説明

化学蒸着法により窒化チタンを基板に蒸着させる方法及び装置

【課題】MOCVDによって形成される窒化チタン障壁層を基板の端縁部を含む半導体表面の上に蒸着させ、その際に、基板の端縁部に蒸着された窒化チタン障壁層の部分の厚さを、蒸着された残りの窒化チタン障壁層の厚さに比較して増大させないようにする、プロセス及び装置を提供する。
【解決手段】基板2の端縁部6に蒸着される窒化チタンの量を抑制するが、そのような蒸着を完全には阻止しないようにする。1又はそれ以上の蒸着抑制ガス64を、端縁部に向かうプロセスガスの流れ方向とは実質的に反対の方向に、端縁部に向けて流す。これにより、端縁部に蒸着される窒化チタンの量が減少される。蒸着抑制ガスは、基板の下の基板支持台40に形成された複数の孔52を通って流れる。これらの孔は、支持台の頂部付近で円周方向に隔置された開口54を有している。蒸着抑制ガスは、開口を通って、基板の上面の下方の端縁部の付近から出る。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、半導体基板上に形成される集積回路構造に関する。より詳細に言えば、本発明は、金属有機化学蒸着法によって半導体基板の端縁部に形成された窒化チタンの剥離現象を解消するための方法及び装置に関する。
【背景技術】
【0002】
集積回路構造は、絶縁層の上に形成されたパターン化された金属層を用い、これにより、集積回路構造の一部から成る能動デバイスの間に金属相互接続部すなわち配線を形成する。特に、タングステン、アルミニウム又はアルミニウム/銅合金の如き金属を用いて上述の金属相互接続部を形成する場合には、金属層を形成する前に絶縁層の上にTiNの障壁層を形成し、これにより、集積回路構造にその後堆積される金属層の接着を促進すると共に、上記金属とその基礎材料(例えば、基礎絶縁層のバイアホール又は接点開口の下にあるシリコンの露出面又は他の金属の露出面)との間の相互作用を阻止するのが好ましい。
【0003】
TiNのステップ被覆率(step coverage)を高めると共に、熱蓄積(thermal budget)を一定に保つ(集積回路構造が高い処理温度に暴露されるのを制限して、ドーパントの過剰な拡散を抑制する)ために、上述のTiN障壁層のCVD形成は、低い蒸着温度(例えば、約325°Cよりも低い温度)で実行されるのが好ましく、また、その際には、気体チタンの供給源として有機チタンの供給源を用いるのが好ましい。そのような蒸着法は、金属有機化学蒸着法すなわちMOCVDと呼ばれている。
【0004】
しかしながら、MOCVDを用いて半導体基板の上に窒化チタン障壁層を形成すると、厚さが不均一な窒化チタン障壁層が形成されることがある。特に、基板の端縁部に堆積される窒化チタン層の厚さが、基板の上面の他の部分に形成される障壁層の厚さを超えることがある。例えば、約300オングストローム(Å)の均一な厚さを有する窒化チタン障壁層が、基板の上面にわたって堆積された場合には、基板の端縁部には、400Å程度の窒化チタンが堆積することがある。
【0005】
そのような状況は、図1及び図2に示されており、これらの図においては、半導体基板2が、CVDチャンバ20の中でウエーハサポート22の上に設けられており、一方、MOCVD蒸着ガスが、チャンバ20の中のシャワーヘッド24から基板2の上面4の上及び基板2の端縁部6の周囲に向かって下方に流れている。図2(この図は、図示の都合上プロポーションを意図的に無視して拡大して示されている)に示すように、基板2の上面4に蒸着されている窒化チタン障壁層14は、概ね均一な厚さを有しており、一方、基板2の端縁部6に蒸着されている窒化チタン16は、不均一な厚さを有していて、層14よりも厚い。
【0006】
基板の端縁部に蒸着された窒化チタンの追加の厚さは、膜の応力、膜の性質、
及び/又は、MOCVD装置の設計に起因して生ずる結果である。しかしながら、そのような原因に関係無く、基板2の端縁部6に生じた窒化チタン部分16の上記追加の厚さ(この追加の厚さは、窒化チタン被覆の曲げ又は撓みの機能を低下させる)は、基板2がその後の処理の間に加熱されたり冷却されたりする際に、窒化チタンの被覆16が割れたり剥離したりする傾向(すなわち、窒化チタン被覆の非接着性)を高める。一方、蒸着した窒化チタン障壁層の上記厚い部分16のそのような割れ及び剥離若しくは非接着性は、粒子を生成させる。そのような粒子の生成は、半導体基板上に集積回路構造を形成しこれを処理する際に極めて望ましくない。
