説明

反応装置及び反応装置の製造方法

【課題】反応容器内に薄膜ヒーターを設けることができる反応装置及び反応装置の製造方法を提供する。
【解決手段】ヒーター板62となる基板の一方の面に電熱線パターン91,92を形成した後に、電熱線パターン91,92を被覆する絶縁膜94を形成し、次いでヒーター板62上に電熱線パターン91,92に対応した葛折り状の貫通穴52b、52cか形成された仕切板52を接合し、その後、貫通穴52b、52c内及び絶縁膜94の表面に反応触媒56,57を形成した後に、仕切板52と蓋板42とを接合することで反応容器を形成することにより、反応容器内に電熱線パターン91,92による薄膜ヒーターを設けることができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、反応装置及び反応装置の製造方法に関する。
【背景技術】
【0002】
近年では、マイクロリアクタと呼ばれる小型反応器が開発・実用化されている。マイクロリアクタは、複数種類の原料や試薬、燃料などの反応物を互いに混合させながら反応させる小型反応器であって、マイクロ領域での化学反応実験、薬品の開発、人工臓器の開発、ゲノム・DNA解析ツール、マイクロ流体工学の基礎解析ツールなどに利用されている。マイクロリアクタを用いる化学反応には、ビーカ、フラスコなどを用いた通常の化学反応にはない特徴がある。例えば、反応器全体が小さいため、熱交換率が極めて高く温度制御が効率良く行えるという利点がある。そのため、精密な温度制御を必要とする反応や急激な加熱又は冷却を必要とする反応でも容易に行うことができる。
【0003】
具体的にマイクロリアクタには、例えば所定パターンの溝を形成した基板同士を貼り合わせて気体や液体の反応物を流動させる流路を形成し、例えば流路内に触媒を設けて反応物を流し、反応物を適当な反応温度に加熱することで反応物の反応を起こさせるリアクタ(反応槽)などの反応容器が形成されたものがある。
【0004】
ところで、マイクロリアクタにおける反応物を所定温度に加熱するために、マイクロリアクタを形成する基板に薄膜ヒーターを設けることがある(例えば、特許文献1参照)。
【特許文献1】特表2001−505819号公報(図6参照)
【発明の開示】
【発明が解決しようとする課題】
【0005】
しかしながら、上記のような反応装置においては、反応容器内の反応物を加熱するための薄膜ヒーターは、基板に形成された溝の内部に薄膜ヒーターをパターニングして形成することは困難であるため、流路を形成する基板の外側に設けられていた。このため、薄膜ヒーターは基板を介した熱伝導によって反応物を加熱することになるため、流路内を流れる反応物の温度を速やかに上昇させることが難しく、反応装置の起動時間等の応答時間を短縮することが難しかった。
【0006】
本発明の課題は、反応容器内に薄膜ヒーターを設けることができる反応装置及び反応装置の製造方法を提供することである。
【課題を解決するための手段】
【0007】
以上の課題を解決するため、請求項1に記載の発明は、反応物の反応を起こす反応容器を備える反応装置において、前記反応容器は、一方の面に薄膜ヒーターによる電熱線パターンが形成されたヒーター板と、前記ヒーター板の前記電熱線パターンが形成された側に、前記ヒーター板と平行に配置される蓋板と、前記ヒーター板と前記蓋板との間に設けられ、少なくとも前記電熱線パターンに沿った開口部を有して、前記ヒーター板と前記蓋板との間の空間を仕切るように配置される仕切板と、前記開口部内に対応する前記ヒーター板の前記一方の面上に、前記電熱線パターンを被覆するように形成された絶縁膜と、を具備する給排部を有することを特徴とする。
【0008】
請求項2に記載の発明は、請求項1に記載の反応装置において、前記開口部内に対応する前記ヒーター板の少なくとも前記絶縁膜上に、前記反応物の反応を促進する反応触媒が設けられていることを特徴とする。
【0009】
請求項3に記載の発明は、請求項2に記載の反応装置において、前記反応容器は前記反応物を改質する改質器であり、前記触媒は改質反応を促進する改質触媒であることを特徴とする。
【0010】
請求項4に記載の発明は、請求項2に記載の反応装置において、前記反応容器は前記反応物に含まれる一酸化炭素を除去する一酸化炭素除去器であり、前記触媒は一酸化炭素の酸化を促進する一酸化炭素除去触媒であることを特徴とする。
【0011】
請求項5に記載の発明は、請求項1〜4のいずれか一項に記載の反応装置において、前記ヒーター板の前記電熱線パターンが形成された面と反対側の他方の面には凹部が形成されるとともに、前記凹部を塞ぐ底板が設けられ、前記凹部内の、少なくとも前記電熱線パターンと対向する面に、外部から供給される燃料を燃焼させる燃焼触媒が設けられることを特徴とする。
【0012】
請求項6に記載の発明は、請求項5に記載の反応装置において、前記凹部は前記開口部に対応して形成されていることを特徴とする。
【0013】
請求項7に記載の発明は、請求項1〜6のいずれか一項に記載の反応装置において、前記反応容器は内部が減圧された断熱容器内に収容されることを特徴とする。
【0014】
請求項8に記載の発明は、請求項7に記載の反応装置において、密閉空間を形成する凹部を有する一対の上基板および下基板を有し、少なくとも前記蓋板、前記仕切板、及び前記ヒーター板を含む複数の基板が前記上基板および下基板の間に積層して設けられ、前記複数の基板の各々は前記密閉空間に連通する開口部を有し、前記密閉空間及び前記開口部を介して、前記反応容器と該反応容器を内部に収容する包囲部が一体に形成され、該包囲部は前記断熱容器をなすことを特徴とする。
【0015】
請求項9に記載の発明は、請求項1〜8のいずれか一項に記載の反応装置において、前記反応装置は、第1の温度に設定され、前記反応物の反応を起こす第1の反応部と、前記第1の温度より低い第2の温度に設定され、前記反応物の反応を起こす第2の反応部とを備え、前記第1の反応部及び第2の反応部の少なくとも一方は、前記反応容器を備えることを特徴とする。
【0016】
請求項10に記載の発明は、請求項9に記載の反応装置において、前記第1の反応部に供給された第1の反応物から第1の生成物が生成され、前記第2の反応部に前記第1の生成物が供給され、該第1の生成物から第2の生成物が生成され、前記第1の反応物は水と炭化水素系の液体燃料が気化された混合気であって、前記第1の反応部は、前記第1の反応物の改質反応を起こす改質器であり、前記第1の生成物には水素及び一酸化炭素が含まれ、前記第2の反応部は、前記第1の生成物に含まれる一酸化炭素を除去する一酸化炭素除去器であることを特徴とする。
