説明

半導体素子及びその製造方法

【課題】単純な配線構造を使用でき、高い発光効率をもった半導体素子を得る。
【解決手段】CrN層13上に、n型層21、p型層22を順次成膜する(図1(c))。成長基板11表面に達する深さをもつ分離溝30を形成する(図1(d))。p型層22の全面に、p側電極41、第1の導電性接合層42を順次形成する(図1(e))。支持基板50の一方の主面上に、第2の導電性接合層51を形成する(図1(f))。第2の導電性接合層51と第1の導電性接合層42とが直接接するようにして、高温で加圧接合する(図1(g))。次に、接合後の状態において、化学的処理によってバッファ層12とCrN層13を除去する(図1(h))。第1の積層体25におけるn型層21上の一部に、n側電極61を形成する(図1(j))。最後に、第2の積層体26全体を覆って第2の導電性接合層51上の一部にp側パッド電極62を形成する(図1(k))。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、支持基板上にp型半導体層とn型半導体層が積層された構成をもつ半導体素子の構造、及びその製造方法に関する。
【背景技術】
【0002】
III族窒化物半導体は、そのバンドギャップが広いために、青色、緑色等のLED(発光ダイオード)、LD(レーザーダイオード)等の発光素子の材料として広く用いられている。こうした発光素子においては、p型の半導体層(p型層)とn型の半導体層(n型層)とがエピタキシャル成長によって積層されて構成される。こうした構成の場合、p型層とn型層の双方に対して電気的接続を直接とれる構造が必要である。
【0003】
良質かつ低コストでこの構造を製造するためには、III族窒化物半導体以外の材料からなる成長基板上にp型層とn型層をエピタキシャル成長することによって得ることが一般的に行われている。この場合、特に良質の半導体層を得るためには、使用できる成長基板の材料は限られる。例えば、III族窒化物半導体の代表である窒化ガリウム(GaN)は、MOCVD(有機金属気相成長)法やHVPE(ハイドライド気相成長)等によって、SiC、サファイア等からなる成長基板上に成長させることができる。ここで、GaNにおいては、アクセプタのドーピングがドナーのドーピングと比べて困難であり、良質のp型層、特に高導電率のp型層を得ることが比較的困難である。このため、n型層は厚くすることが容易であるが、p型層は厚くすることが比較的困難である。また、良質のn型層とp型層とを同一成長基板上で得るためには、成長基板上に、まずn型層、次にp型層の順番でこれらを順次成長させることが好ましい。
【0004】
一方、実際の発光素子の動作においては、n型層、p型層には大電流が流され、これによる発熱量が大きくなる。n型層、p型層を支持する基板は、この放熱も行うことになる。
【0005】
このように、LEDやLDにおいては、成長基板の材料がその特性に大きな影響を及ぼす。ここで、良質のn型層、p型層を得るのに最適な成長基板が、デバイス動作上で最適な基板となるとは限らない。
【0006】
また、p型層とn型層に対する電気的接続の取り方も、この成長基板に依存する。例えば、成長基板上にn型層、p型層が順次形成された構成の場合、成長基板が導電性の材料(例えばSiC)であれば、成長基板を介してn型層への電気的接続をとることが可能である。一方、成長基板が絶縁体(例えばサファイア)である場合、成長基板を介してn型層への電気的接続をとることは困難である。
【0007】
図6は、サファイアを成長基板とし、その上にn型層、p型層を形成した構成のLEDの一例の断面図である。この構造においては、成長基板91上にバッファ層92を介してn型GaN層(n型層)93、p型GaN層(p型層)94がエピタキシャル成長によって順次形成される。p型GaN層94上には薄いp側電極95が形成される。ここで、このLEDにおいて、光は主にp型GaN層94の表面から上側に取り出され、この光はこの薄いp側電極95を透過して発せられる。p型GaN層94の導電率を高くすることは困難であるために、このp側電極95はp型GaN層94のほぼ全面にわたり形成される。このp側電極95への電気的接続は、p側電極95(p型GaN層94)上の一部に形成された、より厚いp側パッド電極96を介して、例えばボンディングワイヤを用いて行われる。ただし、厚いp側パッド電極96によって光は遮られるために、この面上において、p側パッド電極96はボンディングワイヤが接続できる程度の大きさで部分的に形成される。
【0008】
また、図中の右側の領域では、p型GaN層94の側からn型GaN層93の途中まで部分的にこの構造がエッチングにより掘り下げられ、n型GaN層93の表面が露出した面にn側電極97が形成される。このn側電極97への電気的接続は、p側パッド電極96上と同様に、例えばボンディングワイヤをn側電極97へ接続することにより行われる。
【0009】