【0007】
基板の端縁部の表面をマスキングすることによって、上記問題を解消することが提案されているが、そのような方法は受け容れがたい方法である。その理由は、そのようなマスクは、追加の処理工程を生じさせることに加えて、その後窒化チタン障壁層の上に金属層を蒸着させる前に除去する必要があり、また、そのような除去は、それ以前にはマスクされていた半導体基板の裸の表面を蒸着されている金属に露呈させる(すなわち、金属層の下に窒化チタンの所望の障壁層が設けられていない基板の表面を生じさせる)からである。
【0008】
また、何等かの種類の周縁遮蔽体を用いて、基板の端縁部に所望の窒化チタン障壁層が蒸着するのを完全には阻止することなく、基板の端縁部に窒化チタンが蒸着するのを抑制した場合には、蒸着チャンバの中に追加の装置を設け、この装置を定期的に清浄にする必要がある。
【発明を解決するための課題】
【0009】
従って、MOCVDによって形成される窒化チタン障壁層を基板の端縁部を含む半導体表面の上に蒸着させ、その際に、基板の端縁部に蒸着された窒化チタン障壁層の部分の厚さを、蒸着された残りの窒化チタン障壁層の厚さに比較して増大させないようにすることのできる、プロセス及び装置を提供することが極めて望ましい。
【発明の概要】
【課題を解決するための手段】
【0010】
本発明によれば、1又はそれ以上の蒸着抑制ガスの流れを、基板の端縁部に向かうプロセスガスの流れとは反対方向に、基板の端縁部に向けて導くことにより、MOCVDによって半導体基板の端縁部に窒化チタンが蒸着されるのを排除することなく、窒化チタンの蒸着量を減少させる。基板の端縁部に向かう上記蒸着抑制ガスの流れは、1又はそれ以上の蒸着ガスの流れの一部を基板の端縁部から離れる方向に導くか、又は、蒸着チャンバの中の基板の端縁部付近の領域にある上記1又はそれ以上の蒸着ガスを局部的に希釈するか、あるいは、これらを組み合わせることにより、半導体基板の端縁部における窒化チタンの蒸着量を減少させる。
【0011】
上述の1又はそれ以上の蒸着抑制ガスの流れは、そのような1又はそれ以上の蒸着抑制ガスを基板の下の基板支持台に形成された複数の孔を通して流すことによって、基板の端縁部に向かって導くことができる。上記孔は、上記支持台の頂部付近で該支持台の周囲で円周方向に隔置された開口を有しており、これら開口を通って、上記1又はそれ以上のガスは、基板の端縁部付近の基板の上面の平面の下から出る。
【図面の簡単な説明】
【0012】
【図1】従来技術の蒸着チャンバを破断して示す垂直方向の側方断面図であって、半導体基板が、チャンバの中で基板支持台の上に設けられていて、窒化チタンの層が基板に蒸着され、より厚い領域が基板の端縁部に蒸着される状態を示している。
【図2】図1の構造の一部を拡大して示す垂直方向の側方断面図であって、窒化チタンの厚い障壁層が半導体基板の端縁部に蒸着されている状態を示している。
【図3】蒸着チャンバを破断して示す垂直方向の側方断面図であって、半導体基板が、蒸着チャンバの中で本発明に従って構成された基板支持台に設けられていて、蒸着抑制ガスの流れが、基板の端縁部の付近に与えられ、これにより、基板の端縁部付近の蒸着領域が薄くなった状態で窒化チタンの層が基板に蒸着されている様子を示している。
【図4】図3の構造の一部を拡大して示す垂直方向の側方断面図であって、窒化チタンの薄い障壁層が、本発明に従って半導体基板の端縁部に蒸着されている状態を示している。
【図5】図3の線V−Vに沿って取った基板支持台の平面図であって、基板の端縁部の周囲に蒸着抑制ガスの上向きの流れを生じさせるように、基板支持台に形成された孔が半径方向に分布されている状態を示している。
【図6】本発明の別の実施例を破断して示す垂直方向の側方断面図であって、半導体基板が、本発明に従って構成された変更された基板支持台に設けられていて、蒸着抑制ガスの流れが、基板の端縁部の付近に与えられ、これにより、基板の端縁部付近の蒸着部分が薄くなった状態で窒化チタンの層が基板に蒸着されている様子を示している。
【図7】複数の基板を処理するために使用される蒸着チャンバを破断して示す垂直方向の側方断面図であって、複数の半導体基板が、蒸着チャンバの中で本発明に従って構成されたそれぞれの基板支持台に設けられている状態を示している。
