説明

処理液供給装置および処理液供給方法

【課題】構成を簡素化し、コストを削減しながら、複数の処理部に処理液を安定して供給可能な処理液供給装置および処理液供給方法を提供する。
【解決手段】薬液キャビネット1は、基板Wに処理液による処理を施すための複数の基板処理部5に処理液を供給する。薬液キャビネット1は、複数の成分液供給源11〜15と、成分液を導く複数の成分液供給路21〜25と、これらの成分液供給路21〜25によって導かれた成分液を合流させて混合することにより処理液を生成する混合部70と、混合部70から複数の基板処理部5に処理液を分配する処理液分配路71とを備えている。成分液供給路21〜25には、それぞれ自動流量調整弁51〜55が介装されている。成分液供給源11〜15と自動流量調整弁51〜55との間には、成分液レギュレータ31〜35が介装されており、成分液供給路21〜25の成分液供給圧力を等圧に制御する。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、基板等の処理対象を処理するための処理液を供給するための装置および方法に関する。処理対象の一例としての基板には、たとえば、半導体ウエハ、液晶表示装置用基板、プラズマディスプレイ用基板、FED(Field Emission Display)用基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板、フォトマスク用基板などが含まれる。
【背景技術】
【0002】
半導体素子の製造工程では基板の一例としての半導体ウエハに対して処理液を用いた処理が施される。また、液晶表示装置その他の表示装置の製造工程では、ガラス基板等の表面に対して処理液を用いた処理が施される。このような処理を実行するための基板処理装置の一つの例は、基板を一枚ずつ処理する枚葉式基板処理装置である。枚葉式基板処理装置は、1枚の基板を保持して回転するスピンチャックと、スピンチャックに保持された基板に処理液(薬液またはリンス液)を供給する処理液ノズルとを有する基板処理部を処理装置本体に備えている。処理液ノズルに対して処理液を供給するために、処理装置本体とは別に薬液キャビネットが備えられる。薬液キャビネットと処理装置本体との間は配管で接続される。この配管を介して、薬液キャビネットから処理装置本体内の処理液ノズルへと処理液(薬液)が供給される。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2008−258437号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
処理液は、複数の成分液の混合液からなる場合がある。たとえば、第1薬液原液、第2薬液原液および純水(DIW:脱イオン水)を所定混合比で混合して、基板処理用の薬液が調製される場合がある。より具体的には、第1薬液原液としてアンモニア水を用い、第2薬液原液として過酸化水素水を用い、アンモニア水、過酸化水素水および純水を所定の混合比で混合することにより、SC1と呼ばれる薬液を調製することができる。また、第1薬液原液として塩酸を用い、第2薬液原液として過酸化水素水を用いて、塩酸、過酸化水素水および純水を所定の混合比で混合することにより、SC2と呼ばれる薬液を調製することができる。
【0005】
このような混合液を処理液として供給する薬液キャビネットは、複数の成分液を混合する混合機構を備えている。混合機構は、たとえば、複数の成分液供給源からの成分液供給路に接続された多連弁と、各成分液供給路に介装された流量制御器(フローコントローラ)とで構成することができる。この構成により、流量制御器によって制御された流量で複数の成分液が多連弁に流入して合流することにより、所定の混合比で混合された処理液が調製される。この処理液を基板処理部へと供給すればよい。
【0006】
処理装置本体に複数の基板処理部が備えられる場合には、薬液キャビネットには同数の前記混合機構を備える必要がある。つまり、複数の基板処理部に対して一つの混合機構を共用することができない。これは、複数の成分液供給路にそれぞれ介装された流量制御器によって制御された流量値によって、多連弁から流出する処理液の流量値が固定的に定まるからである。複数の基板処理部の一つにおいて処理液ノズルから処理液が吐出されるときには、当該固定流量値で処理液ノズルから処理液が吐出される。2つ以上の基板処理部において処理液ノズルからの処理液吐出が同時に行われるとすれば、各処理液ノズルからの吐出流量は、必然的に前記固定流量よりも少なくなる。むろん、半導体ウエハ等の処理工程においては、処理液ノズルからの吐出流量は基板処理に重大な影響を与えるから、十分な精度で制御される必要があり、前述のような流量変動は許容されない。よって、基板処理部の数に応じた混合機構を薬液キャビネットに備えて、十分な基板処理品質を確保する必要がある。
【0007】