【0017】
請求項11に記載の発明は、複数の基板を積層してなる、反応物の反応を起こす反応容器を備える反応装置を製造する製造方法であって、ヒーター板となる基板の一方の面に薄膜ヒーターによる電熱線パターンを形成し、前記電熱線パターンを被覆する絶縁膜を形成し、絶縁膜を前記電熱線パターンを含む前記反応物の流路形状に沿ってパターニングし、前記流路形状に対応する開口部を有する仕切板の一方の面を前記ヒーター板の前記一方の面上に接合し、前記仕切板の他方の面に、前記開口部を塞ぐ蓋板を接合する、ことを特徴とする反応装置の製造方法。
【0018】
請求項12に記載の発明は、請求項11に記載の反応装置の製造方法において、前記開口部内の、少なくとも前記絶縁膜上に、前記反応物の反応を促進する反応触媒を設ける工程を含むことを特徴とする。
【0019】
請求項13に記載の発明は、請求項11に記載の反応装置の製造方法において、密閉空間を形成する凹部を有する一対の上基板および下基板の間に、少なくとも前記蓋板、前記仕切板、及び前記ヒーター板を含む複数の基板を挟んで積層して接合し、前記複数の基板の各々が前記密閉空間に連通する開口部を有し、前記密閉空間及び前記開口部を介して、前記反応容器と該反応容器を内部に収容する包囲部を一体に形成する工程を含むことを特徴とする。
【0020】
請求項14に記載の発明は、請求項13に記載の反応装置の製造方法において、前記上基板、下基板、及び前記複数の基板を、減圧された空間内で陽極接合により接合し、前記密閉空間内を減圧された空間とする工程を含むことを特徴とする。
【発明の効果】
【0021】
本発明によれば、一方の面に薄膜ヒーターによる電熱線パターンが形成され、該電熱線パターンを覆う絶縁膜が形成された基板上に、電熱線パターンに沿った開口部を有する基板を積層し、次いで該開口部を塞ぐ基板を積層して反応容器を形成するので、反応容器内に薄膜ヒーターを設けることができて、反応装置の応答時間を短縮することができる。
【発明を実施するための最良の形態】
【0022】
以下に、本発明を実施するための最良の形態について図面を用いて説明する。但し、以下に述べる実施形態には、本発明を実施するために技術的に好ましい種々の限定が付されているが、発明の範囲を以下の実施形態及び図示例に限定するものではない。
【0023】
<第1実施形態>
図1は、本発明が適用される反応装置10が用いられる発電装置1のブロック図である。この発電装置1は、例えばノート型パーソナルコンピュータ、携帯電話機、PDA(Personal Digital Assistant)、電子手帳、腕時計、デジタルスチルカメラ、デジタルビデオカメラ、ゲーム機器、遊技機、その他の電子機器に備え付けられるものであり、これらの電子機器本体を動作させるための電源として用いられる。
【0024】
発電装置1は、燃料容器2と、改質燃料気化器3と、反応装置10と、発電セル5と、を備える。燃料容器2は、燃料(例えば、メタノール、エタノール、ジメチルエーテル、ブタン、ガソリン)と水を別々に又は混合した状態で貯留し、図示しないマイクロポンプにより燃料及び水の混合液を改質燃料気化器3経由で、反応装置10に供給する。
【0025】
反応装置10は、高温反応部11と、低温反応部12とを有し、図1に図示しない断熱容器18に収納される。高温反応部11は改質器13、燃焼器15及び高温ヒーター17を有し、低温反応部12はCO除去器14、及び低温ヒーター16を有する。
【0026】
燃料容器2から改質燃料気化器3に供給された燃料と水は、改質燃料気化器3により気化され、改質器13に供給される。改質器13では、水蒸気と気化された液体燃料から水素ガス等が触媒反応により生成され、更に微量ながら一酸化炭素ガスが生成される。燃料がメタノールの場合には、次式(1)、(2)のような化学反応が起こる。なお、水素が生成される反応は吸熱反応であって、燃焼器15の燃焼熱が用いられる。
【0027】
CH3OH+H2O→3H2+CO2 …(1)
2+CO2→H2O+CO …(2)
【0028】
CO除去器14は、化学反応式(1)についで逐次的に起こる化学反応式(2)のような式によって微量に副生される一酸化炭素を酸化させることで混合気体から除去する。以下、この一酸化炭素を除去した混合気体を改質ガスという。改質ガスは発電セル5の燃料極側に供給される。
【0029】
発電セル5の燃料極側にはCO除去器14から改質ガスが供給される。改質ガスのうちの水素ガスは電気化学反応式(3)に示すように、燃料極に設けられた触媒により水素イオンと電子とに分離される。水素イオンは電解質膜を通過して酸素極側へ移動し、電子は外部回路を経て酸素極に移動する。酸素極側では、電気化学反応式(4)に示すように、電解質膜を通過した水素イオンと、外部回路を経て酸素極から供給される電子と、外気から供給される酸素ガスとの化学反応により水を生成する。この燃料極と酸素極の電極電位の差から電気エネルギーを取り出すことができる。
【0030】
2→2H++2e- …(3)
2H++2e-+1/2O2→H2O …(4)
【0031】
燃焼器15は、発電セル5において上記電気化学反応をせずに残った水素ガス(オフガス)と酸素を混合させて触媒反応により燃焼し、燃焼熱によって高温反応部11を所定の温度に加熱する。
低温ヒーター16は、起動時に低温反応部12を200℃未満、例えば約110〜190℃に加熱する。
【0032】
〔反応装置の具体的構成〕
次に、反応装置10の具体的構成について説明する。図2は、本実施形態の反応装置10の斜視図であり、図3は、本実施形態の反応装置10の分解斜視図である。反応装置10は、図2、図3に示すように、6枚の基板30,40,50,60,70,80を貼り合わせて形成される。各基板30,40,50,60,70,80の加工はフォトリソグラフィー、サンドブラスト法等により行うことができ、各基板30,40,50,60,70,80の貼り合わせは、陽極接合により行うことができる。具体的には、後述するように、一方の基板に陽極接合膜を設け、他方のガラス基板に陰極97を、陽極接合膜に陽極98を接触させて200〜500℃程度の温度に加熱した状態で、100〜1000V程度の高電圧を印加し、ガラス基板に含まれる可動イオン(陽イオン)を陰極97側に移動させることで、ガラス基板側のSiO2の酸素原子に負電荷を帯びさせ、陽極接合膜側の正電荷を帯びた金属とを界面で共有結合させることで接合を行う。