【図8】図7の線VIII−VIIIに沿って取った蒸着チャンバの平面図であって、上記複数の基板支持台の水平方向の配置を示すと共に、蒸着チャンバの中の中央のプロセスガス排気ポートの複数の支持台に対する位置を示している。
【発明を実施するための形態】
【0013】
図3を参照すると、通常のシャワーヘッド34を有する蒸着チャンバ30が示されている。上記シャワーヘッド34は、当業者には周知のように、蒸着チャンバの頂部から垂下して、プロセス蒸着ガスをチャンバ30に入れるための手段を提供している。チャンバ30の中でシャワーヘッド34の下方に設けられているのは、半導体支持台40であって、この半導体支持台は、後に詳細に説明するように、本発明に従って構成されている。支持台40の上面44に着座しているのは、半導体基板2であって、この半導体基板は、図示の実施例においては、円筒形である。基板2は、図1及び図2の従来技術の装置に関して上に説明したように、上面4と、端縁部6とを有している。1又はそれ以上の支持台装着部32、36を設けて、支持台40を蒸着チャンバ30の底部壁に取り付けることができる。中央の排気ポート38を支持台40の下方のチャンバ30の底部壁の中央に設けて、シャワーヘッド34を通って蒸着チャンバ30に導入されるプロセスガスのための出口を形成することができる。一方、排気ポート38は、当業者には周知のように、通常の排ガス装置又は真空ポンプ装置(図示せず)に接続することができる。
【0014】
図示の実施例においてはこれも円筒形である基板支持台40は、基板2の直ぐ下の小さな直径の支持台上方部分42を備えており、この上方部分42は、この実施例においては、基板2の直径よりも若干小さい直径を有している。支持台40の上方部分42の上面44は、基板2の下面8に係合し、これにより、基板2をチャンバ30の中に支持している。支持台40には、更に、大きな直径を有する円筒形の下方部分46が設けられており、この下方部分は、直径の小さい上方部分42で終端している。
【0015】
一連の傾斜した孔52が、支持台の下方部分46に設けられており、上記孔の下端部は、共通の孔50の中で終端しており、一方、この共通の孔50は、チャンバ30の底部壁を貫通して1又はそれ以上の蒸着抑制ガスのための外部ガス供給源64まで伸長している管60に接続されている。各々の孔52の上方端54は、図示の実施例においては、支持台の上方部分42及び支持台の下方部分46が交差する領域の付近で終端している。
【0016】
本発明によれば、次に、1又はそれ以上の蒸着抑制ガスが、ガス供給源64から、管60、共通の孔50、傾斜した孔52及び孔の端部54を通り、基板2の端縁部6付近の孔の端部54から出て、チャンバ30に流入する。
【0017】
同時に、気体の窒素源及び気体の有機チタン源から成るMOCVD蒸着ガス又は処理ガスが、シャワーヘッド34の下向きの開口(図示せず)を通ってチャンバ30に流入し、基板2の上面4に向かう。孔の端部54から出て上方に流れる蒸着抑制ガスが、基板2の端縁部6に向かって下方に流れて該端縁部の周囲で流動するプロセスガスに遭遇すると、該プロセスガスは、基板2の端縁部6から偏向されるか、あるいは、十分に希釈される。いずれにしても、基板2の端縁部6に蒸着される窒化チタンの量は、端縁部6に蒸着される窒化チタンの厚さを減少させることになる。この厚さは、基板2の上面4に蒸着される窒化チタン層14の厚さよりも小さい。
【0018】
この様子は、図4に示されている。図4においては、基板2の上面4に形成された窒化チタン層14は、従来技術の図2の基板2の上面4に形成されるチタン層14と同じ厚さを有しているが、本発明に従って基板2の端縁部6に形成される図4に示す窒化チタン層16aは、従来技術の図2に示す窒化チタン層16よりも薄いばかりではなく、基板2の上面に形成される窒化チタン層14よりも薄くなっている。
【0019】
基板2上の窒化チタンの蒸着に関して使用される「端縁部」6という用語は、図4で見て基板2のほぼ曲線状の端部分に形成される窒化チタンの蒸着部を定義するためのものであることに注意すべきである。より詳細に言えば、「端縁部」という用語は、基板2の平坦な上面4によって規定される平面に対して約20°の角度で始まり、基板2の上面4の平面に対して90°の角度をなす湾曲した端面上の点まで少なくとも伸長する、湾曲した端部分の一部の上にある窒化チタンの蒸着部を意味している。従って、蒸着抑制ガスの流量は、約20°の点で始まり基板の上面の平面から少なくとも90°にある点まで伸長している基板の端縁部に形成される窒化チタン層の厚さに影響を与える(そして、減少させる)に十分な値でなければならない。