この構造においては、基板(成長基板91)から見て、n側電極97(n型GaN層93)への電気的接続とp側パッド電極96(p型GaN層94)の電気的接続とを同一の側(図6中上側)からとることができる。成長基板91がそのままLEDの支持基板となるが、成長基板91は電流経路とはならないため、導電性は要求されない。このため、成長基板91としては、高品質のn型GaN層93、p型GaN層94を得ることのできるサファイア等が特に好ましく用いられる。
【0010】
ここで、図6の構造の素子の場合、導電性の低いp型GaN層94表面が発光面となる。このため、小面積のp側パッド電極96からp型GaN層94までの間の電気抵抗は高くなり、この電気抵抗が存在する分だけその発光効率は低くなる。
【0011】
図6の構造とは異なる形態として、特許文献1には、表面にn型層が配置された構成の発光素子及びその製造方法が記載されている。この製造方法においては、サファイア基板上にn型層、p型層、p側電極を順次形成した後で、p側電極側に導電性の基板を支持基板として新たに接合する。その後、成長基板として用いたサファイア基板を、レーザーリフトオフによって除去し、露出したn型層表面にn側電極を形成する。
【0012】
この技術によれば、サファイアを成長基板として用い、かつこの上にn型層、p型層を順次形成することによって、良質のn型層、p型層を得ることができ、高い発光効率を得ることができる。一方で、実際のLEDにおいては、導電性であり、かつ熱伝導率や熱膨張率が最適化された他の材料からなる支持基板を用いることができるため、高い放熱性や信頼性も得ることができる。この場合、p側電極(p型層)への電気的接続は、導電性の支持基板を介してその裏側からとる。一方、n側電極(n型層)への電気的接続は、この反対側にあるn型層の表面側からとる。すなわち、図6の構造とは異なり、この場合には、各層への電気的接続は異なる側からとる構成となる。
【先行技術文献】
【特許文献】
【0013】
【特許文献1】特開2006−324685号公報
【発明の概要】
【発明が解決しようとする課題】
【0014】
しかしながら、特許文献1に記載の技術のように、n型層への電気的接続とp型層への電気的接続を異なる側の面からそれぞれとる場合には、複数のLED素子を並べて接続する際の配線構造やその配線接続方法が複雑になる。例えば、複数のLED素子を直列に並べた構成を形成する場合には、異なる側の面にある配線同士を接続することが必要になる。こうした構成を実現するためには、その接続構造が複雑となることは明らかである。
【0015】
一方、図6の構造の素子の場合、n型GaN層93への電気的接続とp型GaN層94への電気的接続とは、基板側から見て同一の側からとれるため、こうした場合でもこの接続を単純に行なうことが可能である。しかしながら、前記の通り、この場合に高い発光効率を得ることは困難である。
【0016】
すなわち、単純な配線構造を使用でき、高い発光効率をもった半導体素子(発光素子)を得ることは困難であった。
【0017】
本発明は、かかる問題点に鑑みてなされたものであり、上記問題点を解決する発明を提供することを目的とする。
【課題を解決するための手段】
【0018】
本発明は、上記課題を解決すべく、以下に掲げる構成とした。
本発明の半導体素子の製造方法は、少なくともn型半導体層とp型半導体層とを備える積層体が支持基板の一方の主面上に形成され、前記n型半導体層、前記p型半導体層の各々に対して前記一方の主面側の方向からそれぞれに電気的接続可能な構造を具備する半導体素子の製造方法であって、成長基板上に、リフトオフ可能なバッファ層を介し、前記n型半導体層と前記p型半導体層を順次形成した積層体を得るエピタキシャル成長工程と、前記積層体の一部を前記p型半導体層の側から前記成長基板またはバッファ層が露出するまでエッチングすることにより、前記積層体を分離する分離溝を形成する分離溝形成工程と、前記p型半導体層上に、p側電極と第1の導電性接合層とを順次形成するp側電極形成工程と、前記支持基板の主面に第2の導電性接合層を形成する支持基板接合前工程と、前記第1の導電性接合層と前記第2の導電性接合層とを接合することにより、前記積層体と前記支持基板とを接合する接合工程と、前記バッファ層を除去することにより、前記成長基板をリフトオフして除去し、前記n形半導体層表面を露出させるリフトオフ工程と、露出した前記n型半導体層表面にn側電極を形成するn側電極形成工程と、前記支持基板上に露出した前記第2の導電性接合層の表面に、p側パッド電極を形成するp側パッド電極形成工程と、を具備することを特徴とする。
本発明の半導体素子の製造方法は、前記分離溝形成工程において、前記分離溝によって、前記積層体を面積の異なる2種類の領域に分割し、前記n側電極形成工程において、前記2種類の領域のうち面積の大きな側の領域の前記積層体中の前記n型半導体層表面にn側電極を形成し、前記p側パッド電極形成工程において、前記2種類の領域のうち面積の小さな側の領域の前記積層体を覆い、かつ、前記第2の導電性接合層と電気的接続するように、前記p側パッド電極を形成する、ことを特徴とする。
