説明

半導体結晶欠陥検査方法、半導体結晶欠陥検査装置、及びその半導体結晶欠陥検査装置を用いた半導体装置の製造方法

【課題】高空間分解能で測定位置の確認ができ、且つ高空間分解能で試料分析ができるカソードルミネッセンス(CL)を用いた半導体結晶欠陥検出方法等を提供する。
【解決手段】表面側にシリコン層を有する基板2をステージ3に載置する工程と、基板2を温度100K〜4Kに冷却する工程と、ステージ3と基板表面を照射するための電子線とのいずれか一方を2次元的に走査して、基板表面の所定領域内を電子線により順次照射する工程と、基板表面から発生したCL光のうちの波長1200nm〜1700nmの近赤外光を検出すると共に、検出位置確認のために、基板表面から発生した2次電子を検出する工程と、検出された2次電子により基板表面の画像である2次電子像を表示すると共に、2次電子像に対応させて、検出された近赤外光の強度を表示し、基板表面で近赤外光の強度が大きい部位を特定する工程とを順に実行している。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、シリコン層を表面側に有する基板において、そのシリコン層に対して半導体素子の形成処理が行われたときに発生する結晶欠陥を検査する半導体結晶欠陥検査方法と、半導体結晶欠陥検査装置と、その半導体結晶欠陥検査装置を用いた半導体装置の製造方法とに関するものである。
【背景技術】
【0002】
従来、半導体の結晶欠陥を検査する技術としては、例えば、次のような文献に記載されるものがあった。
【0003】
【特許文献1】特開昭56−35043号公報
【特許文献2】特公平6−41915号公報
【非特許文献1】山本直紀「応用物理」第69巻、第10号(2000年)
【0004】
半導体集積回路(以下、「IC」という。)或いは大規模半導体集積回路(以下、「LSI」という。)等の半導体装置の製造において、半導体の結晶欠陥はできるだけ無いことが望ましく、又、製造過程においても、熱ストレス、プラズマやイオンによるダメージ等による欠陥が入らないようにしてそれを低減することが非常に重要である。
【0005】
結晶欠陥には、格子点から原子の抜け穴が空いた状態になっているもの(空孔)、格子点と格子点の間に原子が入り込んだ状態になっているもの(格子間原子)等があり、点欠陥、線欠陥、面欠陥、及び、体欠陥の4つに大別される。点欠陥には、空孔、自己格子間原子、格子間不純物、及び、置換不純物のタイプがあり、空孔では、周りの原子に引っ張り応力、自己格子間原子では、周りの原子に圧縮応力が働いており、結晶中の周期的な場を乱す原因になっている。線欠陥には、ある線を境に結晶の片方が滑った状態になる転位と、太さが格子面間隔程度で長さが10μm程度にまでなる自己格子間原子の集合体等である棒状欠陥とがある。面欠陥の代表例は、積層欠陥であり、この積層欠陥は、格子面の並びの周期性が、余分な原子面の挿入や欠落によって生じる欠陥であり、積層欠陥の境界は刃状転位になっている。特に、半導体装置では、欠陥の長さが大きい転位等が半導体素子特性に大きな影響を与えるので、大きな問題になる。
【0006】
これまで半導体結晶欠陥検査方法や半導体結晶欠陥検査装置は、種々提案されてきた。代表的なものに透過型電子顕微鏡(以下、「TEM」という。)法がある。これは、試料の特定部位を薄片化し、薄片化した試料に電子線を照射し、透過した電子線から試料の結晶欠陥を評価する手法である。しかしながら、試料の薄片化には多くの時間と労力が必要である上に、試料全てをくまなく調べることはできず、特定の場所しか評価できないという問題があった。更に、破壊測定となるため製品を全数検査することは不可能であった。
【0007】
その他の検出方法として、X線トポグラフィ法、Seccoエッチング法等がある。X線トポグラフィ法は、X線回折顕微法とも呼ばれ、非破壊で欠陥の空間分布を観察する方法であるが、比較的大きな欠陥しか検出できない上に、測定に時間がかかり、しかも、X線を照射するために、基本的には測定を行ったウエハを製造工程内に戻すことができない。Seccoエッチング法は、フッ酸溶液によりポリシリコン電極及び酸化膜を除去した後、Secco液によるエッチングを行い、光学顕微鏡によりエッチング表面を観察する方法である。このSeccoエッチング法では、基板上に形成されているパターンを全て除去する必要があるため、非破壊の検査ができない上、定量性や再現性に乏しく時間もかかる。
【0008】
又、LSIを駆動させた際に異常部から生じる微弱発光を検出し、故障部位を特定するエミッション顕微鏡法という手法が考案されている。本装置は、具体的には浜松ホトニクス株式会社からホットエレクトロン解析装置PHEMOSシリーズとして市販されている。本装置では、LSI上の故障部位を特定することができる。しかし、電極等をつけた最終製品回路に電気を流して初めて検査可能であり、製品製造工程途中で検出することはできなかった。又、故障原因を特定することもできなかった。
【0009】
これに対し、製品製造工程途中において非破壊で検査可能な走査型電子顕微鏡(以下、「SEM」という。)を用いたルミネッセンス装置が特許文献1、2や非特許文献1で提案されている。
【0010】