ところが、基板処理部の数と同数の混合機構を設けるとすると、高価な部品である流量制御器が多数必要となる。具体的には、混合機構の個数に各混合機構で混合される成分液の種類数を乗じた個数の流量制御器を薬液キャビネットに備える必要がある。そのため、構成が複雑になるうえ、薬液キャビネットの製造コストが高くつくという問題がある。
そこで、この発明の目的は、構成を簡素化し、コストを削減しながら、複数の処理部に処理液を安定して供給可能な処理液供給装置および処理液供給方法を提供することである。
【課題を解決するための手段】
【0008】
上記の目的を達成するための請求項1記載の発明は、処理対象(W)に処理液による処理を施すための複数の処理部に処理液を供給するための処理液供給装置(1)であって、複数の成分液供給源(11〜15)と、前記複数の成分液供給源からの成分液をそれぞれ導く複数の成分液供給路(21〜25)と、前記複数の成分液供給路によって導かれた成分液を合流させて混合することにより処理液を生成する混合部(70)と、前記混合部から前記複数の処理部に処理液を分配する処理液分配路(71)と、前記複数の成分液供給路にそれぞれ介装されたオリフィス開度調整機構(51〜55:たとえば、開度調整機構付き流量調整弁)と、前記複数の成分液供給源から前記成分液供給路を介して前記オリフィス開度調整機構に導かれる成分液の供給圧力を等圧に制御する供給圧力制御手段(30〜35;98)とを含む、処理液供給装置である。なお、括弧内の英数字は後述の実施形態における対応構成要素等を表すが、特許請求の範囲を実施形態に限定する趣旨ではない。以下、この項において同じ。
【0009】
この構成によれば、複数の成分液が混合部で合流することによって、それらの混合液からなる処理液が調製される。この処理液が、処理液分配路を介して、複数の処理部に分配される。混合部に成分液を導く複数の成分液供給路には、オリフィス開度調整機構がそれぞれ介装されている。したがって、混合部での成分液の混合比は、複数のオリフィス開度調整機構において調整された開度(オリフィス開度)に従う。
【0010】
供給圧力制御手段は、複数のオリフィス開度調整機構の各一次側(成分液供給源側)における成分液の供給圧力を等しい値に制御する。これにより、混合部の下流側(処理液分配路および基板処理部)における流量の変化によらずに、混合部における成分液の混合比を複数のオリフィス開度調整機構における開度の比に保持することができる。以下、詳しく説明する。
【0011】
複数の成分液供給路においてオリフィス開度調整機構の一次側の供給圧力が等しいので、成分液供給路におけるオリフィス開度調整機構の一次側と二次側(混合部側)との間における圧力損失はいずれの成分液供給路においても等しい。つまり、供給圧制御手段による圧力制御位置から混合部までの差圧(圧力差)はいずれの成分液供給路においても等しい。この差圧を混合前差圧ΔP1ということにする。一方、混合部から処理部における処理液吐出点までの差圧を混合後差圧ΔP2ということにする。供給圧力制御手段が供給圧力を或る値Pに制御しているとすると、P=ΔP1+ΔP2である。
【0012】
混合後差圧ΔP2は、複数の処理部において実際に吐出されている処理液総流量に依存する。より具体的には、複数の処理部のうち実際に処理液が吐出されている処理部の数に依存する。つまり、処理液吐出が行われている処理部の数が多いほど混合後差圧ΔP2は小さくなる。供給圧力Pが一定値のとき、混合後側差圧ΔP2が小さくなれば、それに応じて混合前差圧ΔP1が大きくなる。したがって、それに応じて、複数の成分液供給路における各流量が増加する。逆に、処理液吐出が行われている処理部の数が少ないほど差圧ΔP2は大きくなるから、混合前差圧ΔP1が小さくなる。したがって、それに応じて複数の成分液供給路における各流量が減少する。複数の成分液供給路の各流量は、混合前差圧ΔP1に応じて同様に変化するので、流量によらずに、混合部における成分液の混合比には実質的な変化は生じない。
【0013】
こうして、混合部の下流側において必要とされる総流量(具体的には処理液吐出が行われる処理部の数)に応じて、混合部の上流側における複数の成分液の供給流量を変動させることができ、かつ、成分液の混合比を一定に保持することができる。これにより、混合部から上流側の構成を複数の処理部に対して共用することができるので、構成を簡単にすることができ、それに応じて装置の製造コストを低減することができる。
【0014】
複数の処理部における処理液吐出流量は等しくてもよいし、等しくなくてもよい。処理液吐出流量が等しくないときには、処理液吐出が行われている処理部の数が同じでも、どの処理部において処理液吐出が行われているかに応じて、混合部の下流側で必要とされる総流量が変化することになる。この発明の構成は、このような必要総流量変動に対しても、問題なく対応可能である。
【0015】
なお、供給圧力Pは一定値に保持されることが好ましいが、多少の変動があっても、この圧力変動は複数の成分液供給路において等しく生じるので、成分液の混合比に影響はない。
