2007−334087(P2007−334087A)
【公開日】平成19年12月27日(2007.12.27)
【国際特許分類】
【出願番号】特願2006−167024(P2006−167024)
【出願日】平成18年6月16日(2006.6.16)
【出願人】(000003104)エプソントヨコム株式会社 (1,528)
【Fターム(参考)】