特許文献1では、フォトルミネッセンス(以下、「PL」という。)を用いた試料評価装置において、半導体素子用ウエハにレーザ光を照射する手段と、前記レーザ光の照射による前記ウエハの発光(ルミネッセンス)を検出し且つ一定量以上の発光強度の低下があるかどうかを検知する手段と、前記検知する手段の出力によって前記ウエハの選別を行う手段とを備え、半導体製造工程において非破壊で半導体の結晶欠陥を検査し、評価する技術が記載されている。
【0011】
特許文献2では、ルミネッセンス測定装置の主なものとして、極低温状態の試料にレーザ光を照射してルミネッセンスを測定するPL装置と、真空内に試料を設置し、試料に電子線を照射してルミネッセンスを測定するカソードルミネッセンス(以下、「CL」という。)装置とがあると記載されている。CL測定とPL測定とから得られる半導体結晶品質の情報は、必ずしも一致せず、むしろ両者の測定結果は半導体結晶評価において相補的な関係にある場合もあり、試料の同じ位置におけるCL測定とPL測定とが要求されることがある。そこで、特許文献2の技術では、CL装置とPL装置とを同一の装置で実現し、同一試料の同一位置においてそれぞれのルミネッセンスを独立に、或いは、同時に測定するルミネッセンス測定装置の構造を提案している。このルミネッセンス測定装置では、半導体結晶に対して電子線及びレーザ光線を照射し、この照射によって生ずるルミネッセンスのスペクトル及びこの強度を測定し、そのスペクトルの成因である不純物、格子欠陥及びその複合体を固定することにより、半導体結晶の品質を解析するようにしている。
【0012】
又、非特許文献1には、CL装置の技術が記載され、実際に市販されており、砒素化ガリウム(GaAs)を初めとする化合物半導体や誘電体等のバンドギャップ、結晶状態、不純物の有無等の評価に数多く適用されている。
【発明の開示】
【発明が解決しようとする課題】
【0013】
しかしながら、従来の半導体結晶欠陥検査方法や半導体結晶欠陥検査装置では、次のような課題があった。
【0014】
例えば、従来のCL装置では、GaAsを初めとする化合物半導体等の結晶欠陥を検出する場合、電子線を照射すると、発生するルミネッセンス量が多いので、比較的精度良く検出できる。しかし、半導体がシリコン(Si)の場合、シリコンは間接遷移型半導体であり、電子線を照射しても発生するルミネッセンス量が少ないので、結晶欠陥を精度良く検出することが困難である。そこで、他の検査方法を組み合わせて検出精度を上げようとすると、検出処理が煩雑になって検出に時間がかかり、多くの製造工程数を有するLSI等の半導体装置の製造に用いた場合、製造時間がかかって製造効率が低下するという課題があった。
【0015】
本発明は、従来の課題を解決し、簡便かつ高感度でシリコンの結晶欠陥を検出できる半導体結晶欠陥検査方法、半導体結晶欠陥検査装置、及びその半導体結晶欠陥検査装置を用いた半導体装置の製造方法を提供することを目的とする。
【課題を解決するための手段】
【0016】
本発明の半導体結晶欠陥検査方法では、半導体素子が形成されるシリコン層を表面側に有する基板を、支持台に載置する工程と、前記基板のシリコン層を温度100K〜4Kに冷却する工程と、前記支持台と前記シリコン層の表面を照射するための電子線とのいずれか一方を2次元的に走査して、前記シリコン層の表面の所定領域内を前記電子線により順次照射する工程と、前記シリコン層から発生した波長1200nm〜1700nmの近赤外光を検出すると共に、前記シリコン層から発生した2次電子を検出する工程と、前記検出された2次電子により前記シリコン層の表面画像である2次電子像を表示すると共に、前記2次電子像に対応させて、前記検出された波長1200nm〜1700nmの近赤外光の強度を表示し、前記シリコン層の表面で前記波長1200nm〜1700nmの近赤外光の強度が大きい部位を特定する工程とを有している。
【0017】
本発明の半導体結晶欠陥検査装置では、上記半導体結晶欠陥検査方法を用いた装置構成である。
【0018】
本発明の半導体装置の製造方法では、上記半導体結晶欠陥検査装置を用いてLSI等の半導体装置を製造している。
【発明の効果】
【0019】
本発明の半導体結晶欠陥検査方法及び半導体結晶欠陥検査装置によれば、シリコン層、或いはこのシリコン層に作製された半導体素子の結晶欠陥を短時間且つ高感度で検査することができる。
【0020】
本発明の半導体装置の製造方法によれば、シリコン層のどの部分にどのような結晶欠陥が存在するのかの検査を工程内で、非破壊で行うことができるため、結晶欠陥の発生しない、或いは抑制することができる工程設計、或いはパーン設計を容易に行うことができる。更に、製品の出来栄えを検査する指標として、従来の寸法測定や膜厚測定と同様に、結晶欠陥測定を工程内の検査として用いることにより、品質の高い製品を提供することができる。更に、結晶欠陥のある不良品を初期段階で選別できるので、無駄な製造処理を削減でき、製造コストを低減できる。
【0021】
本発明の他の半導体装置の製造方法によれば、同一の基板を製造工程内で複数回測定することにより、結晶欠陥の発生工程を特定することができる。その上、結晶欠陥とは無関係な信号を用いて近赤外光の強度を規格化をすることで、欠陥の多い少ないも比較することが可能であり、これを各製造工程の管理値とリンクすることで、有効な製造工程内管理手法となる。