前記オリフィス開度調整機構は、流量制御器であってもよいし、開度調整弁であってもよい。開度調整弁は、手動弁(たとえば手動ニードル弁)であってもよいし、モータ等のアクチュエータ付きの自動開度調整弁(たとえばオートニードル弁)であってもよい。
【0016】
また、前記混合部は、配管状の混合部(たとえばマニホールド)であってもよい。また、前記複数の成分液供給路には、それぞれ開閉弁(61〜65)が介装されていてもよい。この場合に、前記混合部は、当該開閉弁と処理液混合部とが一体化された多連弁の形態を有していてもよい。
前記複数の処理部は、それぞれ、処理対象に向けて処理液を供給する処理液ノズル(8)と、前記処理液ノズルへの処理液の供給/吐出を制御する開閉弁(9)とを含むものであってもよい。各処理部において処理液の吐出/停止が制御されると、混合部の下流側で必要とされる処理液流量が変化するが、それに対応するように混合部の上流側の流量が変化するので、十分な流量の処理液を各処理部に供給できる。その場合において、成分液の混合比には実質的な変動は生じない。
【0017】
請求項2記載の発明は、前記供給圧力制御手段が、前記複数の成分液供給路にそれぞれ介装された複数の気体駆動型圧力調整弁(31〜35)と、前記複数の気体駆動型圧力調整弁に、共通に圧力制御された駆動用気体を供給する駆動用気体供給手段(30)とを含む、請求項1記載の処理液供給装置である。
この構成によれば、複数の成分液供給路にそれぞれ介装された気体駆動型の圧力調整弁に対して、共通に圧力制御された駆動用気体を供給する構成であるので、複数の成分液供給路における供給圧力を確実に等圧に制御することができる。また、気体駆動型の圧力調整弁は、耐食性を有する構造とすることができるから、腐食性の薬液を成分液として用いることができる。
【0018】
請求項3記載の発明は、前記複数の成分液供給源が、それぞれ、成分液を貯留する密閉タンク(81〜85)を含み、前記密閉タンクに前記成分液供給路が接続されており、前記供給圧力制御手段が、前記複数の成分液供給源の前記密閉タンクに、共通に圧力制御された加圧用気体を供給する加圧気体供給手段(98)を含む、請求項1記載の処理液供給装置である。
【0019】
この構成によれば、密閉タンクに加圧用気体を供給することで、密閉タンク内の圧力が高まり、それに伴って、密閉タンク内の成分液が成分液供給路に押し出される。その際に、共通に圧力制御された加圧用気体を複数の成分液供給源の密閉タンクに供給することで、複数の成分液供給路における供給圧力を等圧に制御することができる。
請求項4記載の発明は、前記処理液分配路に介装され、前記混合部から前記複数の処理部への処理液の流量を個別に制御する複数の流量制御器(75)をさらに含む、請求項1〜3のいずれか一項に記載の処理液供給装置である。
【0020】
この構成によれば、混合部と各処理部との間に流量制御器を設けてあるので、各処理部において、確実に一定流量の処理液を吐出することができる。流量制御器は処理部ごとに設ける必要があるが、処理部ごとに成分液混合機構を設け、各成分液混合機構において成分液毎に流量制御器を設ける場合に比較すると、格段に少数の流量制御器で足りる。
処理液分配路に介装される複数の流量制御器は、処理液流量を等しい値に制御するものであってもよいし、異なる値に制御するものであってもよい。
【0021】
請求項5記載の発明は、処理対象(W)に処理液による処理を施すための複数の処理部(5)に処理液を供給するための処理液供給方法であって、複数の成分液供給源(11〜15)から複数の成分液供給路(21〜25)によってそれぞれ導かれた複数種類の成分液を合流させて混合することにより処理液を生成する工程と、前記混合部から前記複数の処理部に処理液を分配する工程と、前記複数の成分液供給路にそれぞれ介装されたオリフィス開度調整機構(51〜55)の開度を調整する工程と、前記複数の成分液供給源から前記成分液供給路を介して前記オリフィス開度調整機構に導かれる成分液の供給圧力を等圧に制御する工程とを含む、処理液供給方法である。
【0022】
この方法により、請求項1の発明と同様の作用効果を実現できる。むろん、この方法に関しても、処理液供給装置の発明と同様の変更を施すことができる。
【図面の簡単な説明】
【0023】
【図1】この発明の第1の実施形態に係る処理液供給装置の構成を説明するための概念図である。
【図2】この発明の第2の実施形態に係る処理液供給装置の構成を説明するための概念図である。
【発明を実施するための形態】
【0024】
以下では、この発明の実施の形態を、添付図面を参照して詳細に説明する。
図1は、この発明の第1の実施形態に係る処理液供給装置の構成を説明するための概念図である。処理液供給装置としての薬液キャビネット1は、処理装置本体2とともに、基板処理装置3を構成している。処理装置本体2には、基板Wを1枚ずつ処理する枚葉型の基板処理部5が複数個備えられている。薬液キャビネット1は、基板処理部5に向けて調合済みの薬液を処理液として供給するものである。基板Wは、たとえば、半導体ウエハであってもよい。
