説明

固体撮像素子およびその製造方法、電子情報機器

【課題】複数画素共有の互いに寄った受光部を持つ固体撮像素子において、受光感度およびシェーディングをより改善する。
【解決手段】マイクロレンズ14と受光部3との間の層間絶縁膜9に光導波路を構成する断面平行四辺形状のライトパイプ10が形成され、ライトパイプ10は、下端面が受光部3の上方位置で平面視で受光部3の中央部を含むように開口し、上端面がマイクロレンズ14の下方位置で平面視でマイクロレンズ14の中央部を含むように開口して、上下の各端面領域が平面視で互いに領域がずれて異なっている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、被写体からの画像光を光電変換して撮像する複数の受光部が2次元状に設けられたCCDイメージセンサやCMOSイメージセンサなどの固体撮像素子およびその製造方法、この固体撮像素子を画像入力デバイスとして撮像部に用いた例えばデジタルビデオカメラおよびデジタルスチルカメラなどのデジタルカメラや、監視カメラなどの画像入力カメラ、スキャナ装置、ファクシミリ装置、テレビジョン電話装置、カメラ付き携帯電話装置などの電子情報機器に関する。
【背景技術】
【0002】
2画素共有の転送部を持ち、被写体からの画像光を光電変換して撮像する受光部の位置が2画素単位で互いに寄って周期的に異なっている2画素共有の従来のCCDイメージセンサやCMOSイメージセンサが特許文献1〜5に提案されている。
【0003】
図6は、特許文献1に開示されている従来のCCDイメージセンサの要部構成例を模式的に示す縦断面図である。
【0004】
図6に示すように、従来のCCDイメージセンサ100は、半導体基板101の上部に、被写体からの画像光を光電変換して撮像する複数の受光部102が2画素単位で互いに寄って2次元状に設けられ、受光部102に隣接して電荷転送部103がそれぞれ設けられている。電荷転送部103上にはゲート電極104およびその上に絶縁膜105を介して遮光膜106が設けられている。受光部102の上面と遮光膜106との段差を埋め込むように透明な層間雪面膜107が設けられている。この層間雪面膜107上には平坦化膜108が設けられ、平坦化膜108上にカラーフィルタ109が所定の色配列で設けられ、カラーフィルタ109上には平坦化膜110が設けられている。この平坦化膜110上に、これらの互いに寄った2画素を覆うように凸状透明部111が設けられ、その上に2つのマイクロレンズ112が各受光部102にそれぞれ対応するように設けられている。この凸状透明部111の傾きにより、2画素単位で入射光の方向が各受光部102側に曲げられて、各受光部102に入射しやすくなっている。
【0005】
図7は、特許文献2に開示されている従来のCMOSイメージセンサの要部構成例を模式的に示す縦断面図である。
【0006】
図7に示すように、従来のCMOSイメージセンサ200は、光を受光して電荷に変換する受光部201と、受光部201に入射光を集光させるためのマイクロレンズ202と、受光サ部201とマイクロレンズ202との間に配された層間絶縁膜203および保護膜204とを備えると共に、層間絶縁203および前記保護膜204が互いに異なる屈折率の光透過材料からなっている。層間絶縁膜203と保護膜204との界面が、受光部201とマイクロレンズ202との平面位置のずれ量に応じた傾斜を有するように形成されている。なお、205はカラーフィルタであり、206は金属配線である。
【0007】
次に、特許文献3〜5に開示されている2画素共有の従来の固体撮像素子において、マイクロレンズの形が2画素周期で互いにくっ付いて一方端部が互いに重なるように形成されている。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特開2002−270811号公報
【特許文献2】特開2005−150492号公報
【特許文献3】特開2007−95751号公報
【特許文献4】特開2007−208817号公報
【特許文献5】特開2007−311413号公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
特許文献1に開示されている従来の技術では、凸状透明部111上に設けられたマイクロレンズ112の断面形状が2画素周期で傾いているために、真上からの平行光に対してマイクロレンズ112を最適化して隣接する各受光部102への入射光が受光部102の中央部に集光するようにした場合であっても、斜め光に対しては、隣接する各受光部102の中央部に入射光が集光しないという問題がある。即ち、互いに逆方向に傾いた左右の2個のマイクロレンズ112に対して、例えば左上から右下の方向に傾いた斜め光を入射させた場合に、左側のマイクロレンズ112の方が右側のマイクロレンズ112よりも受光部102での受光効率がよく受光感度がよい。このことは、左右のマイクロレンズが2画素周期で互いにくっ付いて形成されている特許文献3〜5に開示されている従来の技術においても、例えば左上から右下の方向に傾いた斜め光を入射させた場合に、左側のマイクロレンズの方が右側のマイクロレンズよりも受光部での受光効率がよく受光感度がよい。したがって、特許文献1および3〜5に開示されている従来の技術では、斜め光に対して2画素単位で周期的に寄った受光部102での受光感度およびシェーディングが悪化するという問題がある。
【0010】
また、特許文献2に開示されている従来の技術では、層間絶縁膜203と保護膜204との界面が、2画素共有の各受光部201とマイクロレンズ202との平面位置のずれ量に応じた傾斜を有するように形成されているが、斜め光に対しても傾斜面でマイクロレンズ202からの集光方向を調整しているため、2画素共有の互いに寄った各受光部201の各中央部に向けて、安定的に正確に集光をそれぞれ曲げるようにその傾斜面で調整することは困難である。
【0011】
本発明は、上記従来の問題を解決するもので、複数画素共有の互いに寄った受光部を持つ固体撮像素子において、受光感度およびシェーディングをより改善することができる固体撮像素子およびその製造方法、この固体撮像素子を画像入力デバイスとして撮像部に用いた例えばカメラ付き携帯電話装置などの電子情報機器を提供することを目的とする。
【課題を解決するための手段】
【0012】