【0020】
孔の端部54から出る上記1又はそれ以上の蒸着抑制ガスは、窒素、及び、VIII族の希ガス(例えば、ヘリウム、ネオン、アルゴン、クリプトン、及び、キセノン)を含む非反応性ガス、あるいは、シャワーヘッド34を通って流れる有機チタンのプロセスガスと反応する反応性ガス(例えば、アンモニア)とすることができる。
【0021】
TiN障壁層を形成する際に使用されシャワーヘッド34を通ってチャンバ30に流入するプロセスガスである気体の窒素源は、窒素源を提供することができると共に、気体のチタン源が有機物質である場合に、気体のチタン源の分解から生ずる有機生成物と反応することのできる、任意の気体の窒素源とすることができる。プロセスガスの窒素源は有機物とすることができるが、アンモニアの如き無機の窒素源を気体の窒素源として用いるのが好ましい。その理由は、そのような無機の窒素源から水素が遊離し、この水素は、気体の有機チタン源の有機部分と反応して1又はそれ以上のガスを形成し、この1又はそれ以上のガスは、蒸着操作の間にCVDチャンバから真空排気によって除去することができるからである。しかしながら、上記気体の窒素源は、酸素を遊離する物質、あるいは、TiN障壁層と共に蒸着して該障壁層の抵抗率を増大させる恐れのある酸素の生成物又は副生物を何等かの態様で形成する物質を含んではならないということに注意する必要がある。
【0022】
シャワーヘッド34を通ってチャンバ30に流入するプロセスガスである気体の有機チタン源は、特に限定するものではないが、例えば、組成式Ti[N(CH3CH224を有するTDEAT(テトラキス(ジエチルアミド)チタン)、あるいは、組成式Ti[N(CH324を有するTDMAT(テトラキス(ジメチルアミド)チタン)を含むことができる。
【0023】
プロセスガスは、ある値の気体のチタン源対気体の反応性窒素源の比で、シャワーヘッド34を通ってCVDチャンバに流入する。上記比は、少なくとも1体積部の気体のチタン源に対して20体積部の気体の窒素源の割合(すなわち、1:20)から、少なくとも1体積部の気体のチタン源に対して1体積部の気体の窒素源の割合(すなわち、1:1)である。気体のチタン源対気体の窒素源の上記比は、体積割合で約1:10から約1:2の範囲であるのが好ましい。
【0024】
それぞれの気体のプロセスガス源の個々の流量の絶対値、並びに、シャワーヘッド34を通ってチャンバ30に流入する全ガス流量は、CVDチャンバの体積に依存し、チャンバが大きければ大きい程、大きな流量が必要とされる。例えば、35リットルのCVDチャンバに関して、それぞれの気体反応物質の流量は、約1,000立方センチメートル毎分(標準状態下)すなわち1,000sccmのTDEAT、及び、約13,000sccmのアンモニアとすることができる。必要に応じて、キャリアガスを反応ガス(プロセスガス)に選択的に加えて、反応器を通る全ガス流量を増大させることもできる。
【0025】
ガス供給源64からパイプ60、共通の孔50、個々の傾斜した孔52及び孔の端部54を通ってチャンバ30に流入する蒸着抑制ガスの量も、チャンバ30の寸法、基板2の寸法、及び、シャワーヘッド34を通ってチャンバ30に流入するプロセスガスの体積と共に変化する。上述のように、基板2の端縁部6付近の孔の端部54からチャンバ30に流入する蒸着抑制ガスの量は、基板2の上面4に蒸着される窒化チタンの厚さを超えない厚さの窒化チタンの堆積物を基板2の端縁部6に形成するような量である。基板2の端縁部6に蒸着される窒化チタンの厚さは、基板2の上面4に蒸着される窒化チタンが約300Åの平均厚さを有する場合には、約100Åから約250Åの範囲であるのが好ましい。
【0026】
ここで図5を参照すると、基板支持台40の孔52及びこれら孔の上方端54の半径方向の分布が示されている。図5には、16個の孔52が示されており、各孔の間の半径方向の分布角度は、22.5°である。上記半径方向の分布角度は、15°程度の小さい値であるのが好ましい。すなわち、24個の孔52を基板支持台40の中で半径方向に分布させ、これにより、孔の上方端54から基板2の端縁部6への蒸着抑制ガスの流れが実質的に均一になるようにするのが好ましい。