【0025】
基板処理部5は、処理カップ6と、スピンチャック7と、処理液ノズル8とを備えている。処理カップ6は、筒状の容器体であり、その内方に処理空間を区画している。この処理空間にスピンチャック7が収容されている。スピンチャック7は、基板Wをほぼ水平姿勢に保持して基板Wの中心を通る鉛直な回転軸線周りに回転させる基板保持回転機構である。処理液ノズル8は、スピンチャック7に保持されている基板Wの表面(図1の例では上面)に向けて処理液を供給する。これにより、基板Wの表面が処理液によって処理される。
【0026】
薬液キャビネット1は、成分液供給源11〜15と、成分液供給路21〜25と、精密電空レギュレータ30と、成分液レギュレータ31〜35と、流量計41〜45と、自動流量調整弁51〜55と、成分液バルブ61〜65と、混合部70とを備えている。成分液供給源11〜15は、種類の異なる成分液を供給するものである。
たとえば、成分液供給源11は、第1薬液原液としてのアンモニア水(NHOH)を第1成分液として供給し、成分液供給源12は第2薬液原液としての塩酸(HCl)を第2成分液として供給し、成分液供給源13は第3薬液原液としての過酸化水素水(H)を第3成分液として供給し、成分液供給源14は第4薬液原液としてのフッ酸を第4成分液として供給する。また、成分液供給源15は、希釈液としての純水(DIW:脱イオン水)を第5成分液として供給する。むろん、成分液の種類および数は一例であり、別の種類の成分液が用いられてもよいし、5種類未満または6種類以上の成分液を用いてもよい。なお、「薬液原液」とは、混合部70で混合される前の薬液を意味するものとする。
【0027】
成分液供給路21〜25は、各一端が成分液供給源11〜15に接続され、各他端が共通に混合部70に接続されている。これにより、成分液供給路21〜25は、成分液供給源11〜15からの成分液を混合部70へと導く。
成分液供給路21には、成分液供給源11側から順に、成分液レギュレータ31、流量計41、自動流量調整弁51、および成分液バルブ61が介装されている。成分液供給路22には、成分液供給源12側から順に、成分液レギュレータ32、流量計42、自動流量調整弁52、および成分液バルブ62が介装されている。また、成分液供給路23には、成分液供給源13側から順に、成分液レギュレータ33、流量計43、自動流量調整弁53、および成分液バルブ63が介装されている。さらに、成分液供給路24には、成分液供給源14側から順に、成分液レギュレータ34、流量計44、自動流量調整弁54、および成分液バルブ64が介装されている。同様に、成分液供給路25には、成分液供給源15側から順に、成分液レギュレータ35、流量計45、自動流量調整弁55、および成分液バルブ65が介装されている。
【0028】
成分液レギュレータ31〜35は、成分液供給源11〜15からの成分液の供給圧力をそれぞれ調節する供給圧力調節装置である。成分液レギュレータ31〜35は、この実施形態では、空気駆動型(気体駆動型)レギュレータで構成されており、腐食性の薬液に対する耐久性のある耐薬液仕様となっている。成分液レギュレータ31〜35には、精密電空レギュレータ30によって圧力制御された駆動空気(駆動気体)が、駆動空気配管36を介して、共通に与えられている。つまり、成分液レギュレータ31〜35は、共通の駆動空気によって駆動されるようになっており、これにより、複数の成分液は、等しい供給圧力で混合部70に向けて供給されることになる。
【0029】
流量計41〜45は、成分液レギュレータ31〜35と自動流量調整弁51〜55との間で成分液供給路21〜25に介装されており、該当する成分液供給路21〜25を流れる成分液の流量を計測する。計測結果は、制御装置50に入力されるようになっている。
自動流量調整弁51〜55は、それぞれ内部の成分液流通路にオリフィスを有しており、そのオリフィス開度を調整することができるオリフィス開度調整機構である。具体的には、自動流量調整弁51〜55は、たとえば、モータ等のアクチュエータ付のニードルバルブ(オートニードルバルブ)で構成することができ、制御装置50によって開度が制御されるようになっている。成分液レギュレータ31〜35によって、成分液供給路21〜25における成分液の供給圧力が等圧に制御されているので、自動流量調整弁51〜55の開度の比は、成分液供給路21〜25を通る成分液の流量比に等しくなる。
【0030】
成分液バルブ61〜65は、自動流量調整弁51〜55と混合部70との間で、成分液供給路21〜25をそれぞれ開閉する開閉弁である。たとえば、これらの成分液バルブ61〜65は、空気駆動型(気体駆動型)のバルブで構成することができる。成分液バルブ61〜65の開閉は、制御装置50によって制御されるようになっている。成分液バルブ61〜65を選択的に開閉することによって、成分液供給源11〜15から供給される任意の1種のみを混合部70に供給したり、任意の2種以上の成分液を混合部70に供給したりすることができる。2つ以上の成分液バルブ61〜65を開成することによって、混合部70において、それらの成分液が合流して混合されることになる。このときの混合比は、対応する自動流量調整弁51〜55の開度の比に等しい。