なお、以下の説明では、便宜上、基板30側を上側、基板80側を下側として説明する。
【0033】
基板30,40,50,60,70,80は、本実施の形態ではガラス製の基板であり、より詳細には、可動イオンとなるNaやLiを含有したガラス基板である。このようなガラス基板としては、耐熱性ガラス、例えばパイレックス(登録商標)基板を使用することができる。
【0034】
図4は、図2に示す本実施形態の反応装置10のI−I線に沿った矢視断面図である。図3、図4に示すように、反応装置10は、高温反応部11及び低温反応部12(反応容器)と、断熱容器18とを有する。なお、高温反応部11と低温反応部12、及び低温反応部12と断熱容器18とは、基板40,50,60,70により一部が接続されている。
【0035】
高温反応部11と低温反応部12との接続部は高温反応部11へ反応物を供給する流路や生成物を搬出する流路となる。また、低温反応部12と断熱容器18との接続部は高温反応部11や低温反応部12の断熱容器18外からの反応物供給流路や断熱容器18外への生成物搬出流路となる。なお、図2〜図4において、低温反応部12と断熱容器18との接続部は反応装置10の長手方向の端部に設けられている。
なお、以下の説明では、便宜上、低温反応部12と断熱容器18との接続部側を前側として説明する。
【0036】
高温反応部11及び低温反応部12と断熱容器18との間には、断熱室19が設けられている。また、高温反応部11と低温反応部12との間には、断熱室19と一体となったスリット19aが設けられている。断熱室19及びスリット19aの内部は減圧されており、断熱室19により高温反応部11及び低温反応部12から断熱容器18への熱伝導が低減され、スリット19aにより高温反応部11から低温反応部12への熱伝導が低減される。
【0037】
また、断熱室19及びスリット19aの壁面には、高温反応部11及び低温反応部12から放射される熱線を反射する赤外線反射膜(図示せず)を設けてもよい。この赤外線反射膜は、例えば金、アルミニウム、銀または銅などをスパッタ法や真空蒸着法などの気相法によって成膜することにより形成され、高温反応部11及び低温反応部12の動作温度である数百℃の温度領域で発生する赤外線(波長5〜30μm)の反射率がほぼ100%となる。なお、赤外線反射膜を金で形成する場合に、密着性を高めるために、密着層としてタングステンやクロムやチタン、タンタル、モリブデン等の層を下地として設けるようにしてもよい。
【0038】
また、断熱室19またはスリット19aの壁面の一部に、例えば膜状のゲッター材21を設けるようにしてもよい。ゲッター材21は、加熱により活性化して周囲のガスや微粒子を吸着するものであり、断熱室19またはスリット19aの内部に存在するガスを吸着して、断熱室19内の真空度を高める、あるいは維持することができる。このようなゲッター材21の材料としては、例えばジルコニウム、バリウム、チタニウム又はバナジウムを主成分とした合金が挙げられる。ゲッター材21はその活性化温度を超えないように、低温反応部12側に設けることが好ましい。なお、ゲッター材21を加熱して活性化するための電熱材等の電気ヒーターを設け、この電気ヒーターの電線を断熱容器18の外部に引き出してもよい。
以下、各基板30,40,50,60,70,80について説明する。
【0039】
〔第一基板〕
図5は、本実施形態における第一基板30の上面図である。第一基板30は矩形板状であり、図5に示すように、下面の外周部に突起状の枠部31が設けられており、枠部31の内側が凹部32となっている。凹部32は断熱室19の一部を形成する。この凹部32の内面に上記の赤外線反射膜(図示せず)を設けるようにしてもよい。また、凹部32の内面のうち、例えば低温反応部12に対応する領域の上記の赤外線反射膜上に、上記のゲッター材21を設けるようにしてもよい。また、第一基板30の4隅には、三角形状の角落部30a,30b,30c,30dが形成されている。
【0040】
〔第二基板〕
図6は、本実施形態における第二基板40の上面図である。第二基板40は、図6に示すように、蓋板42と、蓋板42の外側に設けられた矩形状の枠体43とからなる。蓋板42と枠体43とは、前側で一体に形成されている。蓋板42の中央部には、スリット19aを形成する開口42aが設けられている。蓋板42には、右後角部に三角形状の角落部40eが形成されている。蓋板42と枠体43との隙間43aは断熱室19を形成する。枠体には、左前角部、左後角部、右後角部に三角形状の角落部40a,40b,40cが形成されている。
【0041】
枠体43の上面には、緩衝膜(図示せず)が形成され、緩衝膜の上に陽極接合膜44(図4参照)が形成される。緩衝膜は陽極接合時の可動イオンの移動により陽極接合用の金属に与えるダメージを防ぐものであり、例えばTaとSiとOとを成分元素とする化合物、La,Sr,Mn,Oの組成比を、La:Sr:Mn:O=0.7:0.3:1:(3−x)とする化合物を用いることができる。ここで、0≦x≦0.3である。
陽極接合膜44として用いられる金属薄膜としては、ガラス基板を構成する酸素と結合する金属、例えばTa、Ti、Al等を含む金属薄膜を用いることができる。緩衝膜及び陽極接合膜44は例えばスパッタ法により成膜する。また、第二基板4の上面の、例えば一酸化炭素除去器21に対応する領域に、上記のゲッター材21を設けるようにしてもよい。なお、ゲッター材21を設ける位置は、反応装置10の運転中に、ゲッター材21の温度がその活性化温度を超えない位置とすることが好ましい。
【0042】
〔第三基板〕
図7は、本実施形態における第三基板50の上面図、図8は第三基板50の下面図であり、図9は第三基板50を左斜め下後方から見た斜視図である。第三基板50は、図7〜図9に示すように、仕切板52と、仕切板52の外側に設けられた矩形状の枠体53とからなる。