【発明を実施するための最良の形態】
【0022】
本発明の半導体結晶欠陥検査方法では、MOSトランジスタ等の半導体素子の形成処理が行われるシリコン層を表面側に有する基板を用意する。基板としては、例えば、シリコン基板、SOS(Si on sapphire)エピタキシャル成長によりサファイア基板上に化学的気相成長(以下、「CVD」という。)法によりシリコン層を形成したSOS基板、ガラス基板上にシリコン層を形成した基板等がある。
【0023】
そして、用意した基板を支持台に載置する工程と、結晶欠陥に起因するルミネッセンスを効率良く放出させるために、前記基板のシリコン層を温度100K〜4Kに冷却する工程と、前記支持台と前記シリコン層の表面を照射するための電子線とのいずれか一方を2次元的に走査して、前記シリコン層の表面の所定領域内を前記電子線により順次照射する工程と、前記シリコン層から発生した波長1200nm〜1700nmの近赤外光を検出すると共に、検出位置確認のために、前記シリコン層から発生した2次電子を検出する工程と、前記検出された2次電子により前記シリコン層の表面画像である2次電子像を表示すると共に、前記2次電子像に対応させて、前記検出された波長1200nm〜1700nmの近赤外光の強度を表示し、前記シリコン層の表面で前記波長1200nm〜1700nmの近赤外光の強度が大きい部位を特定する工程とを順に実行している。
【0024】
このような半導体結晶欠陥検査方法において、前記シリコン層から発生した波長1200nm〜1700nmの近赤外光を、分光した後に検出しても良い。
【0025】
本発明の半導体結晶欠陥検査装置では、半導体素子の形成処理が行われるシリコン層を表面側に有する基板を支持する移動式又は固定式の支持台と、前記支持台に支持された前記基板のシリコン層を温度100K〜4Kに冷却するクライオスタット等の冷却手段と、減圧下において、前記支持台に支持された前記基板のシリコン層の表面を照射するための電子線(例えば、ビーム径は数十nm以下)を発生し、前記支持台に対して前記電子線を相対的に移動して、前記シリコン層の表面の所定領域内を順次照射する電子銃等の固定式又は移動式の電子線発生器と、前記電子線の照射により前記シリコン層から発生した波長1200nm〜1700nmの近赤外光を検出するInGaAsマルチチャンネル検出器等の第1の検出手段と、前記電子線の照射により前記シリコン層から発生した2次電子を検出する検出器である第2の検出手段と、前記第2の検出手段で検出された前記2次電子により前記シリコン層の表面画像である2次電子像を表示すると共に、前記2次電子像に対応させて、前記第1の検出手段で検出された前記波長1200nm〜1700nmの近赤外光の強度を表示する表示器である表示手段とを備えている。
【0026】
このような半導体結晶欠陥検査装置において、前記第1の検出手段では、前記シリコン層から発生した前記波長1200nm〜1700nmの近赤外光を、分光器で分光した後に検出しても良い。
【0027】
本発明の半導体装置の製造方法では、シリコン層を表面側に有する基板における前記シリコン層に対して半導体素子形成処理を行う前、又は前記半導体素子形成処理によって前記シリコン層に与えるダメージが大きいと予測される初期段階の素子分離形成や能動素子形成等の処理工程の後に、前記半導体結晶欠陥検査装置を用いて前記基板のシリコン層に対し結晶欠陥の検査を行って良/否判定を行う工程と、前記良/否判定結果により良品と判定された前記基板に対して次工程の半導体素子形成処理を行う工程とを順に実行するようにしている。
【0028】
又、本発明の半導体装置の製造方法では、シリコン層を表面側に有する基板における前記シリコン層に対して複数の半導体素子形成処理工程を行う各工程の前後に、前記2次電子像の座標位置と前記近赤外光の強度とを記録し、前記記録された強度を規格化することにより、前記各半導体素子形成処理工程の前後での前記近赤外光の強度を比較して前記各半導体素子形成処理工程固有の結晶欠陥の発生と分布を求める工程を有している。
【実施例1】
【0029】
(半導体結晶欠陥検査装置)
図1は、本発明の実施例1を示す半導体結晶欠陥検査装置の概略の構成図である。
この半導体結晶欠陥検査装置は、真空ポンプ等で減圧して真空状態を作り出すチャンバ1を有している。チャンバ1内には、検査対象となる試料である基板(例えば、シリコンLSIの製造工程内で測定を実施する場合はシリコンウエハ)2を支持するための支持台(例えば、2次元的に移動可能なステージ)3が設けられ、このステージ3に冷却手段4が取り付けられている。冷却手段4は、シリコンウエハ2を冷却するものであり、液体ヘリウム、液体窒素等の冷媒を用いて冷却する方式や、ヘリウムガス等を用いたクローズドタイプの循環式のクライオスタット等により構成されている。冷却温度は、シリコンウエハ2を100K〜4Kに冷却することが必要である。シリコンウエハ2の温度が低いほど、このシリコンウエハ2からの結晶欠陥、転位に由来する発光の強度が増大するため好ましいが、4Kより低い温度では、冷却が容易ではない上に、温度を一定に保つことが難しく、検査中にシリコンウエハ2がドリフトし易いという問題が生じる。100K以上では、無輻射遷移確率が高くなるため、シリコンウエハ2からの結晶欠陥、転位に由来する発光の強度が低下する。