【0031】
混合部70は、マニホールドで構成され、配管の一部を形成するものである。この混合部70には成分液供給路21〜25の各一端が結合されていて、これらの成分液供給路21〜25から供給される成分液が混合部70の内部で合流し、それらの混合液からなる処理液が調製されるようになっている。成分液バルブ61〜65は混合部70と一体化されていてもよい。すなわち、これらはいわゆる多連弁により構成されていてもよい。
【0032】
混合部70と複数の基板処理部5との間は、処理液分配路71によって接続されている。処理液分配路71は、一端が混合部70に接続された1本の集合供給配管72と、集合供給配管72の他端側から分岐した複数本の個別供給配管73とを備えている。個別供給配管73は、基板処理部5と同数本設けられており、集合供給配管72と複数の基板処理部5との間をそれぞれ接続するものである。各個別供給配管73に処理液ノズル8が結合されており、各個別供給配管73の途中部に処理液バルブ9が介装されている。
【0033】
また、各個別供給配管73の途中部には、流量制御器(FC:フローコントローラ)75が介装されている。各流量制御器75は、個別供給配管73を流通する処理液の流量を、対応する基板処理部5における処理内容に応じて予め定められた流量値に制御する。したがって、対応する基板処理部5の処理液バルブ9を開けば、当該流量値に従う流量で処理液ノズル8から基板Wに向けて処理液が吐出されることになる。流量制御器75における制御流量値は、制御装置50によって設定される。
【0034】
各個別供給配管73には、流量制御器75と処理液バルブ9との間(処理液ノズル8に近い位置が好ましい)にドレン配管76が接続されている。このドレン配管76には、ドレンバルブ77が介装されている。ドレンバルブ77の開閉は、制御装置50によって制御される。
制御装置50は、マイクロコンピュータとしての基本構成を有するもので、CPUおよび必要なメモリを含み、必要な制御動作を実行可能なように予めプログラムされている。この制御装置50は、精密電空レギュレータ30、自動流量調整弁51〜55、成分液バルブ61〜65、流量制御器75、ドレンバルブ77および処理液バルブ9の動作を制御する。また、制御装置50には、流量計41〜45から、流量測定結果を表す信号が入力されるようになっている。
【0035】
次に動作について説明する。
一つの具体例として、アンモニア過酸化水素水混合液(いわゆるSC1)を基板Wに供給する処理を行う場合の動作について説明する。
制御装置50は、精密電空レギュレータ30を制御することにより、第1〜第5成分液の供給圧力(自動流量調整弁51〜55の一次側の圧力)を等圧に制御する。また、制御装置50は、アンモニア水、過酸化水素水および純水にそれぞれ対応する自動流量調整弁51,53,55の開度を所定の混合比に従って制御する。たとえば、アンモニア水:過酸化水素水:純水=A:B:Cの混合比で混合する場合には、自動流量調整弁51,53,55における開度の比がA:B:Cに制御される。これにより、成分液バルブ61,63,65を開いたときに、成分液供給路21,23,25を通って混合部70へと供給される成分液の流量比がA:B:Cとなる。より実際的には、成分液供給路21,23,25を通って供給される成分液の流量比がA:B:Cとなるように自動流量調整弁51,53,55の開度を調整し、そのときの開度値を制御装置50の内部に記憶しておけばよい。
【0036】
制御装置50は、必要時に、成分液バルブ61,63,65を開く。この状態で、いずれかの基板処理部5において処理液バルブ9が開かれると、成分液供給路21,23,25から混合部70へと、複数種類の成分液として、アンモニア水、過酸化水素水および純水が供給される。これらの成分液は、混合部70において合流して混合され、これにより、アンモニア過酸化水素水混合液(SC1)が調製される。このアンモニア過酸化水素水混合液が、処理液として、処理液分配路71から基板処理部5へと供給され、処理液ノズル8から基板Wに向けて吐出される。
【0037】
この場合に、複数の基板処理部5のうち処理液バルブ9が開かれた基板処理部5の数によらずに、また、いずれの基板処理部で処理液バルブ9が開かれたかによらずに、混合部70において適正な混合比A:B:Cで成分液が混合され、かつ、各基板処理部5には適正流量の処理液が供給される。
この原理について説明すれば、次のとおりである。
【0038】