仕切板52と枠体53とは、前側で一体に形成されている。仕切板52と枠体53との接合部には、前端より6個の切欠部(左から51a,51b,51c,51d,51e,51f)が設けられている。切欠部51a,51b,51c,51d,51e,51fは後述するように、第四基板に設けられた切欠部61a,61b,61c,61d,61e,61fと合わさり、上部を第二基板40、下部を第五基板70に塞がれて、左から順に燃焼用燃料供給口21a、燃焼用空気供給口21b、一酸化炭素除去用空気供給口21c、改質用燃料供給口21d、排ガス排出口21e、改質ガス排出口21fを形成する(図2参照)。仕切板52の中央部には、スリット19aを形成する開口52aが設けられている。開口52aよりも前側には、葛折り状の貫通穴52bが設けられている。貫通穴52bは上部を第二基板40に、下部を第四基板60に塞がれて一酸化炭素除去流路27(CO除去器14)となる。
また、開口52aよりも後側には、改質器13となる葛折り状の貫通穴52cが設けられている。貫通穴52cは上部を第二基板40に、下部を第四基板60に塞がれて改質流路24(改質器13)となる。仕切板52と枠体53との隙間53aは断熱室19を形成する。枠体53には、左前角部、左後角部、右後角部に三角形状の角落部50a,50b,50cが形成されている。第三基板50の上面には、全面に第二基板40と同様に、緩衝膜及び陽極接合膜54(図4参照)が形成される。
【0043】
図8、図9に示すように、仕切板52の下面には、右端の切欠部51fと貫通穴52bの一端とを連続させる溝52f、貫通穴52bの他端から開口52aの左側を通り貫通穴52cの一端まで延設された溝52g、貫通穴52cの他端から開口52aの右側を通り低温反応部12まで延設された溝52hが設けられている。溝52fは下部を第四基板60に塞がれて排出流路28となり、溝52gは下部を第四基板60に塞がれて空気混合流路26となり、溝52hは下部を第四基板60に塞がれて導入流路23bとなる。
空気混合流路26は改質流路24と一酸化炭素除去流路27とを接続するとともに、後述するように、第四基板60に設けられた貫通孔62bにより空気供給流路25と接続される。また、導入流路23bは後述するように、第四基板60に設けられた貫通孔62cにより改質燃料供給流路23aと接続される。
【0044】
また、仕切板52の下面には、右前角部と、後端部に、凹部54,55が形成されている。凹部54,55は後述するように、第四基板60に設けられる電熱線パターン91,92の端子91a,91b,92a,92bが配置される端子収納室となる。凹部54と貫通穴52bとの間、凹部55と貫通穴52cとの間には、溝54a,55aがそれぞれ設けられている。溝54a,55aには、後述する電熱線パターン91,92の端子91a,91b,92a,92bまでの延長部分が配置される。
さらに、仕切板52の下面には、凹部54,55から外方向にそれぞれ平行な溝54b,54b、及び溝55b,55bが形成され、枠体53の下面には、溝54b,54b,55b,55bの延長上にそれぞれ平行な溝54c,54c、及び溝55c,55cが形成されている。これらの溝54b,54c,55b,55cには、後述するように、それぞれリード線95a,95b,96a,96bが配置される。リード線95a,95b,96a,96bはそれぞれ端子収納室に配置された電熱線パターン91,92の端子91a,91b,92a,92bと接続される。
【0045】
〔第四基板〕
図10は、本実施形態における第四基板60の上面図、図11は第四基板60の下面図である。
第四基板60は、図10〜図11に示すように、ヒーター板62と、ヒーター板62の外側に設けられた矩形状の枠体63とからなる。ヒーター板62と枠体63とは、前側で一体に形成されている。ヒーター板62と枠体63との接続部には、前端より6個の切欠部(左から61a,61b,61c,61d,61e,61f)が設けられている。
【0046】
ヒーター板62の中央部には、スリット19aを形成する開口62aが設けられている。また、開口62aよりも前側には、第四基板60の上に第三基板50を重ねたときに溝52gと重なる位置に貫通孔62bが、溝52hの貫通穴52cと反対側の端部と重なる位置に貫通孔62cが設けられている。ヒーター板62と枠体63との隙間63aは断熱室19を形成する。枠体63には、左後角部、右後角部に三角形状の角落部60b,60cが形成されている。
【0047】
第四基板60の上面には、第三基板50の貫通穴52b,52c及び溝54a,55aと対応する位置に、低温ヒーター16となる電熱線パターン91、高温ヒーター17となる電熱線パターン92が設けられ、凹部54,55と対応する位置に電熱線パターン91,92の端子91a,91b,92a,92bが設けられている。電熱線パターン91,92は例えばスパッタ法により形成した金属薄膜をフォトリソグラフィー、エッチング等によりパターニングすることで形成される。
【0048】
また、第四基板60の上面には、第三基板50の貫通穴52b,52c、溝54a,55a、及び凹部54,55と対応する位置を除き、全面に第二基板40,第三基板50と同様に、緩衝膜(図示せず)及び陽極接合膜64が形成される(図12参照)。なお、電熱線パターン91,92の一部に緩衝膜や陽極接合膜64と同じ金属薄膜を用いてもよいが、陽極接合膜64と電熱線パターン91,92とが導通しないようにする。
【0049】
さらに、第四基板60の上面には、第三基板50の貫通穴52b,52c、溝54a,55a、溝52g,52h、溝54b〜54e,55b〜55e、凹部54,55と対応する位置に、電熱線パターン91,92及び陽極接合膜64を被覆するように、かつ端子91a,91b,92a,92bを露出させるように、絶縁膜94が形成される(図13参照)。端子91a,91b,92a,92bの露出部、及び溝54b〜54e,55b〜55eと対応する位置の絶縁膜94の上部には、リード線95a,95b,96a,96bが配置され、端子91a,91b,92a,92bとリード線95a,95b,96a,96bとが接続される。リード線95a,95b,96a,96bとしては、例えば熱膨張係数が低融点ガラス封着剤に近いコバール線を用いることができる。また、鉄ニッケル合金線、または鉄ニッケル合金の心材を銅層で被覆したジュメット線を用いることもできる。なお、リード線95a,95b,96a,96bは絶縁膜94により陽極接合膜64と絶縁される。
【0050】