【0027】
図6は、基板支持台40の変更例を示しており、この変更例においては、基板2の直径を超える直径を有する支持台40’に、周縁リング41が設けられている。この周縁リング41は、支持台40’の上面44’に設けられていて、基板2の端縁部6を包囲している。この実施例においては、1又はそれ以上の蒸着抑制ガスが、管60’から中央孔50’に流入し、その後、半径方向に分布した孔52’を通って流れ半径方向に分布した孔の上方端54’から出て、基板2の端縁部6とリング41の内側面との間を通って流れ、これにより、プロセスガスによって形成される窒化チタンが基板2の端縁部6に蒸着されるのを抑制する。この実施例においては、基板2の端縁部6に対するプロセスガスの流れ、特に、基板2の上面4の平面に対して45°又はそれ以上の角度を形成する端縁部6の部分に対するプロセスガスの流れが、リング41の存在によって既に部分的に抑制されていることに注意する必要がある。従って、蒸着抑制ガスの流れを下向きに調節し、端縁部6の20°−45°の部分に窒化チタンが過剰に蒸着するのを阻止しながら、端縁部6の45°−90°の部分に窒化チタンがある程度蒸着するようにする必要がある。
【0028】
図7及び図8は、複数の基板を同時に処理するために使用される蒸着チャンバに応用された場合の本発明を示している。この実施例においては、チャンバ130には、5つの基板支持台140が設けられている。図7の断面図には、基板支持台の中の2つが示されており、図8の平面図には、総ての基板支持台が示されている。蒸着チャンバ130には、更に、5つのシャワーヘッド134が設けられている。各々の基板支持台140の上方に1つのシャワーヘッドが設けられており、これらシャワーヘッドを通ってプロセスガスが流れて、基板支持台140に取り付けられている各々の基板2の上面4(及び、端縁部6)に窒化チタンを蒸着させる。中央の排気ポート138が、チャンバ130の底部に設けられていて、シャワーヘッド134から基板2へ下方に流れるプロセスガスを排出するようになっている。
【0029】
本発明によれば、各々の基板支持台140には、中央孔150が設けられている。上述の実施例と同様に、蒸着抑制ガスは、管160から上記中央孔150を通って各々の基板支持台140の半径方向に分布された傾斜した孔152に流れ、それぞれの基板2の端縁部6付近の孔の上方端154から出て、端縁部6に過剰な量の窒化チタンが蒸着するのを阻止する。
【0030】
従って、本発明は、MOCVD蒸着法において基板の端縁部に蒸着する窒化チタンの量を減少させるが、基板の端縁部に窒化チタンが蒸着するのを完全には阻止又は防止せず、これにより、基板の端縁部に蒸着される窒化チタンの全厚さが、基板の頂面すなわち上面に蒸着される窒化チタンの厚さを超えないようにする(好ましくは、小さくする)、方法及び装置を提供する。従って、基板の端縁部に蒸着された過剰な厚さの窒化チタンの割れ及び剥離を防止又は除去する。
【0031】
本発明の主たる特徴は下記のとおりである。
1. 気体のチタン源としての有機チタン源、及び、反応性の気体の窒素源を含むプロセスガスを用いる化学蒸着法(CVD)によって、基板に窒化チタンを蒸着させる蒸着方法において、前記基板の端縁部に蒸着される窒化チタンの量を、前記基板の上面に蒸着される窒化チタンの量に比較して減少させる工程を備え、前記蒸着の間に、蒸着抑制ガスの流れを前記基板の前記端縁部に向けて導くことにより、前記工程が行われることを特徴とする蒸着方法。
2. 上記1に記載の蒸着方法において、前記基板の前記端縁部への前記窒化チタンの蒸着が、前記基板の前記端縁部に向かって流れる前記蒸着抑制ガスによって完全には阻止されないことを特徴とする蒸着方法。
3. 上記2に記載の蒸着方法において、前記蒸着抑制ガスの流れの方向が、前記気体の有機チタン源及び前記反応性の気体の窒素源を含む前記プロセスガスの流れの方向とは反対方向であることを特徴とする蒸着方法。
4. 上記2に記載の蒸着方法において、前記蒸着抑制ガスを、前記基板の下方の基板支持台において半径方向に分布された複数の孔を通して、前記基板の前記端縁部に向かって流すことにより、前記蒸着抑制ガスの流れは、前記基板の前記端縁部に向かって導かれることを特徴とする蒸着方法。