【0030】
ステージ3は、駆動部5により平面のX軸方向及びY軸方向に移動可能な構造になっている。駆動部5は、制御モータ等で構成され、シリコンウエハ2が載置されたステージ3を精度良く位置制御できる装置である。ステージ3上には、この上に載置されるシリコンウエハ2を照射するための電子線を発生する電子線発生器(例えば、電子銃)6が設けられている。電子銃6は、2次電子像、反射電子像、及び透過電子像の内の1つ以上を観察可能なSEMやTEM等に設けられており、中でも、簡便且つ非破壊で観察できる点から、SEMに設けられる電子銃を使用することが好ましい。電子銃6の方式には、特に制約はなく、例えば、熱電子放出型、電界放出型、ショットキーエミッション型、サーマル電界放出型等の任意の電子銃を用いることができ、中でも、高空間分解能且つ高電流密度である点から、ショットキーエミッション型或いはサーマル電界放出型の電子銃が好ましく使用される。電子線のビーム径は、特に限定されないが、ビーム径が小さいほど空間的な分解能が向上するため、ビーム径を数十nm以下にできることが好ましい。
【0031】
本実施例1では、電子銃6から発生する電子線が固定され、この電子線で照射されるシリコンウエハ2を支持するステージ3が移動して、そのシリコンウエハ2を2次元的に走査するようになっている。この走査方式についても特に制約はないが、できるだけ広い範囲を捜査できる方がシリコンウエハ2のより広い範囲の結晶欠陥を一度に検査できるため好ましい。例えば、SEMでは、固定されたステージと電子銃との間に設けられた走査コイルにより、電子銃から発生する電子線を走査するようになっているが、このような走査方式を採用しても良い。
【0032】
ステージ3の上方には、電子線の照射によりシリコンウエハ2から発生したCL光の内の波長1200nm〜1700nmの近赤外光を検出するために、集光ミラー7、光ファイバ8、及び分光器9を介して第1の検出手段(例えば、CL検出器)10が設けられている。シリコンでは、転位が存在する場合、CL光のD1(1535nm)、D2(1419nm)、D3(1321nm)、D4(1244nm)付近に結晶中に生じた欠陥や転位に由来する発光が観測されるので、1200nm〜1700nmの近赤外光を検出できれば、結晶欠陥や転位等の検査を行うことができる。集光ミラー7は、シリコンウエハ2の表面から全方向に放出されるCL光の集光効率を上げるために設けられている。この集光ミラー7は、例えば、垂直方向に電子線通過用の1mmφ程度の貫通孔7aが形成された凹面鏡構造をしており、楕円ミラー、放物線ミラー等で構成されている。CL検出器10の構造には特に制限はないが、液体窒素等の冷却手段11で冷却することが好ましく、近赤外域に感度のあるフォトダイオード、光電子増倍管、InGaAsマルチチャンネル検出器、InGaAsカメラ等が挙げられ、好ましく使用される。中でも、InGaAsマルチチャンネル検出器は、分光器9で分光した光を一度に検出できるため、検査時間が短縮できより好ましい。この際、集光ミラー7から直接CL検出器10にCL光を導いてもよいが、光ファイバ8を介してCL検出器10にCL光を導入しても良い。この際には、近赤外域に吸収のない近赤外用光ファイバ8を用いることが好ましい。
【0033】
CL光を分光しなくても結晶欠陥検査は可能であるが、分光器9で分光すると欠陥の種類や量を調べることができるため、より好ましい。分光器9の方式には特に制限はないが、回折格子型分光器、プリズム型分光器、光学フィルタ型分光器、ダイクロイックミラー型分光器よりなる群から選ばれる少なくとも1つの分光器が好ましい。分光器9を設けることで、分光スペクトルを測定することができるようになり、シリコンウエハ2中の結晶欠陥や転位のより詳細な情報を得ることが可能となる。CL検出器10の出力側には、CL信号を増幅するCL信号増幅器12が接続されている。
【0034】
又、ステージ3の上方には、ウエハパターンを観察したり、位置情報を取得するためのSEMシステムを構成する第2の検出手段(例えば、2次電子検出器)13、及びSEM信号増幅器14が設けられている。2次電子検出器13は、電子線の照射によりシリコンウエハ2から発生した2次電子を検出するものであり、この出力のSEM信号がSEM信号増幅器14で増幅される。
【0035】
電子銃6、CL信号増幅器12、及びSEM信号増幅器14には、装置全体を制御するためのコントローラ15が接続されている。コントローラ15は、CL信号増幅器12から出力されるCL信号S12、SEM信号増幅器14から出力される位置信号S14、及びシリコンウエハ2に形成するためのデバイス情報(素子情報)等を入力し、駆動部5等を含めた装置全体を制御するものである。コントローラ15には、データ処理部17を介してデータ記憶部18が接続されると共に、CRT等の表示器19等が接続されている。これらのコントローラ15、データ処理部17、データ記憶部18、及び表示器19は、コンピュータシステム等で構成できる。
【0036】