ここで、第四基板60の上面に、陽極接合膜64、電熱線パターン91,92、絶縁膜94を形成し、リード線95a,95b,96a,96bを接続する手順について図12〜図14を用いて説明する。なお、図12〜図14は、本実施形態における第四基板60を右斜め上前方から見た斜視図である。
【0051】
まず、図12に示すように、第四基板60の上面に緩衝膜(図示せず)、陽極接合膜64及び電熱線パターン91,92を形成する。次に、図13に示すように、端子91a,91b,92a,92bを除き電熱線パターン91,92を被覆するように、またリード線95a,95b,96a,96bが配置される位置の陽極接合膜64を被覆するように絶縁膜94を形成する。その後、リード線95a,95b,96a,96bを配置し、端子91a,91b,92a,92bと接続する。
【0052】
第四基板60の下面には、図11に示すように、開口62aよりも後側に溝62dが形成されている。溝62dは下部を第五基板70に塞がれて燃焼流路22b(燃焼器15)となる。
また、第四基板60の下面には、切欠部61a及び切欠き部61bとを接続するとともに、隙間63aに沿って貫通穴62b及び開口62aの左側を通り溝62dの左側端部まで溝62eが延設され、切欠部61eから隙間62aに沿って貫通穴62c及び開口62aの右側を通り溝62dの右側端部まで溝62fが延設されている。溝62eは下部を第五基板70に塞がれて燃焼燃料混合流路22aとなり、溝62fは下部を第五基板70に塞がれて排ガス流路22cとなる。
さらに、切欠部61cから溝62eの右側に沿って貫通孔62bまで溝62gが延設され、切欠部61dから溝62fの左側に沿って貫通孔62cまで溝62hが延設されている。溝62gは下部を第五基板70に塞がれて空気供給流路25となり、溝62hは下部を第五基板70に塞がれて改質燃料供給流路23aとなる。空気供給流路25は貫通孔62bにより空気混合流路26と接続される。また、改質燃料供給流路23aは貫通孔62cにより導入流路23bと接続される。
【0053】
〔第五基板〕
図15は、本実施形態における第五基板70の上面図である。第五基板70は、図15に示すように、底板72と、底板72の外側に設けられた矩形状の枠体73とからなる。底板72と枠体73とは、前側で一体に形成されている。底板72の中央部には、スリット19aを形成する開口72aが設けられている。また、底板72と枠体73との隙間73aは断熱室19を形成する。枠体73には、左後角部に三角形状の角落部70bが形成されている。第五基板70の上面には、第二基板40,第三基板50,第四基板60と同様に、第四基板60の貫通穴62b,62c、溝62d,62e,62f,62g,62hと対応する位置を除き、全面に緩衝膜(図示せず)及び陽極接合膜74(図4参照)が形成される。
【0054】
〔第六基板〕
図16は、本実施形態における第六基板80の上面図である。第六基板80は矩形板状であり、図16に示すように、上面の外周部に突起状の枠部81が設けられており、枠部81の内側が凹部82となっている。凹部82は断熱室19の一部を形成する。枠部81の上面には、緩衝膜(図示せず)及び陽極接合膜84(図4参照)が第二基板40,第三基板50,第四基板60,第五基板70と同様に形成される。また、この凹部82の内面に上記の赤外線反射膜(図示せず)を設けるようにしてもよい。
【0055】
〔基板の接合手順〕
次に、基板30〜80の接合手順について説明する。図17は、本実施形態における第三基板50と第四基板60との接合手順を示す斜視図であり、図18は、第二基板40と第三基板50との接合手順を示す斜視図であり、図19は、第四基板60と第五基板70との接合手順を示す斜視図であり、図20は、第五基板70と第六基板80との接合手順を示す斜視図であり、図21は、第一基板30と第二基板40との接合手順を示す斜視図である。
(1)第三基板と第四基板との接合
まず、図17に示すように、リード線95a,95b,96a,96bが接続された第四基板60の上に、リード線95a,95b,96a,96bがそれぞれ溝54b,54b、55b,55bの位置に配置されるように第三基板50を重ね合わせる。そして、第三基板50の上面に陰極97を接触させるとともに、第三基板50と接触しないように角落部50aに陽極98を配置し、第四基板60の左前角部の上面に陽極98を接触させる。次いで、所定の温度まで加熱した状態で、両電極間に高電圧を印加し、両基板50,60を陽極接合する。接合雰囲気としては、接合中に第三基板50に形成された金属膜面が酸化されるのを防止するために、不活性ガス雰囲気または真空中で接合することが好ましい。
その後、低融点ガラス封着剤によりリード線95a,95b,96a,96bと溝54b,54b、55b,55bとの隙間を封止する。
【0056】
次いで、両基板50,60の燃焼流路22b、改質流路24、一酸化炭素除去流路27となる部分の内壁面に、触媒の密着層としてのアルミナゾルを塗布した上に、それぞれ、燃焼触媒65、改質触媒56、一酸化炭素選択酸化触媒57を、ウォッシュコート法等により形成する(図4参照)。
【0057】
(2)第二基板と第三基板との接合
次に、図18に示すように、第三基板50と第四基板60の接合体の上に第二基板40を配置し、第二基板40の上面に陰極97を接触させるとともに、第二基板40と接触しないように角落部40fに陽極98を配置し、第三基板50の左前角部の上面に陽極98を接触させる。そして、両電極間に高電圧を印加し、第二基板40と第三基板50とを陽極接合する。接合雰囲気としては、接合中に第二基板40に形成された金属膜面が酸化されるのを防止するために、不活性ガス雰囲気または真空中で接合することが好ましい。
【0058】
(3)第四基板と第五基板との接合
次に、図19に示すように、第五基板70の上に第二基板40、第三基板50、第四基板60の接合体を配置し、第二基板40、第三基板50と接触しないように角落部40a,50aに陰極97を配置し、第三基板50の左前角部の上面に接触させるとともに、第二基板40、第三基板50、第四基板60と接触しないように角落部40c,50c,60cに陽極98を配置し、第五基板70の右後角部の上面に陽極98を接触させる。そして、所定の温度まで加熱した状態で、両電極間に高電圧を印加し、第四基板60と第五基板70とを陽極接合する。接合雰囲気としては、接合中に第二基板40に形成された金属膜面が酸化されるのを防止するために、不活性ガス雰囲気または真空中で接合することが好ましい。
【0059】