5. 上記4に記載の蒸着方法において、前記基板の前記端縁部に向かう前記基板支持台の中の前記蒸着抑制ガスの流れは、前記基板の前記端縁部付近の前記支持台の周囲で半径方向に分布された前記基板支持台の前記孔の上方端の開口から出ることを特徴とする蒸着方法。
6. 上記2に記載の蒸着方法において、前記蒸着抑制ガスは、非反応性ガスと、前記プロセスガスの中の1つのガスと反応して前記窒化チタンを形成することのできるガスとから成る群から選択されることを特徴とする蒸着方法。
7. 上記6に記載の蒸着方法において、前記蒸着抑制ガスは、1又はそれ以上のVIII族の希ガスを含むことを特徴とする蒸着方法。
8. 上記6に記載の蒸着方法において、前記蒸着抑制ガスは、アンモニアを含むことを特徴とする蒸着方法。
9. 上記2に記載の蒸着方法において、前記基板の前記端縁部に向かう前記蒸着抑制ガスの流れは、前記基板の前記上面の平面から約20°の点から始まって前記基板の前記上面の平面から少なくとも90°の点まで伸長する前記基板の前記端縁部に蒸着される窒化チタンの量を、前記基板の前記上面に蒸着される窒化チタンの量に比較して、十分に減少させることを特徴とする蒸着方法。
10. 気体の窒素源としての有機チタン源、及び、反応性の気体
の窒素源を含むプロセスガスを用いる化学蒸着法(CVD)によって、窒化チタンを基板に蒸着させる蒸着方法において、前記基板の端縁部に蒸着される窒化チタンの量を、前記基板の上面に蒸着される窒化チタンの量に比較して減少させる工程を備え、前記窒化チタンの蒸着の間に、蒸着抑制ガスの流れを、前記基板の下方の基板支持台の複数の孔に通して、前記基板の前記端縁部付近の前記基板支持台の周囲で円周方向に隔置された前記基板支持台の複数の孔の端部から出し、その後、前記蒸着抑制ガスを前記プロセスガスの流れとは反対方向に前記基板の前記端縁部へ流し、これにより、前記基板の前記端縁部に蒸着される窒化チタンの量を減少させることによって、前記工程が行われることを特徴とする蒸着方法。
11. 気体のチタン源としての有機チタン源、及び、反応性の気体の窒素源を含むプロセスガスを用いる化学蒸着法(CVD)によって、窒化チタンを基板に蒸着させるために使用される蒸着装置において、前記蒸着の間に、前記基板の前記端縁部に向かって蒸着抑制ガスの流れを導く手段を備え、これにより、前記基板の端縁部に蒸着される窒化チタンの量を、前記基板の上面に蒸着される窒化チタンの量に比較して減少させるように構成されたことを特徴とする蒸着装置。
12. 上記11に記載の蒸着装置において、前記基板の前記端縁部に向けて蒸着抑制ガスを流す前記手段は、前記基板の下方の基板支持台において半径方向に分布された複数の孔を含んでおり、これら孔は、前記蒸着抑制ガスの流れを前記基板の前記端縁部に向けて導くように構成されたことを特徴とする蒸着装置。
13. 上記12に記載の蒸着装置において、蒸着抑制ガスを前記基板支持台の複数の孔を通して前記基板の前記端縁部に向けて流す前記手段は、更に、前記基板の前記端縁部付近の前記基板支持台の周囲で該基板支持台に半径方向に分布された孔に接続された複数の半径方向に分布された開口を含んでいることを特徴とする蒸着装置。
14. 上記13に記載の蒸着装置において、前記基板支持台は、前記基板の直ぐ下に位置していて前記基板の直径よりも小さい直径を有する第1の部分と、該第1の部分の下に位置していて前記基板の直径よりも大きな直径を有する第2の部分とを含んでおり、前記基板支持台の周囲で半径方向に分布された前記複数の開口は、前記基板支持台の前記第1及び第2の部分の交差部の付近に位置しており、これにより、前記蒸着抑制ガスは、前記基板の前記端縁部付近の前記基板支持台から流れるように構成されたことを特徴とする蒸着装置。
15. 上記13に記載の蒸着装置において、前記基板支持台は、前記基板の直径よりも大きな直径を有しており、周縁リングが、前記基板支持台の上面に設けられていて、前記基板の前記端縁部を包囲しており、前記基板支持台において半径方向に分布された前記複数の開口は、前記周縁リングと前記基板の前記端縁部との間の前記基板支持台の上面に設けられていることを特徴とする蒸着装置。
16. 上記13に記載の蒸着装置において、複数の基板支持台が、蒸着チャンバの中に設けられており、各々の基板支持台には、半径方向に分布された複数の孔が設けられており、これら半径方向に分布された孔は各々、前記基板の前記端縁部付近の前記基板支持台の周囲で半径方向に分布された複数の開口の1つにそれぞれ接続されていることを特徴とする蒸着装置。