本発明の半導体素子の製造方法において、前記支持基板は、絶縁性基板、金属基板、半導体基板、金属セラミックス接合基板のいずれかであることを特徴とする。
本発明の半導体素子の製造方法において、前記バッファ層は、金属層または金属窒化物層であり、前記リフトオフ工程において、前記分離溝を経由してエッチング液を浸透させて前記バッファ層を溶解し、前記成長基板をリフトオフして除去することを特徴とする。
本発明の半導体素子の製造方法において、前記n型半導体層及び前記p型半導体層はIII族窒化物半導体で構成されることを特徴とする。
本発明の半導体素子の製造方法は、前記エピタキシャル成長工程において、前記n型半導体層と前記p型半導体層の間に、活性層を形成することを特徴とする。
本発明の半導体素子は、前記半導体素子の製造方法によって製造されたことを特徴とする。
本発明の半導体素子は、少なくともn型半導体層とp型半導体層とを備える積層体が、支持基板上に形成された半導体素子であって、前記積層体は、前記p型半導体層上のp側電極及び第1の導電性接合層と、前記支持基板上の第2の導電性接合層を介して前記支持基板と接合されてなり、p側パッド電極が、前記支持基板上において、前記第2の導電性接合層が露出した箇所に形成され、前記積層体における前記n型半導体層上にn側電極が形成され、前記p側パッド電極、前記n側電極の各々に対して一方向からそれぞれに電気的接続可能な構造を具備することを特徴とする。
本発明の半導体素子において、面積の異なる2種類の前記積層体が前記支持基板上に形成され、前記n側電極は、面積の大きな側の前記積層体中の前記n型半導体上に形成され、前記p側パッド電極は、面積の小さな側の前記積層体を覆い、かつ前記第2の導電性接合層と電気的接続していることを特徴とする。
本発明の半導体素子において、前記支持基板は、絶縁性基板、金属基板、半導体基板、金属セラミックス接合基板のいずれかであることを特徴とする。
本発明の半導体素子において、前記n型半導体層及び前記p型半導体層はIII族窒化物半導体で構成されたことを特徴とする。
本発明の半導体素子において、前記n型半導体層と前記p型半導体層の間に、活性層が形成されたことを特徴とする。
本発明の半導体素子は、発光素子であることを特徴とする。
【発明の効果】
【0019】
本発明は以上のように構成されているので、単純な配線構造を使用でき、高い発光効率をもった半導体素子を得ることができる。
【図面の簡単な説明】
【0020】
【図1】本発明の実施の形態となる半導体素子の製造方法を示す工程断面図である。
【図2】本発明の実施の形態となる半導体素子の製造方法によって製造された発光素子を直列接続した構成の斜視図である。
【図3】本発明の実施の形態となる半導体素子の製造方法の変形例を示す工程断面図である。
【図4】実施例と比較例における順方向電圧Vfと駆動電流Ifの関係を測定した結果である。
【図5】実施例と比較例における発光強度と駆動電流Ifの関係を測定した結果である。
【図6】従来の発光素子の一例の構造を示す断面図である。
【発明を実施するための形態】
【0021】
以下、本発明の実施の形態に係る半導体素子の製造方法について説明する。この半導体素子において用いられるn型、p型の半導体層は、成長基板上にエピタキシャル成長することによって得られる。ただし、実際に製造される半導体素子においては、この成長基板は除去され、成長基板があった側と反対側に成長基板とは異なる支持基板が接続される。n型、p型の各半導体層に接続される2つの電極は、共にこの半導体素子における同一の側から取り出される。
【0022】
この製造方法を示す工程断面図が図1である。以下、この図に基づいて説明する。ここでは、この半導体素子として、窒化ガリウム(GaN)を材料とする発光ダイオード(LED)を製造する場合につき説明する。このLEDは、GaNのn型層とp型層の積層体における発光を用いている。また、図1においてはLEDの1素子分だけの構成が示されているが、実際には、単一の支持基板上に複数のLEDを形成することができ、これらを直列あるいは並列に接続して使用することができる。
【0023】
まず、図1(a)に示されるように、成長基板11上に、バッファ層12を形成する。成長基板11としては、特許文献1に記載の場合と同様に、サファイア単結晶((0001)基板)が特に好ましく用いられる。また、この上のバッファ層12としては、例えば特開2009−54888号公報に記載されるように、例えば40nm程度の膜厚の金属クロム(Cr)を用いることができる。バッファ層12の成膜は、スパッタリング法、真空蒸着法等により行うことができる。
【0024】
次に、特開2009−54888号公報に記載されるように、この状態で窒化処理、例えばアンモニア雰囲気で1040℃以上の高温とする工程を行なう。これにより、図1(b)に示されるように、バッファ層(金属層:Cr層)12表面は窒化され、窒化クロム層(金属窒化物層:CrN層)13となる。このCrN層13の厚さは、処理時間、温度等の調整によって設定することが可能である。