(4)第五基板と第六基板との接合
次に、図20に示すように、第六基板80の上に第二基板40、第三基板50、第四基板60,第五基板70の接合体を配置し、第二基板40、第三基板50、第四基板60と接触しないように角落部40c,50c,60cに陰極97を配置し、第三基板50の左前角部の上面に接触させるとともに、第二基板40、第三基板50、第四基板60と接触しないように角落部40b,50b,60b,70bに陽極98を配置し、第六基板80の左後角部の上面に陽極98を接触させる。そして、所定の温度まで加熱した状態で、両電極間に高電圧を印加し、第五基板70と第六基板80とを陽極接合する。接合雰囲気としては、接合中に第二基板40に形成された金属膜面が酸化されるのを防止するために、不活性ガス雰囲気または真空中で接合することが好ましい。
【0060】
(5)第一基板と第二基板との接合
次に、図21に示すように、第二基板40、第三基板50、第四基板60,第五基板70,第六基板80の接合体の上に第一基板30を配置し、第一基板30の上面に陰極97を接触させるとともに、第一基板30と接触しないように角落部30dに陽極98を配置し、第二基板40の右前角部の上面に陽極98を接触させる。そして、所定の温度まで加熱した状態で、両電極間に高電圧を印加し、第一基板30と第二基板40とを陽極接合する。接合雰囲気としては、不活性ガス雰囲気または真空中で接合することが好ましい。
以上により、第一基板30、第二基板40、第三基板50、第四基板60,第五基板70,第六基板80を接合した反応装置10を形成することができる。ここで、第一基板30〜第六基板80を真空中で陽極接合して接合するようにした場合、第一基板30〜第六基板80の接合と同時に断熱室19及びスリット19a内を真空圧とすることができる。従って、第一基板30〜第六基板80の接合と断熱室19及びスリット19a内の排気とを別々に行う手間を省くことができて、反応装置10の製造工程を削減するとともに、製造を容易化することができる。
【0061】
<変形例1>
図22,図23は、第1実施形態の変形例として、流路構造を変えたものであり、図22は第三基板50の下面図、図23は第四基板60の下面図である。なお、以下の変形例では、第1実施形態と同様のものについては同じ符号を付して説明を割愛する。
変形例1では、図22に示すように、第三基板50に、第1実施形態の葛折り状の貫通穴52bが途中、52d,52eの箇所で分断されている。
【0062】
そして、図23に示すように、第四基板60の下面の、第三基板50の上記分断箇所52d,52eと対応する位置に、貫通孔62i,62jがそれぞれ設けられるとともに、貫通穴62i,62j間を接続する葛折り状の溝62kが設けられている。溝62kは下部を第五基板70により塞がれて、貫通穴62i,62jを介して一酸化炭素除去流路27に連通する一酸化炭素除去流路27b(CO除去器14の一部)となり、空気混合流路26からの混合気体は一酸化炭素除去流路27a,27b,27cをこの順に通過し、排出流路28を経て改質ガスを改質ガス排出口21fより排出する。これにより、反応装置10の外形寸法を変えることなく、CO除去器14における流路の長さを長くすることができる。
【0063】
<変形例2>
第1実施形態では、スリット19aの形状を直方体状としていたが、高温反応部11と、低温反応部12との接続部の長さが充分に保てればこの形状に限らない。例えば、図24に示すように、低温反応部12の後部が凸状になったスリット19b(図24(a))、高温反応部11の前部が凸状になったスリット19c(図24(b))、低温反応部12の後部及び高温反応部11の前部が凸状になったスリット19d(図24(c))としてもよい。このようにすることで、改質流路24や一酸化炭素除去流路27を延長することができ、スペースを有効に活用できるため、反応装置10を小型化することが可能となる。
【0064】
<第2実施形態>
次に、本発明の第2実施形態について説明する。図25は、第2実施形態の反応装置100を左前斜め下方からみた分解斜視図である。反応装置100は第1実施形態と異なり、前述の断熱容器18とは別に形成され、蓋板142と、仕切板152と、ヒーター板162と、底板172とを順に積層して形成される。なお、流路を形成する溝等については、第1実施形態の蓋板42、仕切板52、ヒーター板62、底板72と同様であるので、同じ符号を付して説明を割愛する。
【0065】
〔蓋板〕
図26は、本実施形態における蓋板142の上面図である。蓋板142の後端部には、左右角部に三角形状の角落部40e、40fが形成されているとともに、中央に切欠部40gが形成されている。
【0066】
〔仕切板〕
図27は、本実施形態における仕切板152の上面図、図28は仕切板152の下面図である。仕切板152の後端部には、左右角部に三角形状の角落部50e、50fが形成されている。
仕切板152の上面には、第1実施形態の仕切板52と同様に、緩衝膜及び陽極接合膜(図示せず)が形成される。
【0067】
〔ヒーター板〕
図29は、本実施形態におけるヒーター板162の上面図、図30はヒーター板162の下面図である。ヒーター板162の後端部には、右角部に三角形状の角落部60fが形成されている。
ヒーター板162の上面には、第1実施形態のヒーター板62と同様に、緩衝膜(図示せず)、陽極接合膜64及び電熱線パターン91,92が形成される。
【0068】
〔底板〕
図31は、本実施形態における底板172の上面図である。底板172の上面には、第1実施形態の底板72と同様に、緩衝膜及び陽極接合膜(図示せず)が形成される。
【0069】
〔基板の接合手順〕
次に、蓋板142、仕切板152、ヒーター板162、底板172の接合手順について説明する。なお、陽極接合の接合雰囲気としては、不活性ガス雰囲気または真空中で接合することが好ましい。
【0070】
(1)仕切板とヒーター板との接合
まず、リード線95a,95b,96a,96bが接続されたヒーター板162の上に、リード線95a,95b,96a,96bがそれぞれ溝54b,54b、55b,55bの位置に配置されるように仕切板152を重ね合わせる。そして、仕切板152の上面に陰極97を接触させるとともに、仕切板152と接触しないように角落部50eに陽極98を配置し、ヒーター板162の左後角部の上面に陽極98を接触させる。次いで、所定の温度まで加熱した状態で、両電極間に高電圧を印加し、仕切板152とヒーター板162とを陽極接合する。その後、低融点ガラス封着剤によりリード線95a,95b,96a,96bと溝54b,54b、55b,55bとの隙間を封止する。