本実施例1では、位置を確認するために、シリコンウエハ2からの2次電子を画像として表示する表示器19が設けられている。一般に、SEMやTEMでは、反射電子、2次電子、透過電子の内の1つ以上を画像として表示させることが可能である。これらいずれによってもシリコンウエハ2の位置を確認することはできるが、CL装置では、シリコンウエハ2からの光を集光するためにシリコンウエハ2の上部に集光ミラー7が配置されているために、2次電子像を用いて位置の確認を行うことが最も簡便且つ位置精度も高いため、本実施例1では2次電子像を位置確認に用いている。
【0037】
(半導体結晶欠陥検査方法)
図1の装置を用いた半導体結晶欠陥検査方法を説明する。
第1の工程において、検査対象となる基板(例えば、シリコンウエハ)2をチャンバ1内のステージ3に載置する。チャンバ1内の空気を真空ポンプ等で吸引し、該チャンバ1内をCL測定が行える減圧環境にする。
【0038】
第2の工程において、冷却手段4によりステージ3を冷却し、このステージ3上のシリコンウエハ2を温度100K〜4kに冷却する。
【0039】
第3の工程において、コントローラ15の制御により駆動部5を動作させ、CLを検出するための電子線の照射位置とシリコンウエハ2上の座標合わせを行う。電子銃6から電子線を放射させて集光ミラー7の貫通孔7aを通過させ、駆動部5によりステージ3上のシリコンウエハ2を平面のX軸方向及びY軸方向に動かしながら、該放射線によってシリコンウエハ2の所定領域を走査して行く。なお、ステージ3を固定して電子線を動かしても良い。シリコンウエハ2への電子線の照射により、該シリコンウエハ2からCL光、2次電子等が発生する。
【0040】
第3の工程において、シリコンウエハ2上の各座標から発生したCL光は、集光ミラー7で集光され、光ファイバ8により伝送されて分光器9で分光される。分光されたCL光は、CL検出器10に入力され、波長1200nm〜1700nmの近赤外光が検出される。検出された波長1200nm〜1700nmの近赤外光は、CL信号増幅器12で増幅され、この増幅されたCL信号S12がコントローラ15へ送られる。又、シリコンウエハ2の各座標から発生した2次電子は、2次電子検出器13により検出され、SEM信号増幅器14で増幅されて座標情報である位置信号S14が生成され、コントローラ15へ送られる。
【0041】
第4の工程において、CL信号S12、位置信号S14、及びデバイス情報16等がコントローラ15に入力されると、データ処理部17により、シリコンウエハ2の表面画像である2次電子像と、これに対応する波長1200nm〜1700nmの近赤外光の強度とが算出され、シリコンウエハ2の表面において波長1200nm〜1700nmの近赤外光の強度が大きい部位が特定され、データ記憶部18に記録される。又、コントローラ15により制御される表示器19において、算出された2次電子像とこれに対応する波長1200nm〜1700nmの近赤外光の強度とが表示されるので、波長1200nm〜1700nmの近赤外光の強度が大きい部位を目視できる。
【0042】
図2は、測定されたCL信号S12のスペクトルを示す図である。この図2では、例えば、シリコンウエハ2における素子分離領域の形成工程において、シリコンウエハ2上に膜厚230nmの窒化膜を形成し、この膜を化学的機械的研磨(以下、「CMP」という。)を行った後のCLスペクトルを示しており、横軸に波長(Wavelength)nm、及び縦軸に光強度(Intensity)cpsが取られている。
【0043】
CL法では、例えば、電子の加速電圧を15KeVに設定した場合、電子線のSi表面からの進入深さは約3μm程度であり、一方、Siを用いた半導体素子の場合、その形成領域は高々2μm程度であるので、半導体製造工程で問題となる欠陥を殆ど検出できる。電子の加速電圧の範囲は、10KeV〜30KeV程度が好ましい。
【0044】
Siは間接遷移型半導体であり、低温のPLスペクトルやCLスペクトルには、ホノン(phonon)の放出を伴う発光が比較的強く観測される。これらの発光線の帰属は、次の通りであると考えられる。
【0045】
1090nm付近;ホノンの関与しないノンホノン(NP)束縛励起子
1130nm付近;TOホノンが関与した束縛励起子
1200nm付近;束縛励起子のホノンレプリカ
【0046】
これらの発光線は、欠陥や不純物によるものではなく、結晶本来の発光線であり、下記のD-lineとは逆で、結晶が良いと強度が強くなる。結晶内に転位が存在する試料では、1220nm〜1600nm付近に、D-lineと呼ばれる比較的シャープな発光が数本観測される。この内、D3,D4は、60°転位に関係しており、且つD3はD4のホノンレプリカである。D1,D2に関しては、転位や不純物を開始点とする積層欠陥、転位周辺の歪み場にトラップ(捕獲)された点欠陥、不純物、析出酸素等によるものである。又、1279nm付近にはGcenterノンホノン(NP)線と呼ばれる発光線が観測されるが、この発光線は高エネルギー粒子線の照射により観測され、帰属としては格子間Siと置換位置Cの複合センタ(C−Si−C)である。従って、観察している領域で検出されるD1−D4−lineの強度を見ることにより、その領域内に欠陥があるかどうかを検出することができる。
【0047】