本発明の固体撮像素子は、入射光を光電変換して信号電荷を生成する複数の受光部が2次元状に配設され、該複数の受光部のそれぞれに該入射光を集光させる複数のマイクロレンズが該複数の受光部の上方に配設されている固体撮像素子において、該マイクロレンズと該受光部との間の層間絶縁膜に光導波路を構成するライトパイプが形成され、該ライトパイプは、下端面が該受光部の上方位置で平面視で該受光部の中央部を含むように開口し、上端面が該マイクロレンズの下方位置で平面視で該マイクロレンズの中央部を含むように開口して、上下の各端面領域が平面視で互いに異なっているものであり、そのことにより上記目的が達成される。
【0013】
また、好ましくは、本発明の固体撮像素子における受光部の平面視位置が周期的に異なっている複数画素共有の固体撮像素子において、該複数画素単位で周期的に寄った受光部の位置に応じて前記ライトパイプの下端面の平面視位置が位置決めされている。
【0014】
さらに、好ましくは、本発明の固体撮像素子における複数のマイクロレンズと、該複数のマイクロレンズのそれぞれに対応した各ライトパイプの上端面とが全て等間隔に形成されている。
【0015】
さらに、好ましくは、本発明の固体撮像素子におけるライトパイプの材質がSiN膜またはSiON膜の高屈折率膜であり、前記層間絶縁膜がSiO膜である。
【0016】
さらに、好ましくは、本発明の固体撮像素子におけるライトパイプの縦断面形状が平行四辺形状または逆直角台形状である。
【0017】
さらに、好ましくは、本発明の固体撮像素子におけるライトパイプの上端面および下端面の少なくともいずれかは平面視で円形、楕円形または、正方形または矩形を含む4角形である。
【0018】
さらに、好ましくは、本発明の固体撮像素子における上下の各端面領域が平面視で互いに包含されているかまたは、平面視で互いに領域がずれている。
【0019】
さらに、好ましくは、本発明の固体撮像素子において、前記ライトパイプ上または上方に、前記マイクロレンズからの集光を該ライトパイプ内にさらに集光するための層内レンズが設けられている。
【0020】
さらに、好ましくは、本発明の固体撮像素子において、画素毎に光電変換部として前記受光部が設けられ、該受光部に隣接して、該受光部からの信号電荷を所定方向に電荷転送するための電荷転送部および、この上に、読み出された信号電荷を電荷転送制御するためのゲート電極およびその上に遮光膜が配置され、該遮光膜は該受光部の上方が開口され、該受光部と該ゲート電極上の遮光膜との段差を埋め込むように前記層間絶縁膜が形成されたCCD固体撮像素子で構成されている。
【0021】
さらに、好ましくは、本発明の固体撮像素子において、画素毎に光電変換部として前記受光部が設けられ、該受光部に隣接して、該受光部からの信号電荷が電荷電圧変換部に電荷転送するための電荷転送トランジスタと、該受光部毎に該電荷転送トランジスタにより該電荷電圧変換部に電荷転送された信号電荷が電圧変換され、この変換電圧に応じて増幅されて該画素部毎の撮像信号として読み出すための読出回路とを有し、該電荷転送トランジスタおよび読出回路を構成するトランジスタと該受光部上に前記層間絶縁膜が形成されたCMOS固体撮像素子で構成されている。
【0022】
本発明の固体撮像素子の製造方法は、本発明の上記固体撮像素子を製造する方法であって、前記マイクロレンズと前記受光部との間の透明な層間絶縁膜に、該マイクロレンズの下方中央部に開口し、該受光部の平面視で中央部上方に開口する光導波路を構成するライトパイプを形成するライトパイプ形成工程を有するものであり、そのことにより上記目的が達成される。
【0023】
また、好ましくは、本発明の固体撮像素子の製造方法において、前記ライトパイプ上に、前記マイクロレンズからの集光を該ライトパイプ内にさらに集光するための層内レンズを形成する層内レンズ形成工程を更に有する。
【0024】
また、好ましくは、本発明の固体撮像素子の製造方法におけるライトパイプ形成工程は、前記マイクロレンズと前記受光部との間の透明な層間絶縁膜上に、フォトリソ技術により第1レジスト膜を所定形状にパターニングする第1レジスト膜形成工程と、パターニングされた第1レジスト膜をマスクとして、該層間絶縁膜に、側面がテーパ状になるように所定深さにエッチングして上方にテーパ状に開放した第1凹部を形成する第1凹部形成工程と、該第1凹部内を透明な高屈折率膜で埋め込む工程と、該第1凹部内を埋め込んだ高屈折率膜上を覆うように、フォトリソ技術により第2レジスト膜を所定形状にパターニングする第2レジスト膜形成工程と、パターニングされた第2レジスト膜をマスクとして、該高屈折率膜に、側面がテーパ状になるように所定深さにエッチングして上方にテーパ状に開放した第2凹部を形成する第2凹部形成工程と、該第2凹部内を該層間絶縁膜の材料と同じ材料を埋め込んで断面平行四辺形状のライトパイプを形成する工程とを有する。
【0025】
さらに、好ましくは、本発明の固体撮像素子の製造方法におけるライトパイプ形成工程は、前記マイクロレンズと前記受光部との間の透明な層間絶縁膜上に、フォトリソ技術により第1レジスト膜を所定形状にパターニングする第1レジスト膜形成工程と、パターニングされた第1レジスト膜をマスクとして、該層間絶縁膜に、側面がテーパ状になるように所定深さにエッチングして上方にテーパ状に開放した第1凹部を形成する第1凹部形成工程と、該第1凹部内を透明な高屈折率膜で埋め込む工程と、該第1凹部内を埋め込んだ高屈折率膜上を覆うように、フォトリソ技術により第3レジスト膜を所定形状にパターニングする第3レジスト膜形成工程と、パターニングされた第3レジスト膜をマスクとして、該高屈折率膜に、側面が垂直に切立つように所定深さにエッチングして上方に垂直に開放した第3凹部を形成する第3凹部形成工程と、該第3凹部内を該層間絶縁膜の材料と同じ材料を埋め込んで断面形状が逆直角台形状のライトパイプを形成する工程とを有する。
【0026】
さらに、好ましくは、本発明の固体撮像素子の製造方法におけるライトパイプ形成工程は、前記マイクロレンズと前記受光部との間の透明な層間絶縁膜上に、フォトリソ技術により、第1のライトパイプ形成位置に対応した開口部の側壁に断面テーパ形状を付けた状態でレジスト膜を所定形状にパターニングして第4レジスト膜を得る第4レジスト膜形成工程と、パターニングされた第4レジスト膜と共に該層間絶縁膜をエッチングすることにより、第4レジスト膜の開口部側面のテーパ形状を該層間絶縁膜に転写して上方にテーパ状に開放した第4凹部を形成する第4凹部形成工程と、第4凹部内を透明な高屈折率材料膜で埋め込む工程と、該高屈折率材料膜および該層間絶縁膜上に、フォトリソ技術により、第2のライトパイプ形成位置に対応した開口部の側壁に断面テーパ形状を付けた状態でレジスト膜を所定形状にパターニングして第5レジスト膜を得る第5レジスト膜形成工程と、パターニングされた該第5レジスト膜と共に該高屈折率材料膜をエッチングすることにより、該第5レジスト膜の開口部側面のテーパ形状を該高屈折率材料膜に転写して上方にテーパ状に開放した第5凹部を形成する第5凹部形成工程と、該第5凹部内を該層間絶縁膜の材料と同じ材料を埋め込んで左右に2個のライトパイプを形成する埋め込み工程とを有する固体撮像素子の製造方法。