【0071】
次いで、両基板50,60の燃焼流路22b、改質流路24、一酸化炭素除去流路27となる部分の内壁面に、触媒の密着層としてのアルミナゾルを塗布した上に、それぞれ、燃焼触媒、改質触媒、一酸化炭素選択酸化触媒を、ウォッシュコート法等により形成する。
【0072】
(2)蓋板と仕切板との接合
次に、仕切板152とヒーター板162の接合体の上に蓋板142を配置し、蓋板142の上面に陰極97を接触させるとともに、蓋板142と接触しないように切欠部40gに陽極98を配置し、仕切板152の後端部中央の上面に陽極98を接触させる。そして、所定の温度まで加熱した状態で、両電極間に高電圧を印加し、蓋板142と仕切板152とを陽極接合する。
【0073】
(3)ヒーター板と底板との接合
次に、底板172の上に蓋板142、仕切板152、ヒーター板162の接合体を配置し、蓋板142、仕切板152と接触しないように角落部40e,50eに陰極97を配置し、仕切板152の左前角部の上面に接触させるとともに、蓋板142、仕切板152、ヒーター板162と接触しないように角落部40f,50f,60fに陽極98を配置し、底板172の左後角部の上面に陽極98を接触させる。そして、所定の温度まで加熱した状態で、両電極間に高電圧を印加し、ヒーター板162と底板172とを陽極接合する。
【0074】
<変形例3>
図32は、第2実施形態の変形例における反応装置200を左前斜め下方からみた分解斜視図である。反応装置200は蓋板242と、仕切板252と、ヒーター板262と、底板272とを順に積層して形成される。
【0075】
図33は、本変形例における断熱容器18に収納された状態の反応装置200を示す斜視図である。変形例3では、反応容器200の前端部に、断熱容器18と接続される入出部210が形成されている。入出部210の前端の外周部は、低融点ガラス封着剤等により断熱容器18と封着される。反応容器200と断熱容器18との隙間が断熱室19となる。
【0076】
図34は、本変形例における蓋板242の上面図、図35は仕切板252の上面図、図36は仕切板252の下面図、図37はヒーター板262の上面図、図38はヒーター板262の下面図、図39は底板272の上面図である。蓋板242、仕切板252、ヒーター板262、底板272には、それぞれ前端部に接続部244,254,264,274が延設されている。接続部244,254,264,274は積層されて入出部210となる。
なお、それ以外は、第2実施形態の反応容器100と同様であるので、第2実施形態と同様のものについては同じ符号を付して説明を割愛する。
このように、反応容器200の前端部に入出部210を設けることで、断熱容器18と低融点ガラス封着剤等により一体化することができるようにしてもよい。
【図面の簡単な説明】
【0077】
【図1】本発明における反応装置が用いられる発電装置のブロック図である。
【図2】第1実施形態の反応装置の斜視図である。
【図3】第1実施形態の反応装置の分解斜視図である。
【図4】第1実施形態の反応装置のI−I線に沿った矢視断面図である。
【図5】第1実施形態における第一基板の上面図である。
【図6】第1実施形態における第二基板の上面図である。
【図7】第1実施形態における第三基板の上面図である。
【図8】第1実施形態における第三基板の下面図である。
【図9】第1実施形態における第三基板を左斜め下後方から見た斜視図である。
【図10】第1実施形態における第四基板の上面図である。
【図11】第1実施形態における第四基板の下面図である。
【図12】第1実施形態における第四基板を右斜め上前方から見た斜視図である。
【図13】第1実施形態における第四基板を右斜め上前方から見た斜視図である。
【図14】第1実施形態における第四基板を右斜め上前方から見た斜視図である。
【図15】第1実施形態における第五基板の上面図である。
【図16】第1実施形態における第六基板の上面図である。
【図17】第1実施形態における第三基板と第四基板との接合手順を示す斜視図である。
【図18】第1実施形態における第二基板と第三基板との接合手順を示す斜視図である。
【図19】第1実施形態における第四基板と第五基板との接合手順を示す斜視図である。
【図20】第1実施形態における第五基板と第六基板との接合手順を示す斜視図である。
【図21】第1実施形態における第一基板と第二基板との接合手順を示す斜視図である。
【図22】第1実施形態の変形例における第三基板の下面図である。
【図23】第1実施形態の変形例における第四基板の下面図である。
【図24】第1実施形態におけるスリットの他の形状を示す平面図である。
【図25】第2実施形態の反応装置を左前斜め下方からみた分解斜視図である。
【図26】第2実施形態における蓋板の上面図である。
【図27】第2実施形態における仕切板の上面図である。
【図28】第2実施形態における仕切板の下面図である。
【図29】第2実施形態におけるヒーター板の上面図である。
【図30】第2実施形態におけるヒーター板の下面図である。
【図31】第2実施形態における底板の上面図である。
【図32】第2実施形態の変形例における反応装置を左前斜め下方からみた分解斜視図である。
【図33】第2実施形態の変形例における反応装置の断熱容器に収納された状態を示す斜視図である。
【図34】第2実施形態の変形例における蓋板の上面図である。
【図35】第2実施形態の変形例における仕切板の上面図である。
【図36】第2実施形態の変形例における仕切板の下面図である。
【図37】第2実施形態の変形例におけるヒーター板の上面図である。
【図38】第2実施形態の変形例におけるヒーター板の下面図である。
【図39】第2実施形態の変形例における底板の上面図である。
【符号の説明】
【0078】
11 高温反応部(反応容器)
12 低温反応部(反応容器)
100,200 反応容器
42,142,242 蓋板
52,152,252 仕切板
56 改質触媒(反応触媒)
57 一酸化炭素選択酸化触媒(反応触媒)
62,162,262 ヒーター板
72,172,272 底板
91,92 電熱線パターン
94 絶縁膜