【符号の説明】
【0032】
2 基板
4 基板の上面
6 基板の端縁部
30、130 蒸着チャンバ
40、140 基板支持台
52、52’、152 孔
54、54’、154 孔の上方端

【特許請求の範囲】
【請求項1】
気体のチタン源としての有機チタン源、及び、反応性の気体の窒素源を含むプロセスガスの流れを用いる化学蒸着法(CVD)によって、基板に窒化チタンを蒸着させる蒸着方法において、前記基板の端縁部に蒸着される窒化チタンの膜厚を、前記基板の上面に蒸着される窒化チタンの膜厚に比較して制御する工程を備え、前記蒸着の間に、蒸着抑制ガスの流れを前記基板の前記端縁部に向けて導き、前記基板の前記端縁部に向けて導かれる蒸着抑制ガスの流れの量を制御することにより、前記基板の前記端縁部への前記窒化チタンの蒸着が完全には阻止されず、前記基板の前記端縁部に蒸着された窒化チタンの膜厚が前記基板の前記上面に蒸着された窒化チタンの膜厚を超えないようにすること;そして、ここで、前記蒸着抑制ガスが、共通の孔から実質的に一定の角度で延びている傾斜した複数の孔を通して各々の孔の端部に導かれること;を特徴とする蒸着方法。
【請求項2】
請求項1に記載の蒸着方法において、前記蒸着抑制ガスの流れの方向が、前記気体の有機チタン源及び前記反応性の気体の窒素源を含む前記プロセスガスの流れの方向とは反対方向であることを特徴とする蒸着方法。
【請求項3】
請求項1に記載の蒸着方法において、前記蒸着抑制ガスを、前記基板の下方の基板支持台において半径方向に分布された複数の孔を通して、前記基板の前記端縁部に向かって流すことにより、前記蒸着抑制ガスの流れは、前記基板の前記端縁部に向かって導かれることを特徴とする蒸着方法。
【請求項4】
請求項3に記載の蒸着方法において、前記基板の前記端縁部に向かう前記基板支持台の中の前記蒸着抑制ガスの流れは、前記基板の前記端縁部付近の、前記支持台の周囲で半径方向に分布された前記基板支持台の前記孔の上方端の開口から出ることを特徴とする蒸着方法。
【請求項5】
請求項1に記載の蒸着方法において、前記蒸着抑制ガスは、非反応性ガスと、前記プロセスガスの中の1つのガスと反応して前記窒化チタンを形成することのできるガスとから成る群から選択されることを特徴とする蒸着方法。
【請求項6】
請求項5に記載の蒸着方法において、前記蒸着抑制ガスは、1又はそれ以上のVIII族の希ガスを含むことを特徴とする蒸着方法。
【請求項7】
請求項5に記載の蒸着方法において、前記蒸着抑制ガスは、アンモニアを含むことを特徴とする蒸着方法。
【請求項8】
気体のチタン源としての有機チタン源、及び、反応性の気体の窒素源を含むプロセスガスの流れを用いる化学蒸着法(CVD)によって、窒化チタンを基板に蒸着させる蒸着方法において、前記基板の上面に窒化チタンを蒸着させる一方で、前記基板の端縁部に100Åから250Åの窒化チタンを蒸着させる工程を備え、前記窒化チタンの蒸着の間に、蒸着抑制ガスの制御された量を前記基板の下方の基板支持台の複数の孔を通じて流して、前記基板の前記端縁部付近の、前記基板支持台の周囲で円周方向に隔置された前記基板支持台の複数の孔の端部から出し、その後、前記蒸着抑制ガスの制御された量を前記プロセスガスの流れとは反対方向に前記基板の前記端縁部へ流し、これにより、前記基板の前記端縁部に蒸着される窒化チタンの膜厚を前記基板の上面に蒸着される窒化チタンの膜厚に比較して制御して、前記基板の前記端縁部への前記窒化チタンの蒸着が完全には阻止されず、前記基板の前記端縁部に蒸着された窒化チタンの膜厚が前記基板の前記上面に蒸着された窒化チタンの膜厚を超えないように構成されたことを特徴とする蒸着方法。
【請求項9】
気体のチタン源としての有機チタン源、及び、反応性の気体の窒素源を含むプロセスガスの流れを用いる化学蒸着法(CVD)によって、窒化チタンを基板に蒸着させる蒸着方法において、前記基板の上面に窒化チタンを蒸着させる一方で、前記基板の端縁部に100Åから250Åの窒化チタンを蒸着させる工程を備え、前記窒化チタンの蒸着の間に、蒸着抑制ガスの制御された量を前記基板の下方の基板支持台の傾斜した複数の孔を通じて前記基板の端縁部に向けて流して、前記基板の前記端縁部の、前記基板支持台の周囲で円周方向に隔置された前記基板支持台の前記傾斜した複数の孔の端部から出し、その後、前記蒸着抑制ガスの制御された量を前記端縁部に向けた前記プロセスガスの流れとは反対方向に前記基板の前記端縁部へ流れるように導き、これにより、前記基板の前記端縁部に蒸着される窒化チタンの膜厚を前記基板の上面に蒸着される窒化チタンの膜厚に比較して制御して、前記基板の前記端縁部への前記窒化チタンの蒸着が完全には阻止されず、前記基板の前記端縁部に蒸着された窒化チタンの膜厚が前記基板の前記上面に蒸着された窒化チタンの膜厚を超えないように構成されたことを特徴とする蒸着方法。