【0027】
さらに、好ましくは、本発明の固体撮像素子の製造方法における層内レンズ形成工程は、前記ライトパイプおよび前記層間絶縁膜のうちの少なくとも該ライトパイプ上またはその上方に高屈折率材料膜を形成する高屈折率材料膜形成工程と、該高屈折率材料膜上に感光性レジスト膜を成膜し、透過率階調マスクを用いて照射光量を平面的に制御して、該感光性レジスト膜をレンズ形状に形成するレジストレンズ形状形成工程と、該レンズ形状の該感光性レジスト膜と該高屈折率材料膜とを同時にエッチングすることにより、該感光性レジスト膜のレンズ形状を反映した同じ高屈折率材料膜のレンズ形状に形成する高屈折率材料膜レンズ形状形成工程とを有する。
【0028】
さらに、好ましくは、本発明の固体撮像素子の製造方法における層内レンズ形成工程は、前記ライトパイプおよび前記層間絶縁膜のうちの少なくとも該ライトパイプ上またはその上方に高屈折率材料膜を形成する高屈折率材料膜形成工程と、該高屈折率材料膜上に感光性レジスト膜を成膜し、リソグラフィ技術によりレジスト膜を所定形状にパターニングするレジスト膜形成工程と、パターニングされたレジスト膜をリフローしてその表面張力により上に凸のレンズ形状を形成するレジストレンズ形状形成工程と、該レンズ形状のレジスト膜と該高屈折率材料膜を同時にエッチングして、該レジスト膜のレンズ形状を反映した同じレンズ形状の該高屈折率材料膜を形成するレンズ形状形成工程とを有する。
【0029】
本発明の電子情報機器は、本発明の上記固体撮像素子を画像入力デバイスとして撮像部に用いたものであり、そのことにより上記目的が達成される。
【0030】
上記構成により、以下、本発明の作用を説明する。
【0031】
本発明においては、マイクロレンズと受光部との間の層間絶縁膜に光導波路を構成するライトパイプが形成され、このライトパイプは、下端面が受光部の上方位置で平面視で受光部の中央部を含むように開口し、上端面がマイクロレンズの下方位置で平面視でマイクロレンズの中央部を含むように開口して、上下の各端面領域が平面視で互いに異なっている。
【0032】
これによって、複数画素共有の互いに寄った受光部を持つ固体撮像素子において、受光感度およびシェーディングをより改善することが可能である。
【発明の効果】
【0033】
以上により、本発明によれば、受光部の位置が周期的に異なっている複数画素共有の固体撮像素子において、複数画素共有で周期的に寄った受光部の位置に応じてライトパイプが断面斜め方向に形成されて、受光部の中央部上方にライトパイプの下端部が開口位置し、マイクロレンズの中央部下方にライトパイプの上端部が開口位置しているため、複数画素共有で隣接した各受光部の位置が周期的に寄ることで、受光部とマイクロレンズとの平面視位置がずれていても、ライトパイプにより各受光部の中央位置に精度よく確実に集光させることができて、受光感度およびシェーディングをより改善することができる。この場合、マイクロレンズとライトパイプの上端部とが等間隔に形成されていることから、複数画素共有で互いに寄って隣接した各受光部への入射光量を同じにすることができて各受光部で入射光量のばらつきを無くすことができる。
【図面の簡単な説明】
【0034】
【図1】本発明の実施形態1におけるCCD固体撮像素子の要部構成例を模式的に示す縦断面図である。
【図2】図1のCCD固体撮像素子の製造方法におけるライトパイプ形成工程を説明するための要部縦断面図である。
【図3】本発明の実施形態2におけるCCD固体撮像素子の要部構成例を模式的に示す縦断面図である。
【図4】図3のCCD固体撮像素子の製造方法におけるライトパイプ形成工程を説明するための要部縦断面図である。
【図5】本発明の実施形態4として、本発明の実施形態1〜3の固体撮像素子1または1Aまたは1Bを撮像部に用いた電子情報機器の概略構成例を示すブロック図である。
【図6】特許文献1に開示されている従来のCCDイメージセンサの要部構成例を模式的に示す縦断面図である。
【図7】特許文献2に開示されている従来のCMOSイメージセンサの要部構成例を模式的に示す縦断面図である。
【図8】本発明の実施形態3におけるCCD固体撮像素子の要部構成例を模式的に示す縦断面図である。
【図9】(a)〜(e)は、図8のCCD固体撮像素子の製造方法におけるライトパイプ形成工程を説明するための要部縦断面図である。
【発明を実施するための形態】
【0035】
以下に、本発明の固体撮像素子およびその製造方法の実施形態1〜3および、この固体撮像素子の実施形態1〜3のいずれかを画像入力デバイスとして撮像部に用いた例えばカメラ付き携帯電話装置などの電子情報機器の実施形態4について図面を参照しながら詳細に説明する。なお、各図における構成部材のそれぞれの厚みや長さなどは図面作成上の観点から、図示する構成に限定されるものではない。
【0036】
(実施形態1)
図1は、本発明の実施形態1におけるCCD固体撮像素子の要部構成例を模式的に示す縦断面図である。
【0037】
図1において、本実施形態1のCCD固体撮像素子1は、2画素共有の電荷転送部4を有し、複数の画素部の位置が2画素単位で周期的に互いに寄るように配置位置が異なっている。各画素部にはそれぞれ、半導体基板2の表面部に、受光素子として入射光を光電変換して信号電荷を生成するフォトダイオードで構成された受光部3が複数2次元状に設けられ、この受光部3に隣接して受光部3からの信号電荷を、信号電荷読み出し部を通して読み出して電荷転送するための電荷転送部4が設けられている。この電荷転送部4および信号電荷読み出し部上にはゲート絶縁膜5を介してゲート電極6が配置されている。このゲート電極6は、信号電荷を読み出すと共に、読み出された信号電荷を所定方向に電荷転送制御するための電荷転送電極として機能する。
【0038】
このゲート電極6上には、入射光がゲート電極6により反射してノイズが発生するのを防ぐために遮光膜7が絶縁層8を介して形成されている。また、受光部3の上方は、遮光膜7には、入射光用の窓部として開口部7aが形成されている。