複数の成分液の一次供給圧力(自動流量調整弁51〜55の上流側の圧力)が等しく制御されているので、成分液バルブ61〜65が開かれた状態では、いずれの成分液供給路21〜25においても、成分液レギュレータ31〜35から混合部70までの差圧は等しい。この差圧を混合前差圧ΔP1という。この混合前差圧ΔP1を用いると、成分液バルブ61〜65が開成されたときの各成分液供給路21〜25の流量Q〜Qは、次式(1)〜(5)によって表される。
【0039】
=k×Cv×(ΔP1)1/2/G1/2 …(1)
=k×Cv×(ΔP1)1/2/G1/2 …(2)
=k×Cv×(ΔP1)1/2/G1/2 …(3)
=k×Cv×(ΔP1)1/2/G1/2 …(4)
=k×Cv×(ΔP1)1/2/G1/2 …(5)
ただし、k〜kは定数、Cv〜Cvは自動流量調整弁51〜55のオリフィス開度に対応する圧力損失係数、G〜Gは各成分液の比重である。
【0040】
上記より、次式が成立する。
:Q:Q:Q:Q
=Cv1・k1/G11/2:Cv2・k2/G21/2:Cv3・k3/G31/2:Cv4・k4/G41/2:Cv5・k5/G51/2
圧力損失係数Cv〜Cvは、オリフィス開度を定めると当該開度に応じた一定値となるから、混合部70での成分液の混合比(混合部70に流入する成分液の流量比)は、定数比となり、混合前差圧ΔP1の変動によらずに一定に保持される。流量Q1〜Q5は、混合前差圧ΔP1の平方根に比例して変動する。
【0041】
一方、混合部70から処理液ノズル8の吐出口までの差圧を混合後差圧ΔP2とする。成分液レギュレータ31〜35によって制御されている成分液の一次供給圧力をPとすると、次式(6)が成立する。
P=ΔP1+ΔP2 …(6)
混合後差圧ΔP2は、いくつの基板処理部5において処理液ノズル8から処理液が吐出されているかに応じて変動する値である。この混合後差圧ΔP2は、処理液吐出が行われている基板処理部5の数が多いほど低く、少ないほど高くなる。むろん、複数の基板処理部5における吐出流量が異なる場合には、いずれの基板処理部5で処理液吐出が行われているかに応じて、混合後差圧ΔP2が変動する。つまり、処理装置本体2に供給すべき総流量が多いほど混合後差圧ΔP2が低くなり、当該総流量が少ないほど混合後差圧ΔP2が高くなる。
【0042】
一次供給圧力Pが固定値に制御されている場合、前記式(6)より、混合後差圧ΔP2が減少すれば、混合前差圧ΔP1が大きくなる。したがって、前記(1)〜(5)式から理解されるとおり、成分液の流量が増加する。これにより、処理液吐出が行われている基板処理部5の数が多いときには、成分液の流量が増加し、その結果、混合部70から集合供給配管72へと導出される処理液の流量が増加することになる。つまり、集合供給配管72へは、処理装置本体2側で必要とされる処理液総流量に応じた流量の処理液が導出されることになる。これにより、各基板処理部5において、処理液流量が不足することがなく、流量制御器75によって制御された流量で、処理液を基板Wに供給できる。むろん、前述のとおり、処理液を構成する成分液の混合比は適正値に保たれる。
【0043】
次に、自動流量調整弁51〜55の開度の設定方法について説明する。開度の設定は手動調整によって行ってもよいし、制御装置50の働きによる自動調整によって行ってもよい。
まず、手動調整について説明する。手順は、次のとおりである。
手順A1:処理液の構成成分に該当する成分液バルブ61〜65を開く。
【0044】
手順A2:たとえば、一つの基板処理部5のみで処理液を吐出し、流量制御器75によって所定の流量に制御する。
手順A3:流量計41〜45を見ながら、制御装置50に指令を与えて、自動流量調整弁51〜55の開度を変化させる操作を行う。そして、所定の混合比に等しい流量比となったときの開度データを制御装置50の内部のメモリに記憶させるための操作を行う。これらの操作は、制御装置50に接続された操作端末(たとえば、キーボードやポインティングデバイスを含む操作装置)から行えばよい。
【0045】
手順A4:成分および/または混合比の異なる複数種類の処理液に関して開度データを制御装置50に登録するときには、手順A1〜A3を繰り返す。
次に、自動調整について説明する。手順は、次のとおりである。
手順B1:制御装置50は、予め定めた総流量(たとえば、所定数(1個でもよいし全部でもよい)の基板処理部5への供給総流量に相当する一定値)を、調製すべき処理液の混合比で按分し、各成分液の個別流量を求める。具体的には、総流量をQとし、アンモニア水、過酸化水素水および純水をA:B:Cで混合する場合には、次式に従って、アンモニア水の個別流量Q、過酸化水素水の個別流量Q、および純水の個別流量Qを求めればよい。
【0046】
=A・Q/(A+B+C) …(7)
=B・Q/(A+B+C) …(8)
=C・Q/(A+B+C) …(9)
手順B2:制御装置50は、調製すべき処理液を構成する成分液に対応する成分液バルブ61〜65を開く。また、前記総流量に対応する基板処理部5の処理液バルブ9が開かれる。この状態で、制御装置50は、流量計41〜45の出力を参照し、手順B1で求めた個別流量が達成されるように、対応する自動流量調整弁51〜55の開度を調節する。