【0025】
次に、特開2009−54888号公報に記載されるように、CrN層13上に、n型GaN層(n型半導体層:n型層)21、p型GaN層(p型半導体層:p型層)22を順次成膜する(エピタキシャル成長工程)。この成膜は、例えばハイドライド気相成長法(HVPE法)で行われ、n型層21にはドナーとなる不純物が、p型層22にはアクセプタとなる不純物がそれぞれドーピングされる。このエピタキシャル成長工程により、n型層21とp型層22からなる積層体20が形成され、その中にはGaNのpn接合が形成される(図1(c))。特開2009−54888号公報等に記載されるように、CrN層13上においては、結晶欠陥の少ないn型層21及びp型層22を成長させることができる。従って、この積層体20中のGaNを高品質とすることができ、発光強度を高めることができる。なお、GaNにおいては、n型層21の形成(ドナーのドーピング)の方が、p型層22の形成(アクセプタのドーピング)よりも容易である。従って、p型層22はn型層21よりも薄く、かつp型層22の導電率はn型層21の導電率よりも低い。
【0026】
次に、この構造に対して、図1(d)に示されるように、図1中の上側(p型層22側)から、成長基板11表面に達する深さをもつ分離溝30を形成する(分離溝形成工程)。これにより、積層体20は基板11上で分断される。図1(d)においては、一方向における断面が示されているが、この分離溝30はこれと異なる方向にも形成され、分離溝30で囲まれた複数の領域の積層体20が形成される。図1(d)においては、より大きな面積をもつ領域に対応した第1の積層体25が左側に、より小さな面積をもつ領域に対応する第2の積層体26が右側にそれぞれ分断されて形成される。この分離溝30は、例えば、フォトレジストをマスクとしたドライエッチングにより形成することができる。ドライエッチングにおいては、積層体20を構成するGaN、バッファ層12とCrN層13を構成するCr、CrNと、サファイアとの選択比を高くとることが可能であるため、成長基板11表面までこのエッチングを行うことは容易である。分離溝30は、n型層21を貫通すれば充分であり、分離溝30の底面において、バッファ層12、CrN層13のいずれかが露出した状態であってもよい。また、分離溝30を形成する方法は、この形態を実現できる方法であれば、ドライエッチング以外の方法を用いることも可能である。なお、分離溝形成工程直後には、成長基板11自体は分断されていないために、この構造を成長基板11ごと取り扱うことは容易である。
【0027】
次に、図1(e)に示されるように、この状態において最上面に存在するp型層22の全面に、p側電極41、第1の導電性接合層42を順次形成する(p側電極形成工程)。p側電極41は、p型層22とオーミック性接触のとれる材料で形成され、例えば、ニッケル(Ni)と金(Au)の多層構造であり、その厚さは各々5nm、20nm程度とすることができる。ただし、図6の構造と異なり、この構造においてはp側電極41は光を透過させる層とはならないため、これを厚くすることも可能である。また、第1の導電性接合層42は、例えば、金(Au)や、Auと錫(Sn)の多層構造で形成する。p側電極41、第1の導電性接合層42は、共にスパッタリング法や真空蒸着法によって形成することができる。なお、p側電極41とp型層22との間のオーミック性を向上させるために、p側電極41を形成した後で550℃程度の熱処理を行うことが好ましい。また、このp側電極形成工程と前記の分離溝形成工程の順序を代えることも可能である。
【0028】
なお、p側電極41の構成をNi/Au、Co/Auとし、これらを薄くして透光性をもたせることも可能である。また、ITO(Indium−Tin−Oxide)、IZO(Indium−Zinc−Oxide)、IMO(Indium−Molybdenum−Oxide)等の透明材料をp側電極41に用いることにより、透光性をもたせることも可能である。こうした場合には、p側電極41の上層(第1の導電性接合層42との間)に、反射層を形成することにより、p側電極41を透過した光を反射させ、反対側から出射させることによって発光効率を高めることも可能である。この場合の反射層は、ロジウム(Rh)、ルテニウム(Ru)、銀(Ag)等で形成することができる。
【0029】
一方、図1(f)に示されるように、上記の構造と別に準備した支持基板50の一方の主面上に、第2の導電性接合層51を形成する(支持基板接合前工程)。支持基板50としては、機械的強度が充分であり、熱伝導率の高い任意の基板を用いることができ、その電気伝導度も任意である。例えば、半導体基板の一種である単結晶シリコン(Si)基板を用いることができる。導電性接合層51は、加熱圧着することによって第1の導電性接合層42と接合可能な導電性材料で形成され、例えば第1の導電性接合層42と同様のAuや、AuとSnの多層構造で形成される。なお、支持基板50と第2の導電性接合層51の間に、これらの密着性を高めるための層(例えばTi層)を挿入してもよい。なお、後述するように、支持基板50上には第1の積層体25及び第2の積層体26が、これらの間の分離溝30を介した形態で接合される。支持基板50の大きさは、この工程が実現されるように適宜設定される。