【0039】
これらの受光部3の表面と遮光膜7との段差部分を平坦化するための層間絶縁膜9が形成されている。この層間絶縁膜9は透明なSiO膜である。この層間絶縁膜9には、下端面が受光部3の上方位置で平面視で受光部3の中央部を含むように開口し、上端面が、後述のマイクロレンズ14の下方位置で平面視でマイクロレンズ14の中央部を含むように開口して、上下の各端面領域が平面視で互いにずれて異なっている光導波路を構成するライトパイプ10が形成されている。
【0040】
さらに、この層間絶縁膜9およびライトパイプ10の上端面上には平坦化膜11が形成され、平坦化膜11上に、受光部3毎に配置されたR,G,B各色の所定の色配列(例えばベイヤー配列)のカラーフィルタ12が形成されている。さらに、そのカラーフィルタ12上には平坦化膜13が形成され、その上に受光部3への集光用のマイクロレンズ14が形成されている。
【0041】
ライトパイプ10は、その上部と下部の位置が異なるように深さ方向に斜めに形成されている。ライトパイプ10の下端面の平面視形状は円形または楕円形、4角形などであって、受光部3の平面視で中央部を含むようにその上方で開口している。ライトパイプ10の上端面の平面視形状も円形または楕円形、4角形などであって、マイクロレンズ14の平面視で中央部を含むようにその下方で開口している。これによって、入射光は斜め光も含めてマイクロレンズ14によってライトパイプ10の上端面領域内部で集光され、ライトパイプ10内を介してライトパイプ10の下端面から出射されて受光部3の中央部に入射される。これによって、マイクロレンズ14の配列設計の自由度が増して、マイクロレンズ14を受光部3の真上に設ける必要が無くなる。
【0042】
上記構成の本実施形態1のCCD固体撮像素子1の製造方法としては、半導体基板2(または半導体層)上に、入射光を光電変換して撮像する複数の受光部3を2次元状に形成する受光部形成工程と、受光部3毎に隣接して電荷転送手段としての電荷転送部4およびその上のゲート電極6をそれぞれ形成する電荷転送手段形成工程と、ゲート電極6上を覆うと共に、受光部3の上方を開口した遮光膜7を形成する遮光膜形成工程と、受光部3および遮光膜7の段差部上に透明な層間絶縁膜9を形成する層間絶縁膜形成工程と、この層間絶縁膜9に、マイクロレンズ14の下方中央部に開口し、受光部3の平面視で中央部上方に開口する光導波路を構成するライトパイプ10を形成するライトパイプ形成工程と、層間絶縁膜9およびライトパイプ10上に平坦化膜11を介して所定の色配列のカラーフィルタ12を各受光部3の位置に対応して形成するカラーフィルタ形成工程と、このカラーフィルタ12上に、平坦化膜13を介してマイクロレンズ14を各受光部3の位置に対応して形成するマイクロレンズ形成工程とを有している。
【0043】
このライトパイプ形成工程は、まず、層間絶縁膜9の材料である透明なSiO膜に、側面がテーパ状になるように、レジスト膜(図示せず)を所定形状に開口し、これをマスクとして所定平面視形状および所定深さだけエッチングする。次に、このエッチング形状は、台形を上下逆にした断面形状で上方にテーパ状に開放した凹部に形成されている。この凹部内を透明な高屈折率材料膜(高屈折率膜)のSiN膜で埋め込む。続いて、図2に示すように、この凹部内を埋め込んだSiN膜に、側面がテーパ状になるように、レジスト膜21を所定形状に開口してパターニングし、このパターニングしたレジスト膜21をマスクとして所定平面視形状および所定深さ(始めの深さと同じ深さ)にエッチングする。この凹部の底部にエッチングストッパ膜を設けてもよい。このエッチング形状(凹部形状)は、最初のエッチング形状(凹部形状)よりも小さく、最初のエッチング形状領域内で台形を上下逆にした断面形状の凹部に形成される。この凹部内を透明なSiO膜9aで埋め込んで断面平行四辺形状の2個のライトパイプ10をそれぞれ形成することができる。このライトパイプ10の材料は高屈折率材料のSiN膜の他に、SiON膜であってもよい。このSiO膜9aは、層間絶縁膜9を構成する透明なSiO膜の材料と同じ膜材料で構成することができる。
【0044】
要するに、このライトパイプ形成工程は、マイクロレンズ14と受光部3との間の透明な層間絶縁膜9上に、フォトリソ技術により第1レジスト膜を所定形状にパターニングする第1レジスト膜形成工程と、パターニングされた第1レジスト膜をマスクとして、層間絶縁膜9に、側面がテーパ状になるように所定深さにエッチングして上方にテーパ状に開放した第1凹部を形成する第1凹部形成工程と、第1凹部内を透明な高屈折率材料膜で埋め込む工程と、第1凹部内を埋め込んだ高屈折率材料膜上を覆うように、フォトリソ技術により第2レジスト膜(レジスト膜21)を所定形状にパターニングする第2レジスト膜形成工程と、パターニングされた第2レジスト膜をマスクとして、高屈折率材料膜に、側面がテーパ状になるように所定深さにエッチングして上方にテーパ状に開放した第2凹部を形成する第2凹部形成工程と、第2凹部内を層間絶縁膜9の材料と同じ材料を埋め込んで断面平行四辺形状で斜めに傾いた2個のライトパイプを形成する埋め込み工程とを有している。
【0045】
以上により、本実施形態1によれば、マイクロレンズ14と受光部3との間の層間絶縁膜9に光導波路を構成する断面平行四辺形状のライトパイプ10が形成され、ライトパイプ10は、下端面が受光部3の上方位置で平面視で受光部3の中央部を含むように開口し、上端面がマイクロレンズ14の下方位置で平面視でマイクロレンズ14の中央部を含むように開口して、上下の各端面領域が平面視で互いに領域がずれて異なっている。
【0046】
これによって、受光部3の位置が周期的に異なっている2画素共有の固体撮像素子1において、2画素単位で周期的に寄った各受光部3の位置に応じてライトパイプ10が断面斜め方向に断面平行四辺形状に形成されて、受光部3の中央部上方にライトパイプ10の下端面部が開口位置し、マイクロレンズ14の中央部下方にライトパイプ10の上端面部が開口位置しているため、2画素共有で隣接した各受光部3の位置が周期的に寄っていることで、受光部3とマイクロレンズ14との平面視で位置がずれていても、ライトパイプ10により光を導いて各受光部3の中央位置に精度よく確実に集光させることができて、受光感度およびシェーディングをより改善することができる。この場合、マイクロレンズ14とライトパイプ10の上端面部とが等間隔に形成されていることから、2画素共有で互いに寄って隣接した各受光部3への入射光量を同じにすることができて各受光部3で入射光量のばらつきを無くすことができる。