この測定は、試料の位置情報と共にデータ記憶部18に記録されるため、測定終了後に、結晶欠陥の分布と強度をマップとして出力して表示器19に表示できる。又、座標情報を他の検査装置(例えば、光学的検査装置、電子線検査装置等)の入力情報として、実際に欠陥が発生している箇所のパターンを観察することもできる。図1の装置では、表示器19等のSEM観察ユニットも搭載されているため、欠陥の検出と観察を同時に行うことができる。
【0048】
このように本実施例1の半導体結晶欠陥検査方法では、シリコンウエハ2を用いたLSI等の作製工程前、作製工程の途中、或いは作製工程後に、試料であるシリコンウエハ2を半導体結晶欠陥検査装置内に導入し、シリコンウエハ2のどの部分で波長1200nm〜1700nmの近赤外光の強度が大きいかを検査する。波長1200nm〜1700nmの近赤外光が検出されない場合、シリコンウエハ2には結晶欠陥はなく、特に問題なしと判定されるが、波長1200nm〜1700nmの近赤外光が検出された場合、シリコンウエハ2には結晶欠陥があるため、不良品となる可能性が高い。
【0049】
本半導体結晶欠陥検査方法で検査可能な要素プロセス(工程)には、特に限定はないが、ドライエッチング、イオン注入、CMP、エピタキシャル成長、基板等の各プロセスで発生した結晶欠陥検査に好ましく適用できる。
【0050】
(実施例1の効果)
本実施例1により、シリコンウエハ2上に作製されたLSI等の結晶欠陥を短時間且つ高感度で検査することができる。以下、具体的な実施装置例(1)〜(3)を挙げて本実施例1の効果を更に説明する。
【0051】
(1) 実施装置例
日立製作所製S−4300SEショットキーエミッション型SEMに、集光ミラー7と光ファイバ8を取り付けた。光ファイバ8をジョバン・イボン製シングル分光器HR−320(9)に導き、ジョバン・イボン製液体窒素冷却InGaAsマルチチャンネル検出器10で波長1200〜1700nmの近赤外光を検出した。試料としては、LSIの素子分離工程を行ったものを使用した。試料は岩谷瓦斯製クローズドタイプの低温クライオスタット(4)を用いて30Kに冷却した。その結果、特定回路部分で、1200〜1700nmにD1,D2,D3,D4と呼ばれる転位に由来する発光が観測された。このことから、本試料では転位が存在していることが特定された。なお、測定温度120Kでは、D1,D2,D3,D4線の信号強度が弱く、30Kでの測定に比べて5倍以上の時間がかかったため、試料の全ての位置を調べることができなかった。
【0052】
(2) 比較例1
前記(1)で使用した試料の一部分をFIB装置により、断面薄片化し、日立製作所製TEM(H−9000UHR)で観察した。しかし、結晶欠陥を検出することができなかった。
【0053】
(3) 比較例2
前記(1)で使用した試料の最終製品を浜松ホトニクス社製エミッション顕微鏡PHEMOS−200を用いて評価した。特定回路部分で異常を示したが、原因については特定することができなかった。
【実施例2】
【0054】
(半導体装置の製造方法)
図3(A)〜(F)は、図1の半導体結晶欠陥検査装置を用いた本発明の実施例2における半導体装置の製造方法を示す製造工程図である。
【0055】
基板(例えば、シリコンウエハ)2を用いてLSI等の半導体装置を製造する場合は、例えば、次の(1)〜(6)のようにして製造される。
【0056】
(1) 図3(A)の工程
シリコンウエハ2に対して半導体素子形成処理を行う前に、必要に応じて、使用するシリコンウエハ2を図1の半導体結晶欠陥検査装置内に導入し、結晶欠陥の検査を行い、結晶欠陥の有無や程度が許容値以下か否かの良/否判定を行う。不良品は除き、良品のみを製造工程に導入し、以降の半導体素子形成処理を行う。
【0057】
良品のシリコンウエハ2を洗浄した後、熱酸化してシリコンウエハ2の表面に厚さ5〜30nm程度の熱酸化膜21を形成する。CVD法により、全面に厚さ120nm〜250nm程度の窒化膜を被覆する。ホトリソグラフィ技術により、窒化膜22及び熱酸化膜21を選択的にエッチングし、この窒化膜をマスクとしてシリコンをエッチングし、深さ100〜500nm程度の素子分離用の溝23を形成する。その後、熱酸化等の方法により、露出したシリコン表面に酸化膜24を形成する。溝23の周辺のシリコン層には大きなストレスが加わるので、大小の多数の結晶欠陥が生じる虞がある。露出したシリコン表面の微細な結晶欠陥の多くは、その後の熱処理等によって消失するが、結晶内部に形成された結晶欠陥は、そのまま残るか、或いは、その後の製造処理等によって大きく成長することもある。
【0058】
(2) 図3(B)の工程
CVD法により、全面に酸化膜25を堆積し、この酸化膜25により溝23内を充填すると共に全面を被覆する。
【0059】
(3) 図3(C)の工程
CMP法により、全面を研磨して表面の酸化膜25を除去し、窒化膜22を露出させる。溝23内に充填された酸化膜25は、素子分離領域であるフィールド酸化膜25aとなる。その後、図1の半導体結晶欠陥検査装置内に導入し、結晶欠陥の検査を行い、結晶欠陥の有無や程度が許容値以下か否かの良/否判定を行う。特に、フィールド酸化膜25aと接するシリコン部分には大きなストレスが加えられたので、大きな結晶欠陥が存在する虞がある。結晶欠陥が許容値を超える不良品は除き、良品のみを製造工程に戻す。