【0047】
手順B3:自動流量調整弁51〜55の調節が終了したら、制御装置50は、そのときの自動流量調整弁51〜55の開度を維持する。
手順B4:制御装置50は、必要に応じて、前記調整後の開度を表す開度データを内部のメモリに登録する。
手順B5:成分および/または混合比の異なる複数種類の処理液に関する開度データを制御装置50に登録するときには、手順B1〜B4を繰り返す。
【0048】
このようにして、制御装置50の内部のメモリには、処理液の種類に対応した開度データが登録されることになる。登録された開度データは、基板処理に際して、使用する処理液の種類に応じてメモリから読み出される。制御装置50は、その読み出された開度データに基づいて、流量調整弁51〜55を制御する。これにより、各流量調整弁51〜55の開度は、予めメモリに登録されたとおりの開度に制御される。
【0049】
使用する処理液の種類を変更する場合(成分液の混合比を変更する場合を含む)の手順は次のとおりである。この手順は、作業者が操作端末から制御装置50に指令を与えて行ってもよいし、制御装置50の制御動作によって自動で行われてもよい。
手順C1:各個別供給配管73に接続されたドレン配管76途中のドレンバルブ77を開く。ドレンバルブ77を開く代わりに、変更後の処理液を用いた処理に使用する処理液ノズル8に対応した処理液バルブ9を開いてもよい。
【0050】
手順C2:純水に対応した成分液バルブ65のみを開き、所定の流量で所定時間だけ純水を供給する。これにより、混合部70および処理液分配路71(処理液バルブ9を開くときにはさらに処理液ノズル8)内に残留する薬液成分を純水に置換する。
手順C3:変更後の処理液の種類に応じた成分液バルブ61〜65を開き、対応する自動流量調整弁51〜55を当該処理液の種類に応じた開度に制御する。この状態で所定の総流量で所定時間だけ当該処理液を供給する。これにより、混合部70および処理液分配路71(処理液バルブ9を開くときにはさらに処理液ノズル8)内の純水が、変更後の処理液に置換される。
【0051】
この後、未処理の基板Wを基板処理部5に導入して、基板Wに対する処理を開始すればよい。
手順C1において、ドレンバルブ77を開いて排液することとすれば、基板処理への影響を最小限に抑制できる。また、手順C1において、処理液バルブ9を開くこととすれば、処理液ノズル8まで含めた処理液供給路全体の残留処理液を純水に置換し、さらに、その純水を次に使用する処理液に置換できる。
【0052】
以上のように、この実施形態によれば、成分液供給源11〜15から混合部70に至る構成が、複数の基板処理部5によって共用されている。これにより、構成が著しく簡単になっており、薬液キャビネット1を低コストで提供できる。しかも、混合部70の下流側において必要とされる処理液総流量が変動すれば、それに応じて各成分液の流量が変動し、処理液流量が不足することがない。そして、処理液を構成する成分液の混合比は、混合部70の下流側において必要とされる処理液総流量の変動によらずに、一定に保持することができる。しかも、各基板処理部5に処理液を供給する個別供給配管73には、流量制御器75を配置している。よって、基板Wに対して、複数の成分液を所定の混合比で正確に混合して調製された処理液を必要な流量で供給することができるから、高品質な基板処理が可能となる。
【0053】
また、各成分液供給路21〜25に流量制御器を設ける必要がなく、安価な自動流量調整弁51〜55および成分液レギュレータ31〜35等を配置すれば足りる。これによっても、コストの低減を図ることができる。むろん、複数の基板処理部のそれぞれに対応して成分液を混合する混合機構を設け、各混合機構において複数の成分液配管にそれぞれ流量制御器を介装する構成に比較すれば、著しく製造コストを削減することができる。
【0054】
図2は、この発明の第2の実施形態に係る処理液供給装置の構成を説明するための概念図である。この図2において、前述の図1に示された各部の対応部分には、図2中と同一参照符号を付して示す。
この実施形態では、成分液供給源11〜15に供給圧力制御手段が備えられている。より具体的には、成分液供給源11〜15は、それぞれ、成分液を貯留する密閉タンク81〜85を備えている。密閉タンク81〜85内には、成分液供給路21〜25の入口端部を形成する配管21a〜25aがそれぞれ導入されている。配管21a〜25aは、各入口端が、密閉タンク81〜85内に貯留された成分液中に液没するように、密閉タンク81〜85内に配置されている。
【0055】