【0047】
(実施形態2)
上記実施形態1では、ライトパイプ10の断面形状が平行四辺形状に構成した場合について説明したが本実施形態2では、ライトパイプ10の断面形状が逆直角台形状に構成した場合について説明する。
【0048】
図3は、本発明の実施形態2におけるCCD固体撮像素子の要部構成例を模式的に示す縦断面図である。なお、図3では、図1のCCD固体撮像素子1の構成部材と同一の作用効果を奏する構成部材には同一の符号を付してその説明を省略する。
【0049】
図3において、本実施形態2のCCD固体撮像素子1Aが、上記実施形態1のCCD固体撮像素子1と異なる点は、ライトパイプ10aの縦断面形状が逆直角台形状に構成されていることである。
【0050】
ライトパイプ10aは、その上部の位置領域が下部の位置領域を含むように深さ方向に一方側面が斜めで他方側面が垂直に形成されて断面形状が逆直角台形状に構成されている。ライトパイプ10aの下端面の平面視形状は円形または楕円形、4角形などであって、受光部3の平面視で中央部を含むようにその上方で開口している。このライトパイプ10aの下端面の開口領域は、上記実施形態1のライトパイプ10の下端面の開口領域と同じ形状および面積になっている。また、ライトパイプ10aの上端面の平面視形状も円形または楕円形、4角形などであって、マイクロレンズ14の平面視で中央部を含むようにその下方で開口している。このライトパイプ10aの上端面の開口領域は、上記実施形態1のライトパイプ10の上端面の領域を含んで広くなっている。これによって、入射光は斜め光も含めてマイクロレンズ14によってライトパイプ10aの広い上端面領域内部で集光され、ライトパイプ10a内を介してライトパイプ10aの下端面から出射されて受光部3の中央部に確実に入射される。これによって、マイクロレンズ14の配列設計の自由度が増して、マイクロレンズ14を受光部3の真上に設ける必要が無くなる。
【0051】
上記構成の本実施形態2のCCD固体撮像素子1Aの製造方法におけるライトパイプ形成工程は、まず、層間絶縁膜9の材料である透明なSiO膜に、側面がテーパ状になるように、レジスト膜を所定形状に開口してパターニングし、これをマスクとして、所定形状および所定深さだけエッチングする。底部にエッチングストッパ膜を設けていてもよい。次に、このエッチング形状(凹部断面形状)は、台形を上下逆にした断面形状の凹部であって上方にテーパ状に開放した凹部に形成される。この凹部内を透明な高屈折率材料のSiN膜で埋め込む。続いて、図4に示すように、この凹部内を埋め込んだSiN膜に、レジスト膜22を所定形状に開口してパターニングし、これをマスクとして、所定形状および所定深さだけエッチングして側面が垂直の凹部(側面が切立った凹部)を形成する。このエッチング残形状は、最初のエッチング形状領域内の残ったSiN膜の部分が台形を上下逆にした断面直角台形状に形成される。このエッチング除去された凹部内を透明なSiO膜9aで埋め込んで左右に2個のライトパイプ10aを形成することができる。このライトパイプ10aの材料は高屈折率材料のSiN膜の他に、SiON膜であってもよい。このSiO膜9aとしては、層間絶縁膜9を構成する透明なSiO膜と同じ膜材料とする。
【0052】
要するに、このライトパイプ形成工程は、マイクロレンズ14と受光部3との間の透明な層間絶縁膜9上に、フォトリソ技術により第1レジスト膜を所定形状にパターニングする第1レジスト膜形成工程と、パターニングされた第1レジスト膜をマスクとして、層間絶縁膜9に、側面がテーパ状になるように所定深さにエッチングして上方にテーパ状に開放した第1凹部を形成する第1凹部形成工程と、第1凹部内を透明な高屈折率材料膜で埋め込む工程と、第1凹部内を埋め込んだ高屈折率材料膜上を覆うように、フォトリソ技術により第3レジスト膜(レジスト膜22)を所定形状にパターニングする第3レジスト膜形成工程と、パターニングされた第3レジスト膜をマスクとして、高屈折率材料膜に、側面が垂直に切立つように所定深さにエッチングして上方に垂直に開放した第3凹部を形成する第3凹部形成工程と、第3凹部内を層間絶縁膜の材料と同じ材料を埋め込んで断面形状が逆直角台形状のライトパイプ10aを形成する埋め込み工程とを有する。
【0053】
以上により、本実施形態2によれば、マイクロレンズ14と受光部3との間の層間絶縁膜9に光導波路を構成する断面形状が逆直角台形状のライトパイプ10aが形成され、ライトパイプ10aは、下端面が受光部3の上方位置で平面視で受光部3の中央部を含むように開口し、上端面がマイクロレンズ14の下方位置で平面視でマイクロレンズ14の中央部を含むように開口して、上下の各端面領域が平面視で互いに包含されている。
【0054】
これによって、受光部3の位置が周期的に異なっている2画素共有のCCD固体撮像素子1Aにおいて、2画素単位で周期的に寄った各受光部3の位置に応じてライトパイプ10aが断面斜め方向に出射位置を変えて断面逆直角台形状に形成されて、受光部3の中央部上方にライトパイプ10aの下端面部が開口位置し、マイクロレンズ14の中央部下方にライトパイプ10aの上端面部が、上記実施形態1の場合よりも広く光を集めるように開口位置しているため、2画素共有で隣接した各受光部3の位置が周期的に寄っていることで、受光部3とマイクロレンズ14との平面視で位置がずれていても、ライトパイプ10aにより光を受光部3側に導いて各受光部3の中央位置に精度よく確実に集光させることができて、受光感度およびシェーディングをより改善することができる。この場合、複数のマイクロレンズ14と、複数のマイクロレンズ14のそれぞれに対応した各ライトパイプ10aの上端面とが全て等間隔に形成されている。このように、マイクロレンズ14とライトパイプ10aの上端面部とが等間隔に形成されていることから、2画素共有で互いに寄って隣接した各受光部3への入射光量を同じにすることができて各受光部3で入射光量のばらつきを無くすことができる。
【0055】
(実施形態3)
本実施形態3では、上記実施形態1のライトパイプ10と同様のライトパイプ10bの上に層内レンズを設けて、マイクロレンズ14からの集光をより確実にライトパイプ10b内に導く場合について説明する。
【0056】
図8は、本発明の実施形態3におけるCCD固体撮像素子の要部構成例を模式的に示す縦断面図である。なお、図8では、図1のCCD固体撮像素子1の構成部材と同一の作用効果を奏する構成部材には同一の符号を付してその説明を省略する。