【0030】
次に、図1(g)に示されるように、図1(f)の構造と、図1(e)の構造とを、第2の導電性接合層51と第1の導電性接合層42とが直接接するようにして、高温で加圧接合する(接合工程)。この際の温度は、これらが接合できる温度として、例えば300℃程度とすることができる。この場合、第1の積層体25、第2の積層体26はこの接合によって影響を受けない。この工程により、第1の積層体25及び第2の積層体26は、p側電極41及び第1の導電性接合層42と、第2の導電性接合層51を介して支持基板50に接合される。
【0031】
次に、接合後の状態において、化学的処理によってバッファ層12とCrN層13を除去する(リフトオフ工程)。具体的には、過塩素酸と硝酸2セリウムアンモニウムの混合液を用いたウェットエッチング処理によって、積層体20(GaN)等に影響を与えずに、図1(h)に示されるように、バッファ層12とCrN層13のみを選択的に除去することができる。このウェットエッチングは、分離溝30の箇所から進む。この工程は、特開2009−54888号公報等に記載されたケミカルリフトオフとして知られる工程と同様である。
【0032】
従って、このリフトオフ工程後には、図1(i)に示されるように、表面側にn型層21が来る形態で、支持基板50上に第1の積層体25、第2の積層体26がそれぞれ接合される。
【0033】
この状態で、図1(j)に示されるように、第1の積層体25におけるn型層21上の一部に、n側電極61を形成する(n側電極形成工程)。n側電極61としては、例えば、チタン(Ti)とアルミニウム(Al)の多層構造を用いることができ、それぞれの厚さは例えば20nm、300nmである。なお、第1の積層体25においてn側電極61が形成された箇所の発光は遮られるため、n側電極61の面積は、n型層21との間の抵抗と発光効率の観点から適宜設定される。n側電極61をn型層21表面に部分的に形成するためには、例えば、フォトレジストをマスクとして形成後にn側電極61の材料を全面に形成した後でフォトレジストを除去すればよい(リフトオフ法)。あるいは、n側電極61の材料を全面に形成した後でフォトレジストをマスクとして形成後に電極材料をエッチングしてもよい(エッチング法)。なお、p側電極形成工程と同様に、n側電極61形成後に熱処理を行ってもよい。また、n側電極61を形成する前に、n型層21表面の状態を調整するための処理を行ってもよい。
【0034】
最後に、図1(k)に示されるように、第2の積層体26全体を覆って第2の導電性接合層51上の一部にp側パッド電極62を形成する(p側パッド電極形成工程)。p側パッド電極62としては、これらの構造に対して密着性の高い材料を用いることができ、例えばチタン(Ti)/白金(Pt)/金(Au)、ニッケル(Ni)/Au、Ti/Au等の積層構造を用いることができる。その厚さは、この上にワイヤボンディングが可能な程度とする。p側パッド電極62を部分的に形成するためには、n側電極61と同様に、リフトオフ法又はエッチング法を用いることが可能である。
【0035】
最終的には、図1(k)に示される構造のLED(半導体素子)が製造される。n側電極61表面及びp側パッド電極62表面には、ワイヤボンディングを施すことができ、外部の配線端子と電気的に接続することが可能である。n側電極61とp側パッド電極62との間で通電を行うことにより、第1の積層体25を発光させることが可能である。
【0036】
なお、図1の構成はLEDの1素子について示してあるが、単一の支持基板50上に上記の構造を複数形成することが可能である。この場合には、その後に支持基板50をダイシングすることにより、チップ毎に分離することが可能である。この際、同一チップ上の複数のLEDが配列された構成とすることも可能である。
【0037】
この際、このLEDにおいては、n側電極61とp側パッド電極62とが共に同じ側(支持基板50と反対側)にあるため、このLEDを複数配列して用いる場合であっても、電極間の接続が容易である。例えば、特許文献1に記載のように、支持基板側から一方の電極を取り出す構成においては、支持基板を分断して接続しない限り、複数のLEDを直列接続する構成をとることは困難である。これに対して、上記の構造においては、単一の支持基板50上に複数のLEDを形成して、これらを直列あるいは並列に接続することが容易である。
【0038】