【請求項10】
気体のチタン源としての有機チタン源、及び、反応性の気体の窒素源を含むプロセスガスの流れを用いる化学蒸着法(CVD)によって、窒化チタンを基板に蒸着させるために使用される蒸着装置において、前記蒸着の間に、基板の端縁部に向かって蒸着抑制ガスの流れを導き、前記基板の前記端縁部に向けて導かれる蒸着抑制ガスの流れの量を制御する手段を備え、これにより、前記基板の端縁部に蒸着される窒化チタンの膜厚を前記基板の上面に蒸着される窒化チタンの膜厚に比較して制御して、前記基板の前記端縁部への前記窒化チタンの蒸着が完全には阻止されず、前記基板の前記端縁部に蒸着された窒化チタンの膜厚が前記基板の前記上面に蒸着された窒化チタンの膜厚を超えないように構成されたことを特徴とする蒸着装置。
【請求項11】
請求項10に記載の蒸着装置において、前記基板の前記端縁部に向けて蒸着抑制ガスを流す前記手段は、前記基板の下方の基板支持台において半径方向に分布された複数の孔を含んでおり、これら孔は、前記蒸着抑制ガスの流れを前記基板の前記端縁部に向けて導くように構成されたことを特徴とする蒸着装置。
【請求項12】
請求項11に記載の蒸着装置において、蒸着抑制ガスを前記基板支持台の複数の孔を通して前記基板の前記端縁部に向けて流す前記手段は、更に、前記基板の前記端縁部付近の、前記基板支持台の周囲で該基板支持台に半径方向に分布された孔に接続された複数の半径方向に分布された開口を含んでいることを特徴とする蒸着装置。
【請求項13】
請求項12に記載の蒸着装置において、前記基板支持台は、前記基板の直ぐ下に位置していて前記基板の直径よりも小さい直径を有する第1の部分と、該第1の部分の下に位置していて前記基板の直径よりも大きな直径を有する第2の部分とを含んでおり、前記基板支持台の周囲で半径方向に分布された前記複数の開口は、前記基板支持台の前記第1及び第2の部分の交差部の付近に位置しており、これにより、前記蒸着抑制ガスは、前記基板の前記端縁部付近の前記基板支持台から流れるように構成されたこと;そして、ここで、前記半径方向に分布された複数の開口は、前記基板の各々の端縁部の、垂直方向に関して直ぐ下に配置されていること;を特徴とする蒸着装置。
【請求項14】
請求項12に記載の蒸着装置において、前記基板支持台は、前記基板の直径よりも大きな直径を有しており、周縁リングが、前記基板支持台の上面に設けられていて、前記基板の前記端縁部を包囲しており、前記基板支持台において半径方向に分布された前記複数の開口は、前記周縁リングと前記基板の前記端縁部との間の前記基板支持台の上面に設けられていること;そして、ここで、前記半径方向に分布された複数の開口は各々、前記端縁部に対応する一つと周縁リングとで定められる開口の中でそれぞれ終端すること;を特徴とする蒸着装置。
【請求項15】
請求項12に記載の蒸着装置において、複数の基板支持台が、蒸着チャンバの中に設けられており、各々の基板支持台には、半径方向に分布された複数の孔が設けられており、これら半径方向に分布された孔は各々、前記基板の前記端縁部付近の、前記基板支持台の周囲で半径方向に分布された複数の開口の1つにそれぞれ接続されていることを特徴とする蒸着装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2010−77534(P2010−77534A)
【公開日】平成22年4月8日(2010.4.8)
【国際特許分類】
【外国語出願】
【出願番号】特願2009−223007(P2009−223007)
【出願日】平成21年9月28日(2009.9.28)
【分割の表示】特願平10−51650の分割
【原出願日】平成10年3月4日(1998.3.4)
【出願人】(591007686)エルエスアイ コーポレーション (93)
【Fターム(参考)】