【0057】
図8において、本実施形態3のCCD固体撮像素子1Bが、上記実施形態1のCCD固体撮像素子1と異なる点は、層間絶縁膜9に、斜め方向に光を導くライトパイプ10bを形成し、このライトパイプ10b上に、マイクロレンズ14からの集光をより確実にライトパイプ10b内に導くための層内レンズ15を設けた点である。これらの層間絶縁膜9および層内レンズ15上にはこれらを埋め込んで上面を平坦化する平坦化膜11Aが形成されている。
【0058】
ライトパイプ10bは、上記実施形態1のライトパイプ10の場合と同様に、その上部と下部の位置が異なるように深さ方向に斜めに形成されている。ライトパイプ10bの下端面の平面視形状は円形または楕円形、4角形などであって、受光部3の平面視で中央部を含むようにその上方に開口している。ライトパイプ10bの上端面の平面視形状も円形または楕円形、4角形などであって、マイクロレンズ14の平面視で中央部を含むようにその下方で開口している。
【0059】
ライトパイプ10b上に層内レンズ15が直に設けられ、層内レンズ15がライトパイプ10b内に集光して光を導いている。これによって、入射光は斜め光も含めてマイクロレンズ14によって層内レンズ15に集光され、さらに、層内レンズ15によってライトパイプ10bの上端面領域内部で更に集光されて、ライトパイプ10b内を介して、光が受光部3側の斜め方向に導かれてライトパイプ10bの下端面から出射されて受光部3の中央部に入射される。このように、マイクロレンズ14とライトパイプ10bとの間に層内レンズ15を更に設けたことによって、マイクロレンズ14の配列設計の自由度が更に増して、マイクロレンズ14を受光部3の真上に設ける必要が更に無くなる。また、マイクロレンズ14からの集光をより確実に層内レンズ15、ライトパイプ10bを介して受光部3の中央部に集光させることができる。
【0060】
本実施形態3のCCD固体撮像素子1Bの製造方法では、上記実施形態1の層間絶縁膜形成工程とカラーフィルタ形成工程との間に、この層間絶縁膜9に、マイクロレンズ14の下方中央部に開口し、受光部3の平面視で中央部上方に開口する光導波路を構成するライトパイプ10bを形成するライトパイプ形成工程と、ライトパイプ10b上に、マイクロレンズ14からの集光をライトパイプ10b内にさらに集光するための層内レンズ15を形成する層内レンズ形成工程とを有しており、カラーフィルタ形成工程は、層間絶縁膜9および層内レンズ15上に平坦化膜11を介して所定の色配列のカラーフィルタ12を各受光部3の位置に対応して形成している。
【0061】
図9(a)〜図9(e)は、図8のCCD固体撮像素子の製造方法におけるライトパイプ形成工程を説明するための要部縦断面図である。
【0062】
上記構成の本実施形態3のCCD固体撮像素子1Bの製造方法におけるライトパイプ形成工程は、まず、図9(a)に示すように、層間絶縁膜9上に感光性レジスト膜を成膜し、第1のライトパイプ形成位置に対応した開口部の側壁に断面テーパ形状を付けた状態で感光性レジスト膜を所定形状にパターニングして感光性レジスト膜23(第4レジスト膜)を得る。
【0063】
次に、図9(b)に示すように、開口部の側壁が断面テーパ状にパターニングされた感光性レジスト膜23と共に層間絶縁膜9を、感光性レジスト膜23の開口部側壁の断面テーパ形状を層間絶縁膜9に転写するようにエッチングして、層間絶縁膜9に対して台形を上下逆にした断面形状の凹部9bを形成する。
【0064】
続いて、図9(c)に示すように、層間絶縁膜9の凹部9b内に透明な高屈折率材料膜10AのSiN膜を埋め込んで、エッチバックすることにより表面を平坦化する。
【0065】
その後、図9(d)に示すように、図9(a)の場合と同様に、層間絶縁膜9および高屈折率材料膜10A上に感光性レジスト膜を成膜し、第2のライトパイプ形成位置に対応した開口部の側壁に断面テーパ形状を付けた状態で感光性レジスト膜を所定形状にパターニングして感光性レジスト膜24(第5レジスト膜)を得る。さらに、テーパ状にパターニングされた感光性レジスト膜24と共に高屈折率材料膜10Aを、感光性レジスト膜23の開口部側壁のテーパ形状を層間絶縁膜9に転写するようにエッチングして、高屈折率材料膜10Aに対して台形を上下逆にした断面形状の凹部を形成する。
【0066】
さらに、図9(e)に示すように、その高屈折率材料膜10Aの凹部内に透明なSiO膜9aで埋め込んでエッチバックすることにより表面を平坦化して左右に2個のライトパイプ10bを形成することができる。なお、このSiO膜9aは、層間絶縁膜9を構成する透明なSiO膜と同じ膜材料である。
【0067】
要するに、このライトパイプ形成工程は、マイクロレンズ14と受光部3との間の透明な層間絶縁膜9上に、フォトリソ技術により、第1のライトパイプ形成位置に対応した開口部の側壁に断面テーパ形状を付けた状態でレジスト膜を所定形状にパターニングして第4レジスト膜23を得る第4レジスト膜形成工程と、パターニングされた第4レジスト膜23と共に層間絶縁膜9をエッチングすることにより、第4レジスト膜23の開口部側面のテーパ形状を層間絶縁膜9に転写して上方にテーパ状に開放した第4凹部を形成する第4凹部形成工程と、第4凹部内を透明な高屈折率材料膜10Aで埋め込む工程と、高屈折率材料膜10Aおよび層間絶縁膜9上に、フォトリソ技術により、第2のライトパイプ形成位置に対応した開口部の側壁に断面テーパ形状を付けた状態でレジスト膜を所定形状にパターニングして第5レジスト膜24を得る第5レジスト膜形成工程と、パターニングされた第5レジスト膜24と共に高屈折率材料膜10Aをエッチングすることにより、第5レジスト膜24の開口部側面のテーパ形状を高屈折率材料膜10Aに転写して上方にテーパ状に開放した第5凹部を形成する第5凹部形成工程と、第5凹部内を層間絶縁膜9の材料と同じ材料を埋め込んで左右に2個のライトパイプ10bを形成する埋め込み工程とを有する。
【0068】
上記構成の本実施形態3のCCD固体撮像素子1Bの製造方法における層内レンズ形成工程は、ライトパイプ10bおよび層間絶縁膜9のうちの少なくともライトパイプ10b上(または平坦化膜を介したその上方)にSiN膜などの高屈折率材料膜を形成する高屈折率材料膜形成工程と、高屈折率材料膜上に感光性レジスト膜を成膜し、透過率階調マスクを用いて照射光量を平面的に制御して、感光性レジスト膜をレンズ形状に形成するレジストレンズ形状形成工程と、レンズ形状の感光性レジスト膜と高屈折率材料膜とを同時にエッチングして、感光性レジスト膜のレンズ形状を反映した同じ高屈折率材料膜のレンズ形状(層内レンズ15)に形成する高屈折率材料膜レンズ形状形成工程とを有する。