また、発光する表面側に設けられる電極の面積が大きな場合には、この電極によって発光が遮られるために、その面積は小さくすることが好ましい。しかしながら、この電極が接続される層の導電性が低い場合には、その面積を小さくした場合には、この部分の電気抵抗が高くなり、これにより発光効率が低下する。一方、この表面と反対側に形成した電極は発光を遮ることがないため、電極を全面に形成することができる。前記の通り、一般にn型層21の導電性の方がp型層22の導電性よりも高いため、この観点からは、n型層21が表面側、その反対側にp型層22がある構成が好ましい。この構成においては、表面側(発光取り出し側)の電極面積を小さくし、かつ、この表面と反対側の電極面積を大きくすることにより、発光を遮ることがなく、かつ電気抵抗を低くすることが可能である。
【0039】
一方、GaNのエピタキシャル成長においては、成長基板11上にn型層21、次にp型層22を形成する場合に、これらの結晶性を高くし、高い発光効率を得ることが可能である。上記の製造方法によれば、この順番でエピタキシャル成長を行うことにより高品質のn型層21、p型層22を得ると同時に、発光する表面側にn型層21を設けることができ、n側電極61の面積を小さくすることができる。従って、高い発光効率をもつLEDを得ることができる。
【0040】
また、図1(k)の構造においては、ワイヤボンディングが施されるn側電極61とp側パッド電極62の支持基板50からの高さがほぼ等しくなる。従って、使用するワイヤボンダにおけるボンディング高さ調整が容易となり、ボンディング作業が容易となる。特に、前記のように、同一の支持基板50上に複数のLEDを形成し、これらを並列あるいは直列に接続する際にも、ワイヤボンディングを用いてこの接続を容易に行うことが可能である。上記の構成をもつ3個のLEDが単一の支持基板50上に配列して形成され、これらがボンディングワイヤ70を用いて直列に接続された構成の一例の斜視図が図2である。こうした構成は、支持基板50(絶縁性あるいは高抵抗の基板)に対して同じ側にn側電極61とp側パッド電極62とが形成されているために、実現が可能である。ワイヤボンディング以外の方法で電気的接続を行う場合においても、n側電極61とp側パッド電極62の高さがほぼ同一となるためにその接続が容易となることは明らかである。
【0041】
上記の製造方法の変形例となる製造方法の工程断面図が図3である。この製造方法においては、エピタキシャル成長工程までは前記の製造方法と同様であるため、説明を省略する。図3は、エピタキシャル成長工程よりも後の工程についてのみ示しており、図3(a)〜(h)は、図1(d)〜(k)に対応する。
【0042】
図3(a)においては、図1(d)と同様に溝形成工程を行い、分離溝30を複数形成する(分離溝形成工程)。ただし、図1の例では、1チップ中で第1の積層体25と第2の積層体26を設けたのに対し、ここでは積層体27のみを形成し、これが発光する領域となる。
【0043】
次に、図3(b)に示されるように、この状態において最上面に存在するp型層22の表面に、p側電極41、第1の導電性接合層42を順次形成する(p側電極形成工程)。この工程は図1(e)と同様である。また、図3(c)に示されるように、上記の構造と別に準備した支持基板50の一方の主面上に、第2の導電性接合層51を形成する(支持基板接合前工程)。この工程も図1(f)と同様である。なお、p側電極形成工程において、p側電極41上に反射層を形成することができることは前記の場合と同様である。
【0044】
次に、図3(d)に示されるように、図3(b)の構造と、図3(c)の構造とを、第2の導電性接合層51と第1の導電性接合層42とが直接接するようにして、高温で加圧接合する(接合工程)。この工程は、図1(g)と同様であるが、接合されるのは積層体27のみである点が異なる。
【0045】
次に、図3(e)に示されるように、化学的処理によってバッファ層12とCrN層13を除去する(リフトオフ工程)。この工程は、図1(h)と同様である。従って、この工程後には、図3(f)に示されるように、表面側にn型層21が来る形態で、支持基板50上に積層体27が接合される。
【0046】
この状態で、図3(g)に示されるように、積層体27におけるn型層21上の一部に、n側電極61を形成する(n側電極形成工程)。この工程は、図1(j)と同様である。
【0047】
最後に、図3(h)に示されるように、積層体27が接合された箇所以外において、第2の導電性接合層51が露出した箇所の一部にp側パッド電極62を形成する(p側パッド電極形成工程)。この工程は、第2の積層体26が設けられていない点以外については図1(k)と同様である。p側パッド電極62が形成される領域は、分離溝30が形成された領域の一部となる。
【0048】
上記の製造方法によって、図3(h)に示された構造が形成される。この構成においては、n側電極61とp側パッド電極62の高さは同一とはならないものの、図1の製造方法で製造されたLEDと同様に、高い発光効率を得ることができ、かつ複数の素子同士の電気的接続が容易である。
【0049】