【0060】
(4) 図3(D)の工程
エッチングにより窒化膜22及び熱酸化膜21を除去し、素子を形成する領域のシリコンを露出させる。その後、図1の半導体結晶欠陥検査装置内に導入し、結晶欠陥の検査を行い、結晶欠陥の有無や程度が許容値以下か否かの良/否判定を行う。不良品は除き、良品のみを製造工程に戻す。
【0061】
(5) 図3(E)の工程
熱酸化等の方法により、素子形成領域に酸化膜(図示せず)を形成した後、必要に応じて不純物イオンを注入し、シリコン基板に対して逆導電型の素子形成領域であるウエル26を形成する。一旦、表面に形成した酸化膜を除去した後改めて、全面にゲート酸化膜27を形成する。その後、図1の半導体結晶欠陥検査装置内に導入し、結晶欠陥の検査を行い、結晶欠陥の有無や程度が許容値以下か否かの良/否判定を行う。不良品は除き、良品のみを製造工程に戻す。CVD法により、ゲート電極28となるポリシリコンを堆積する。ホトリソグラフィ技術により、ポリシリコンを選択的にエッチングし、ゲート電極28を形成する。その後、図1の半導体結晶欠陥検査装置内に導入し、結晶欠陥の検査を行い、結晶欠陥の有無や程度が許容値以下か否かの良/否判定を行う。不良品は除き、良品のみを製造工程に戻す。
【0062】
(6) 図3(F)の工程
不純物イオンを打ち込み、イオンを活性化して拡散層29を形成する。次に、必要に応じて、図1の半導体結晶欠陥検査装置内に導入し、結晶欠陥の検査を行い、不良品は除き、良品のみを製造工程に戻す。全面に絶縁膜である絶縁膜30を被覆し、その上に配線層を形成する等して多数のLSI等の半導体装置(チップ)を形成する。
【0063】
このような製造工程の完了後は、電気特性検査装置であるウエハプローバでシリコンウエハ2上の各チップの良/不良を選別した後、ウエハ分割、組み立て工程が行われる。
【0064】
(実施例2の効果)
(1) 半導体装置の製造工程内に用いられる半導体結晶欠陥検査装置として図1のCL法を用い、位置信号S14のデータと併せてCL信号S12の強度データをデータ記憶部18に記録することで、シリコン層のどの部分にどのような結晶欠陥が存在するのかの検査を工程内で、非破壊で行うことができるため、結晶欠陥の発生しない、或いは抑制することができる工程設計、或いはパーン設計を容易に行うことができる。更に、製品の出来栄えを検査する指標として、従来の寸法測定や膜厚測定と同様に、結晶欠陥測定を工程内の検査として用いることにより、品質の高い製品を提供することができる。
【0065】
(2) シリコンウエハ2に対して半導体素子形成処理を行う前、又は、半導体素子形成処理によってシリコン層に与えるダメージが大きいと予測される初期段階の処理工程(例えば、素子分離領域の形成工程、その後の能動素子形成工程等)の後に、図1の半導体結晶欠陥検査装置を用いて結晶欠陥の検査を行って良/否判定を行い、良品に対して次工程の半導体素子形成処理を行うようにしている。これにより、結晶欠陥のある不良品を初期段階で選別できるので、無駄な製造処理を削減でき、製造コストを低減できる。
【0066】
(3) シリコンウエハ2に代えて、表面側にシリコン層を有する基板であれば、SOS基板等の他の構造の基板を使用しても良い。
【実施例3】
【0067】
実施例3は、実施例2と同様に、図1の半導体結晶欠陥検査装置を用いた半導体装置の製造方法であるが、実施例2の方法に対して、図3の製造工程毎に記録した位置信号S14のデータとCL信号S12の強度データとを各製造工程間で比較する構成にしている。又、実施例3では、シリコン層から発生した波長1000nm〜1700nmの近赤外線を検出している。
【0068】
図3の各製造工程で得られたCL信号S12は、次のように利用することができる。
先ず、製造工程が異なると、シリコンウエハ2の表面の状態が変わり、欠陥の発生や増減をそのままでは比較することができないが、例えば、図2の結晶本来の発光線から得られるCL信号S12のように、結晶欠陥とは無関係であり、又、製造工程によらず安定している信号を用いることで比較が可能となる。例えば、各製造工程で得られたCL信号S12を結晶本来の発光線に対する強度比に換算することで、各製造工程間の信号強度の比較ができるようになる。従って、製造工程の前後のCL信号S12を比較することで、その製造工程固有の結晶欠陥の発生とその分布を知ることができる。
【0069】
(実施例3の効果)
(1) 実施例3によれば、同一のシリコンウエハ2を製造工程内で複数回測定することにより、結晶欠陥の発生工程を特定することができる。
【0070】
(2) 結晶本来の発光線のように、結晶欠陥とは無関係な信号を用いてCL信号S12の規格化をすることで、欠陥の多い少ないも比較することが可能であり、これを各製造工程の管理値とリンクすることで、有効な製造工程内管理手法となる。
【0071】
(3) シリコンウエハ2に代えて、表面側にシリコン層を有する基板であれば、SOS基板等の他の構造の基板を使用しても良い。
【産業上の利用可能性】
【0072】
本発明では、シリコンを用いた半導体への適用例を説明したが、GaAs等の化合物半導体等の結晶構造を有する他の半導体材料への適用も可能である。