【0069】
または、この層内レンズ形成工程は、ライトパイプ10bおよび層間絶縁膜9のうちの少なくともライトパイプ10b上(または平坦化膜を介したその上方)にSiN膜などの高屈折率材料膜を形成する高屈折率材料膜形成工程と、高屈折率材料膜上に感光性レジスト膜を成膜し、リソグラフィ技術によりレジスト膜を所定形状にパターニングするレジスト膜形成工程と、このパターニングされたレジスト膜をリフローしてその表面張力により上に凸のレンズ形状を形成するレジストレンズ形状形成工程と、レンズ形状のレジスト膜と高屈折率材料膜を同時にエッチングして、レジスト膜のレンズ形状を反映した同じレンズ形状の高屈折率材料膜を形成する高屈折率材料膜レンズ形状形成工程とを有する。
【0070】
以上により、本実施形態3によれば、マイクロレンズ14とライトパイプ10bとの間に層内レンズ15を更に設けたことによって、マイクロレンズ14の配列設計の自由度が更に増して、マイクロレンズ14を受光部3の真上に設ける必要が更に無くなる。また、マイクロレンズ14からの集光をより確実に層内レンズ15、ライトパイプ10bを介して受光部3の中央部に集光させることができる。
【0071】
また、受光部3の位置が周期的に異なっている2画素共有のCCD固体撮像素子1Bにおいて、2画素単位で周期的に寄った各受光部3の位置に応じてライトパイプ10bが断面斜め方向に出射位置を変えて断面平行四辺形状に形成されて、受光部3の中央部上方にライトパイプ10bの下端面部が開口位置し、マイクロレンズ14の中央部下方にライトパイプ10bの上端面部が開口位置しているため、2画素共有で隣接した各受光部3の位置が周期的に寄っていることで、受光部3とマイクロレンズ14との平面視で位置がずれていても、ライトパイプ10bにより光を受光部3側に導いて各受光部3の中央位置に精度よく確実に集光させることができて、受光感度およびシェーディングをより改善することができる。この場合、複数のマイクロレンズ14と、複数のマイクロレンズ14のそれぞれに対応した各ライトパイプ10bの上端面とが全て等間隔に形成されている。このように、マイクロレンズ14とライトパイプ10bの上端面部とが等間隔に形成されていることから、2画素共有で互いに寄って隣接した各受光部3への入射光量を同じにすることができて各受光部3で入射光量のばらつきを無くすことができる。
【0072】
なお、本実施形態3では、ライトパイプ10b上に直に層内レンズ15を更に設けたが、これに限らず、ライトパイプ10bの上方に更に平坦化膜を介して層内レンズ15を設けてもよい。本実施形態3のライトパイプ形成工程は、上記実施形態1、2にも用いることもできる。さらに、層内レンズ15は層間絶縁膜9およびライトパイプ10bのうちの少なくともライトパイプ10b上またはその上方に設けられていればよい。
【0073】
なお、上記実施形態1〜3では、2画素単位で周期的に互いに寄った各受光部3を持つ2画素共有の固体撮像素子1または1Aまたは1Bについて説明したが、これに限らず、3画素単位で周期的に互いに寄った各受光部3を持つ3画素共有の固体撮像素子や、4画素単位(平面視田の字状)で周期的に互いに寄った各受光部3を持つ4画素共有の固体撮像素子についても、上記実施形態1〜3のライトパイプ10または10aまたは10bを適用することができて、受光感度およびシェーディングをより改善することができる本発明の目的を達成することができる。要するに、複数画素単位で周期的に互いに寄った各受光部3を持つ複数画素共有の固体撮像素子についても、上記実施形態1〜3のライトパイプ10または10aまたは10bを適用することができて、受光感度およびシェーディングをより改善することができる本発明の目的を達成することができる。
【0074】
なお、上記実施形態1〜3のライトパイプ10または10aまたは10bをCCD固体撮像素子に適用する場合について説明したが、これに限らず、これに限らず、上記実施形態1、2のライトパイプ10または10aまたは10bをCMOS固体撮像素子に適用することもできる。
【0075】
CCD固体撮像素子1または1Aまたは10Bは、画素毎に光電変換部として受光部3が設けられ、受光部3に隣接して、受光部3からの信号電荷を所定方向に電荷転送するための電荷転送部4および、この上に、読み出された信号電荷を電荷転送制御するためのゲート電極6およびその上に遮光膜7が配置され、受光部3と、受光部3の上方が開口部7aで開口された遮光膜7との段差を埋め込むように層間絶縁膜9が形成されている。
【0076】
一方、CMOS固体撮像素子では、画素毎に光電変換部として受光部が設けられ、受光部に隣接して、受光部からの信号電荷が電荷電圧変換部に電荷転送するための電荷転送トランジスタと、受光部毎に電荷転送トランジスタにより電荷電圧変換部に電荷転送された信号電荷が電圧変換され、この変換電圧に応じて増幅されて該画素部毎の撮像信号として読み出すための読出回路とを有しており、これらの電荷転送トランジスタおよび読出回路を構成するトランジスタと受光部上を覆うように層間絶縁膜9と同様の層間絶縁膜が形成されている。
【0077】
(実施形態4)
図5は、本発明の実施形態4として、本発明の実施形態1〜3の固体撮像素子1または1Aまたは1Bを撮像部に用いた電子情報機器の概略構成例を示すブロック図である。
【0078】
図5において、本実施形態3の電子情報機器90は、上記実施形態1〜3の固体撮像素子1または1Aまたは1Bからの撮像信号を所定の信号処理を施してカラー画像信号を得る固体撮像装置91と、この固体撮像装置91からのカラー画像信号を記録用に所定の信号処理した後にデータ記録可能とする記録メディアなどのメモリ部92と、この固体撮像装置91からのカラー画像信号を表示用に所定の信号処理した後に液晶表示画面などの表示画面上に表示可能とする液晶表示装置などの表示部93と、この固体撮像装置91からのカラー画像信号を通信用に所定の信号処理をした後に通信処理可能とする送受信装置などの通信部94と、この固体撮像装置91からのカラー画像信号を印刷用に所定の印刷信号処理をした後に印刷処理可能とするプリンタなどの画像出力部95とを有している。なお、この電子情報機器90として、これに限らず、固体撮像装置91の他に、メモリ部92と、表示部93と、通信部94と、プリンタなどの画像出力部95とのうちの少なくともいずれかを有していてもよい。