なお、図1、図3のどちらの製造方法においても、リフトオフ工程においては、バッファ層12等を除去して成長基板11を分離するために、ケミカルリフトオフを用いていた。しかしながら、バッファ層12等を除去して成長基板11を分離することができ、n型層21の表面を露出させることができる方法であれば、他の方法を用いることもできる。具体的には、特許文献1に記載されたようなレーザーリフトオフを用いることもできる。ただし、工程が容易であり、かつバッチ処理が可能であり生産性の高いケミカルリフトオフを用いることが、特に好ましい。なお、バッファ層12の材料としては、CrあるいはCrN以外でも、この上に良質のn型層21等を形成することができると同時に、リフトオフ工程においてこれを除去できるような材料であれば、適宜選択することが可能である。
【0050】
また、成長基板11としては、サファイア以外にも、バッファ層12等を介して良質のGaNやAlGaNなどのIII族窒化物半導体(n型層21、p型層22)を成長させることができるものであれば、他の材料、例えばAlNテンプレートやSiC等を用いることも可能である。
【0051】
また、支持基板50としては、シリコン以外にも、任意の材料を用いることが可能である。ただし、支持基板50は、製造されたLEDの機械的支持基板となると同時に、放熱基板ともなるため、高い機械的強度をもち、かつ高い熱伝導率をもつことが好ましい。上記の構造においては、p側電極41(p型層22)とp側パッド電極62との間の電気伝導は、第1の導電性接合層42、第2の導電性接合層51等によってなされるため、支持基板50の導電性の有無はLEDの動作とは無関係である。従って、支持基板50の材料は、広い範囲の材料の中から選択することが可能であり、各種の絶縁性基板、金属基板、半導体基板を用いることが可能である。また、機械的強度及び熱伝導率が高い絶縁性セラミックス基板上に金属配線が予め形成された金属セラミックス接合基板を用いることもできる。
【0052】
また、支持基板50の形態も任意である。例えば、絶縁性基板、金属基板、半導体基板を用いる場合には、大径のウェハを支持基板50として用い、図1(k)や図3(h)の構造を形成した後に、支持基板50を分割して個々のチップとすることが可能である。これに対して、例えば金属セラミックス接合基板を用いる場合には、予め1チップに対応する大きさとされたサブマウント基板を用いることも可能である。
【0053】
なお、上記の例では、積層体は、共にGaNからなるn型層21、p型層22で構成されるものとした。しかしながら、この他の場合であっても、同様の効果を奏することは明らかである。例えば、単純なpn接合を利用したLEDではなく、n型層とp型層との間に活性層となる多重量子井戸構造を設けた構造のLEDやLD(レーザーダイオード)を同様に製造できることも明らかである。この際、n型層やp型層はGaNではなく、他のIII族窒化物半導体、例えばAlInGa1−a−bN(0≦a≦1、0≦b≦1、a+b≦1)としてもよく、各層におけるa、bの値が異なっていてもよい。この場合には、エピタキシャル成長工程において、n型層21を成長基板11上に形成し、この上に活性層を形成してからp型層22を形成する。
【0054】
(実施例)
実際に、図1に示す工程でLEDを製造し、その単体における発光特性を、従来の構造のLEDと比較した。
【0055】
ここで、比較対照とした従来の構造のLEDの断面構造は、図6に示されるとおりである。同一の構成をもつn型層21、p型層22を同一の成長基板11、バッファ層12、CrN層13上に成長させた場合の、実施例(図1(k)の構造)、比較例(図6の構造)について、順方向電圧Vと駆動電流Iの関係、発光強度と駆動電流Iの関係を測定した。ここで、発光強度は、この発光を受光した受光素子の出力Pとして示している。
【0056】
実施例と比較例における順方向電圧Vと駆動電流Iの関係を図4に、発光強度と駆動電流Iの関係を図5にそれぞれ示す。同じIの場合には、実施例においてはVが低くなり(図4)、かつ発光強度が高くなる(図5)。従って、実施例における発光効率は比較例よりも高くなることが確認できた。
【符号の説明】
【0057】
11、91 成長基板
12、92 バッファ層(金属層:Cr層)
13 窒化クロム層(窒化金属層:CrN層)
20、27 積層体
21、93 n型GaN層(n型半導体層:n型層)
22、94 p型GaN層(p型半導体層:p型層)
25 第1の積層体
26 第2の積層体
30 分離溝
41、95 p側電極
42 第1の導電性接合層
50 支持基板
51 第2の導電性接合層
61、97 n側電極
62、96 p側パッド電極
70 ボンディングワイヤ

【特許請求の範囲】
【請求項1】
少なくともn型半導体層とp型半導体層とを備える積層体が支持基板の一方の主面上に形成され、前記n型半導体層、前記p型半導体層の各々に対して前記一方の主面側の方向からそれぞれに電気的接続可能な構造を具備する半導体素子の製造方法であって、
成長基板上に、リフトオフ可能なバッファ層を介し、前記n型半導体層と前記p型半導体層を順次形成した積層体を得るエピタキシャル成長工程と、