【特許請求の範囲】
【請求項1】
反応物の反応を起こす反応容器を備える反応装置において、
前記反応容器は、
一方の面に薄膜ヒーターによる電熱線パターンが形成されたヒーター板と、
前記ヒーター板の前記電熱線パターンが形成された側に、前記ヒーター板と平行に配置される蓋板と、
前記ヒーター板と前記蓋板との間に設けられ、少なくとも前記電熱線パターンに沿った開口部を有して、前記ヒーター板と前記蓋板との間の空間を仕切るように配置される仕切板と、
前記開口部内に対応する前記ヒーター板の前記一方の面上に、前記電熱線パターンを被覆するように形成された絶縁膜と、
を具備することを特徴とする反応装置。
【請求項2】
前記開口部内に対応する前記ヒーター板の少なくとも前記絶縁膜上に、前記反応物の反応を促進する反応触媒が設けられていることを特徴とする請求項1に記載の反応装置。
【請求項3】
前記反応容器は前記反応物を改質する改質器であり、前記触媒は改質反応を促進する改質触媒であることを特徴とする請求項2に記載の反応装置。
【請求項4】
前記反応容器は前記反応物に含まれる一酸化炭素を除去する一酸化炭素除去器であり、前記触媒は一酸化炭素の酸化を促進する一酸化炭素除去触媒であることを特徴とする請求項2に記載の反応装置。
【請求項5】
前記ヒーター板の前記電熱線パターンが形成された面と反対側の他方の面には凹部が形成されるとともに、前記凹部を塞ぐ底板が設けられ、
前記凹部内の、少なくとも前記電熱線パターンと対向する面に、外部から供給される燃料を燃焼させる燃焼触媒が設けられることを特徴とする請求項1〜4のいずれか一項に記載の反応装置。
【請求項6】
前記凹部は前記開口部に対応して形成されていることを特徴とする請求項5に記載の反応装置。
【請求項7】
前記反応容器は内部が減圧された断熱容器内に収容されることを特徴とする請求項1〜6のいずれか一項に記載の反応装置。
【請求項8】
密閉空間を形成する凹部を有する一対の上基板および下基板を有し、少なくとも前記蓋板、前記仕切板、及び前記ヒーター板を含む複数の基板が前記上基板および下基板の間に積層して設けられ、
前記複数の基板の各々は前記密閉空間に連通する開口部を有し、前記密閉空間及び前記開口部を介して、前記反応容器と該反応容器を内部に収容する包囲部が一体に形成され、該包囲部は前記断熱容器をなすことを特徴とする請求項7に記載の反応装置。
【請求項9】
前記反応装置は、
第1の温度に設定され、前記反応物の反応を起こす第1の反応部と、
前記第1の温度より低い第2の温度に設定され、前記反応物の反応を起こす第2の反応部とを備え、
前記第1の反応部及び第2の反応部の少なくとも一方は、前記反応容器を備えることを特徴とする請求項1〜8のいずれか一項に記載の反応装置。
【請求項10】
前記第1の反応部に供給された第1の反応物から第1の生成物が生成され、
前記第2の反応部に前記第1の生成物が供給され、該第1の生成物から第2の生成物が生成され、
前記第1の反応物は水と炭化水素系の液体燃料が気化された混合気であって、前記第1の反応部は、前記第1の反応物の改質反応を起こす改質器であり、前記第1の生成物には水素及び一酸化炭素が含まれ、
前記第2の反応部は、前記第1の生成物に含まれる一酸化炭素を除去する一酸化炭素除去器であることを特徴とする請求項9に記載の反応装置。
【請求項11】
複数の基板を積層してなる、反応物の反応を起こす反応容器を備える反応装置を製造する製造方法であって、
ヒーター板となる基板の一方の面に薄膜ヒーターによる電熱線パターンを形成し、
前記電熱線パターンを被覆する絶縁膜を形成し、
絶縁膜を前記電熱線パターンを含む前記反応物の流路形状に沿ってパターニングし、
前記流路形状に対応する開口部を有する仕切板の一方の面を前記ヒーター板の前記一方の面上に接合し、
前記仕切板の他方の面に、前記開口部を塞ぐ蓋板を接合する、
ことを特徴とする反応装置の製造方法。
【請求項12】
前記開口部内の、少なくとも前記絶縁膜上に、前記反応物の反応を促進する反応触媒を設ける工程を含むことを特徴とする請求項11に記載の反応装置の製造方法。
【請求項13】
密閉空間を形成する凹部を有する一対の上基板および下基板の間に、少なくとも前記蓋板、前記仕切板、及び前記ヒーター板を含む複数の基板を挟んで積層して接合し、前記複数の基板の各々が前記密閉空間に連通する開口部を有し、前記密閉空間及び前記開口部を介して、前記反応容器と該反応容器を内部に収容する包囲部を一体に形成する工程を含むことを特徴とする請求項11に記載の反応装置の製造方法。
【請求項14】
前記上基板、下基板、及び前記複数の基板を、減圧された空間内で陽極接合により接合し、前記密閉空間内を減圧された空間とする工程を含むことを特徴とする請求項13に記載の反応装置の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate

【図27】
image rotate

【図28】
image rotate

【図29】
image rotate

【図30】
image rotate

【図31】
image rotate

【図32】
image rotate

【図33】
image rotate

【図34】
image rotate

【図35】
image rotate

【図36】
image rotate

【図37】
image rotate

【図38】
image rotate

【図39】
image rotate


【公開番号】特開2007−268320(P2007−268320A)
【公開日】平成19年10月18日(2007.10.18)
【国際特許分類】
【出願番号】特願2006−93416(P2006−93416)
【出願日】平成18年3月30日(2006.3.30)
【出願人】(000001443)カシオ計算機株式会社 (8,748)
【Fターム(参考)】