一方、密閉タンク81〜85には、加圧気体供給路88が接続されている。より具体的には、加圧気体供給路88は、主配管90と、この主配管90から密閉タンク81〜85へとそれぞれ分岐した分岐配管91〜95とで形成されている。分岐配管91〜95は、それぞれ、密閉タンク81〜85の内部空間(成分液の液面よりも上方の空間)と連通している。主配管90には、加圧気体供給源89からの加圧気体(たとえば窒素ガス等の不活性ガス)が供給されるようになっている。主配管90の途中部には、分岐配管91〜95への分岐位置よりも上流側に、制御装置50によって制御される精密電空レギュレータ98が介装されている。この精密電空レギュレータ98によって圧力制御された加圧気体が、分岐配管91〜95を介して、密閉タンク81〜85に共通に供給される。
【0056】
この構成により、自動流量調整弁51〜55の上流側における成分液の供給圧力を等しくすることができるから、前述の第1の実施形態の場合と同様の効果を実現できる。
以上、この発明の2つの実施形態について説明したが、この発明は、さらに他の形態で実施することもできる。たとえば、前述の実施形態では、アンモニア水、過酸化水素水および純水を混合してアンモニア過酸化水素水混合液(SC1)を調製する具体例について説明したが、むろん、前述の薬液キャビネット1は、塩酸、過酸化水素水および純水を混合して塩酸過酸化水素水(SC2)を調製して、基板処理部5に供給することができる。また、一種類の薬液(アンモニア水、塩酸、過酸化水素水、フッ酸)を純水で所定濃度に希釈して処理液とし、基板処理部5に供給することもできる。また、基板処理部5は、基板Wを1枚ずつ処理する枚葉型以外にも、複数の基板Wを一括で処理液槽に浸漬させて処理する、いわゆるバッチ型であってもよい。
【0057】
その他、特許請求の範囲に記載された事項の範囲で種々の設計変更を施すことが可能である。
【符号の説明】
【0058】
1 薬液キャビネット
2 処理装置本体
3 基板処理装置
5 基板処理部
6 処理カップ
7 スピンチャック
8 処理液ノズル
9 処理液バルブ
11〜15 成分液供給源
21〜25 成分液供給路
30 精密電空レギュレータ
31〜35 成分液レギュレータ
36 駆動空気配管
41〜45 流量計
50 制御装置
51〜55 自動流量調整弁
61〜65 成分液バルブ
70 混合部
71 処理液分配路
72 集合供給配管
73 個別供給配管
75 流量制御器
76 ドレン配管
77 ドレンバルブ
81〜85 密閉タンク
88 加圧気体供給路
89 加圧気体供給源
90 主配管
91〜95 分岐配管
98 精密電空レギュレータ
W 基板

【特許請求の範囲】
【請求項1】
処理対象に処理液による処理を施すための複数の処理部に処理液を供給するための処理液供給装置であって、
複数の成分液供給源と、
前記複数の成分液供給源からの成分液をそれぞれ導く複数の成分液供給路と、
前記複数の成分液供給路によって導かれた成分液を合流させて混合することにより処理液を生成する混合部と、
前記混合部から前記複数の処理部に処理液を分配する処理液分配路と、
前記複数の成分液供給路にそれぞれ介装されたオリフィス開度調整機構と、
前記複数の成分液供給源から前記成分液供給路を介して前記オリフィス開度調整機構に導かれる成分液の供給圧力を等圧に制御する供給圧力制御手段と
を含む、処理液供給装置。
【請求項2】
前記供給圧力制御手段が、前記複数の成分液供給路にそれぞれ介装された複数の気体駆動型圧力調整弁と、前記複数の気体駆動型圧力調整弁に、共通に圧力制御された駆動用気体を供給する駆動用気体供給手段とを含む、請求項1記載の処理液供給装置。
【請求項3】
前記複数の成分液供給源が、それぞれ、成分液を貯留する密閉タンクを含み、前記密閉タンクに前記成分液供給路が接続されており、
前記供給圧力制御手段が、前記複数の成分液供給源の前記密閉タンクに、共通に圧力制御された加圧用気体を供給する加圧気体供給手段を含む、請求項1記載の処理液供給装置。
【請求項4】
前記処理液分配路に介装され、前記混合部から前記複数の処理部への処理液の流量を個別に制御する複数の流量制御器をさらに含む、請求項1〜3のいずれか一項に記載の処理液供給装置。
【請求項5】
処理対象に処理液による処理を施すための複数の処理部に処理液を供給するための処理液供給方法であって、
複数の成分液供給源から複数の成分液供給路によってそれぞれ導かれた複数種類の成分液を合流させて混合することにより処理液を生成する工程と、
前記混合部から前記複数の処理部に処理液を分配する工程と、
前記複数の成分液供給路にそれぞれ介装されたオリフィス開度調整機構の開度を調整する工程と、
前記複数の成分液供給源から前記成分液供給路を介して前記オリフィス開度調整機構に導かれる成分液の供給圧力を等圧に制御する工程と
を含む、処理液供給方法。

【図1】
image rotate

【図2】
image rotate


【公開番号】特開2010−232521(P2010−232521A)
【公開日】平成22年10月14日(2010.10.14)
【国際特許分類】
【出願番号】特願2009−80004(P2009−80004)
【出願日】平成21年3月27日(2009.3.27)
【出願人】(000207551)大日本スクリーン製造株式会社 (2,640)
【Fターム(参考)】