前記積層体の一部を前記p型半導体層の側から前記成長基板またはバッファ層が露出するまでエッチングすることにより、前記積層体を分離する分離溝を形成する分離溝形成工程と、
前記p型半導体層上に、p側電極と第1の導電性接合層とを順次形成するp側電極形成工程と、
前記支持基板の主面に第2の導電性接合層を形成する支持基板接合前工程と、
前記第1の導電性接合層と前記第2の導電性接合層とを接合することにより、前記積層体と前記支持基板とを接合する接合工程と、
前記バッファ層を除去することにより、前記成長基板をリフトオフして除去し、前記n形半導体層表面を露出させるリフトオフ工程と、
露出した前記n型半導体層表面にn側電極を形成するn側電極形成工程と、
前記支持基板上に露出した前記第2の導電性接合層の表面に、p側パッド電極を形成するp側パッド電極形成工程と、
を具備することを特徴とする、半導体素子の製造方法。
【請求項2】
前記分離溝形成工程において、前記分離溝によって、前記積層体を面積の異なる2種類の領域に分割し、
前記n側電極形成工程において、前記2種類の領域のうち面積の大きな側の領域の前記積層体中の前記n型半導体層表面にn側電極を形成し、
前記p側パッド電極形成工程において、前記2種類の領域のうち面積の小さな側の領域の前記積層体を覆い、かつ、前記第2の導電性接合層と電気的接続するように、前記p側パッド電極を形成する、
ことを特徴とする請求項1に記載の半導体素子の製造方法。
【請求項3】
前記支持基板は、絶縁性基板、金属基板、半導体基板、金属セラミックス接合基板のいずれかであることを特徴とする請求項1又は2に記載の半導体素子の製造方法。
【請求項4】
前記バッファ層は、金属層または金属窒化物層であり、
前記リフトオフ工程において、前記分離溝を経由してエッチング液を浸透させて前記バッファ層を溶解し、前記成長基板をリフトオフして除去することを特徴とする請求項1から請求項3までのいずれか1項に記載の半導体素子の製造方法。
【請求項5】
前記n型半導体層及び前記p型半導体層はIII族窒化物半導体で構成されることを特徴とする請求項1から請求項4までのいずれか1項に記載の半導体素子の製造方法。
【請求項6】
前記エピタキシャル成長工程において、前記n型半導体層と前記p型半導体層の間に、活性層を形成することを特徴とする請求項1から請求項5までのいずれか1項に記載の半導体素子の製造方法。
【請求項7】
請求項1から請求項6までのいずれか1項に記載の半導体素子の製造方法によって製造されたことを特徴とする半導体素子。
【請求項8】
少なくともn型半導体層とp型半導体層とを備える積層体が、支持基板上に形成された半導体素子であって、
前記積層体は、前記p型半導体層上のp側電極及び第1の導電性接合層と、前記支持基板上の第2の導電性接合層を介して前記支持基板と接合されてなり、
p側パッド電極が、前記支持基板上において、前記第2の導電性接合層が露出した箇所に形成され、
前記積層体における前記n型半導体層上にn側電極が形成され、
前記p側パッド電極、前記n側電極の各々に対して一方向からそれぞれに電気的接続可能な構造を具備することを特徴とする半導体素子。
【請求項9】
面積の異なる2種類の前記積層体が前記支持基板上に形成され、
前記n側電極は、面積の大きな側の前記積層体中の前記n型半導体上に形成され、
前記p側パッド電極は、面積の小さな側の前記積層体を覆い、かつ前記第2の導電性接合層と電気的接続していることを特徴とする請求項8に記載の半導体素子。
【請求項10】
前記支持基板は、絶縁性基板、金属基板、半導体基板、金属セラミックス接合基板のいずれかであることを特徴とする請求項8又は9に記載の半導体素子。
【請求項11】
前記n型半導体層及び前記p型半導体層はIII族窒化物半導体で構成されたことを特徴とする請求項8から請求項10までのいずれか1項に記載の半導体素子。
【請求項12】
前記n型半導体層と前記p型半導体層の間に、活性層が形成されたことを特徴とする請求項8から請求項11までのいずれか1項に記載の半導体素子。
【請求項13】
発光素子であることを特徴とする請求項7から請求項12までのいずれか1項に記載の半導体素子。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2011−159722(P2011−159722A)
【公開日】平成23年8月18日(2011.8.18)
【国際特許分類】
【出願番号】特願2010−18934(P2010−18934)
【出願日】平成22年1月29日(2010.1.29)
【国等の委託研究の成果に係る記載事項】(出願人による申告)平成21年度 経済産業省 地域イノベーション創出研究開発事業(継続事業)「ケミカルリフトオフ法を用いた縦型構造高出力紫外LEDの開発」(平成21・03・27東北第16号20R2004)産業技術力強化法第19条の適用を受ける特許出願
【出願人】(506334182)DOWAエレクトロニクス株式会社 (336)
【Fターム(参考)】