【図面の簡単な説明】
【0073】
【図1】本発明の実施例1を示す半導体結晶欠陥検査装置の概略の構成図である。
【図2】図1の装置を用いて測定されたCL信号S12のスペクトルを示す図である。
【図3】図1の装置を用いた本発明の実施例2における半導体装置の製造方法を示す製造工程図である。
【符号の説明】
【0074】
1 チャンバ
2 シリコンウエハ
3 ステージ
4,11 冷却手段
5 駆動部
6 電子銃
7 集光ミラー
9 分光器
10 CL検出器
13 2次電子検出器
15 コントローラ
18 データ記憶部
19 表示器

【特許請求の範囲】
【請求項1】
半導体素子の形成処理が行われるシリコン層を表面側に有する基板を、支持台に載置する工程と、
前記基板のシリコン層を温度100K〜4Kに冷却する工程と、
前記支持台と前記シリコン層の表面を照射するための電子線とのいずれか一方を2次元的に走査して、前記シリコン層の表面の所定領域内を前記電子線により順次照射する工程と、
前記シリコン層から発生した波長1200nm〜1700nmの近赤外光を検出すると共に、前記シリコン層から発生した2次電子を検出する工程と、
前記検出された2次電子により前記シリコン層の表面画像である2次電子像を表示すると共に、前記2次電子像に対応させて、前記検出された波長1200nm〜1700nmの近赤外光の強度を表示し、前記シリコン層の表面で前記波長1200nm〜1700nmの近赤外光の強度が大きい部位を特定する工程と、
を有することを特徴とする半導体結晶欠陥検査方法。
【請求項2】
請求項1記載の半導体結晶欠陥検査方法において、
前記シリコン層から発生した波長1200nm〜1700nmの近赤外光を、分光した後に検出することを特徴とする半導体結晶欠陥検査方法。
【請求項3】
半導体素子の形成処理が行われるシリコン層を表面側に有する基板を支持する支持台と、
前記支持台に支持された前記基板のシリコン層を温度100K〜4Kに冷却する冷却手段と、
減圧下において、前記支持台に支持された前記基板のシリコン層の表面を照射するための電子線を発生し、前記支持台に対して前記電子線を相対的に移動して、前記シリコン層の表面の所定領域内を順次照射する電子線発生器と、
前記電子線の照射により前記シリコン層から発生した波長1200nm〜1700nmの近赤外光を検出する第1の検出手段と、
前記電子線の照射により前記シリコン層から発生した2次電子を検出する第2の検出手段と、
前記第2の検出手段で検出された前記2次電子により前記シリコン層の表面画像である2次電子像を表示すると共に、前記2次電子像に対応させて、前記第1の検出手段で検出された前記波長1200nm〜1700nmの近赤外光の強度を表示する表示手段と、
を備えたことを特徴とする半導体結晶欠陥検査装置。
【請求項4】
請求項3記載の半導体結晶欠陥検査装置において、
前記第1の検出手段では、前記シリコン層から発生した前記波長1200nm〜1700nmの近赤外光を、分光した後に検出することを特徴とする半導体結晶欠陥検査装置。
【請求項5】
請求項3又は4記載の半導体結晶欠陥検査装置を用いた半導体装置の製造方法であって、
シリコン層を表面側に有する基板における前記シリコン層に対して半導体素子形成処理を行う前、又は前記半導体素子形成処理によって前記シリコン層に与えるダメージが大きいと予測される初期段階の処理工程の後に、前記半導体結晶欠陥検査装置を用いて前記基板のシリコン層に対し結晶欠陥の検査を行って良/否判定を行う工程と、
前記良/否判定結果により良品と判定された前記基板に対して次工程の半導体素子形成処理を行う工程と、
を有することを特徴とする半導体装置の製造方法。
【請求項6】
請求項5記載の半導体装置の製造方法において、
前記初期段階の処理工程は、前記シリコン層に素子分離領域を形成する工程、或いは、前記素子分離領域により分離された前記シリコン層に能動素子を形成する工程であることを特徴とする半導体装置の製造方法。
【請求項7】
請求項3又は4記載の半導体結晶欠陥検査装置を用いた半導体装置の製造方法であって、
シリコン層を表面側に有する基板における前記シリコン層に対して複数の半導体素子形成処理工程を行う各工程の前後に、前記2次電子像の座標位置と前記近赤外光の強度とを記録し、前記記録された強度を規格化することにより、前記各半導体素子形成処理工程の前後での前記近赤外光の強度を比較して前記各半導体素子形成処理工程固有の結晶欠陥の発生と分布を求める工程を有することを特徴とする半導体装置の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate


【公開番号】特開2006−73572(P2006−73572A)
【公開日】平成18年3月16日(2006.3.16)
【国際特許分類】
【出願番号】特願2004−251719(P2004−251719)
【出願日】平成16年8月31日(2004.8.31)
【出願人】(000000295)沖電気工業株式会社 (6,645)
【出願人】(591048162)宮城沖電気株式会社 (130)
【出願人】(000151243)株式会社東レリサーチセンター (10)
【Fターム(参考)】