【0079】
この電子情報機器90としては、前述したように例えばデジタルビデオカメラ、デジタルスチルカメラなどのデジタルカメラや、監視カメラ、ドアホンカメラ、車載用後方監視カメラなどの車載用カメラおよびテレビジョン電話用カメラなどの画像入力カメラ、スキャナ装置、ファクシミリ装置、カメラ付き携帯電話装置および携帯端末装置(PDA)などの画像入力デバイスを有した電子機器が考えられる。
【0080】
したがって、本実施形態4によれば、この固体撮像装置91からのカラー画像信号に基づいて、これを表示画面上に良好に表示したり、これを紙面にて画像出力部95により良好にプリントアウト(印刷)したり、これを通信データとして有線または無線にて良好に通信したり、これをメモリ部92に所定のデータ圧縮処理を行って良好に記憶したり、各種データ処理を良好に行うことができる。
【0081】
以上のように、本発明の好ましい実施形態1〜4を用いて本発明を例示してきたが、本発明は、この実施形態1〜4に限定して解釈されるべきものではない。本発明は、特許請求の範囲によってのみその範囲が解釈されるべきであることが理解される。当業者は、本発明の具体的な好ましい実施形態1〜4の記載から、本発明の記載および技術常識に基づいて等価な範囲を実施することができることが理解される。本明細書において引用した特許、特許出願および文献は、その内容自体が具体的に本明細書に記載されているのと同様にその内容が本明細書に対する参考として援用されるべきであることが理解される。
【産業上の利用可能性】
【0082】
本発明は、被写体からの画像光を光電変換して撮像する複数の受光部が2次元状に設けられたCCDイメージセンサやCMOSイメージセンサなどの固体撮像素子およびその製造方法、この固体撮像素子を画像入力デバイスとして撮像部に用いた例えばデジタルビデオカメラおよびデジタルスチルカメラなどのデジタルカメラや、監視カメラなどの画像入力カメラ、スキャナ装置、ファクシミリ装置、テレビジョン電話装置、カメラ付き携帯電話装置などの電子情報機器の分野において、受光部の位置が周期的に異なっている複数画素共有の固体撮像素子において、複数画素共有で周期的に寄った受光部の位置に応じてライトパイプが断面斜め方向に形成されて、受光部の中央部上方にライトパイプの下端部が開口位置し、マイクロレンズの中央部下方にライトパイプの上端部が開口位置しているため、複数画素共有で隣接した各受光部の位置が周期的に寄ることで、受光部とマイクロレンズとの平面視位置がずれていても、ライトパイプにより各受光部の中央位置に精度よく確実に集光させることができて、受光感度およびシェーディングをより改善することができる。この場合、マイクロレンズとライトパイプの上端部とが等間隔に形成されていることから、複数画素共有で互いに寄って隣接した各受光部への入射光量を同じにすることができて各受光部で入射光量のばらつきを無くすことができる。
【符号の説明】
【0083】
1、1A、1B CCD固体撮像素子
2 半導体基板
3 受光部
4 電荷転送部
5 ゲート絶縁膜
6 ゲート電極
7 遮光膜
7a 開口部
8 絶縁層
9 層間絶縁膜
9a SiO
10、10a、10b ライトパイプ
11、13 平坦化膜
12 カラーフィルタ
14 マイクロレンズ
15 層内レンズ
21〜24 レジスト膜
90 電子情報機器
91 固体撮像装置
92 メモリ部
93 表示部
94 通信部
95 画像出力部

【特許請求の範囲】
【請求項1】
入射光を光電変換して信号電荷を生成する複数の受光部が2次元状に配設され、該複数の受光部のそれぞれに該入射光を集光させる複数のマイクロレンズが該複数の受光部の上方に配設されている固体撮像素子において、
該マイクロレンズと該受光部との間の層間絶縁膜に光導波路を構成するライトパイプが形成され、該ライトパイプは、下端面が該受光部の上方位置で平面視で該受光部の中央部を含むように開口し、上端面が該マイクロレンズの下方位置で平面視で該マイクロレンズの中央部を含むように開口して、上下の各端面領域が平面視で互いに異なっている固体撮像素子。
【請求項2】
前記受光部の平面視位置が周期的に異なっている複数画素共有の固体撮像素子において、該複数画素単位で周期的に寄った受光部の位置に応じて前記ライトパイプの下端面の平面視位置が位置決めされている請求項1に記載の固体撮像素子。
【請求項3】
前記複数のマイクロレンズと、該複数のマイクロレンズのそれぞれに対応した各ライトパイプの上端面とが全て等間隔に形成されている請求項1に記載の固体撮像素子。
【請求項4】
前記ライトパイプの材質がSiN膜またはSiON膜の高屈折率膜であり、前記層間絶縁膜がSiO膜である請求項1に記載の固体撮像素子。
【請求項5】
前記ライトパイプの縦断面形状が平行四辺形状または逆直角台形状である請求項1に記載の固体撮像素子。
【請求項6】
前記ライトパイプの上端面および下端面の少なくともいずれかは平面視で円形、楕円形または、正方形または矩形を含む4角形である請求項1に記載の固体撮像素子。
【請求項7】
前記上下の各端面領域が平面視で互いに包含されているかまたは、平面視で互いに領域がずれている請求項1に記載の固体撮像素子。
【請求項8】
前記ライトパイプ上または上方に、前記マイクロレンズからの集光を該ライトパイプ内にさらに集光するための層内レンズが設けられている請求項1に記載の固体撮像素子。
【請求項9】
画素毎に光電変換部として前記受光部が設けられ、該受光部に隣接して、該受光部からの信号電荷を所定方向に電荷転送するための電荷転送部および、この上に、読み出された信号電荷を電荷転送制御するためのゲート電極およびその上に遮光膜が配置され、該遮光膜は該受光部の上方が開口され、該受光部と該ゲート電極上の遮光膜との段差を埋め込むように前記層間絶縁膜が形成されたCCD固体撮像素子で構成されている請求項1に記載の固体撮像素子。
【請求項10】
画素毎に光電変換部として前記受光部が設けられ、該受光部に隣接して、該受光部からの信号電荷が電荷電圧変換部に電荷転送するための電荷転送トランジスタと、該受光部毎に該電荷転送トランジスタにより該電荷電圧変換部に電荷転送された信号電荷が電圧変換され、この変換電圧に応じて増幅されて該画素部毎の撮像信号として読み出すための読出回路とを有し、該電荷転送トランジスタおよび読出回路を構成するトランジスタと該受光部上に前記層間絶縁膜が形成されたCMOS固体撮像素子で構成されている請求項1に記載の固体撮像素子。
【請求項11】
請求項1〜10のいずれかに記載の固体撮像素子を製造する方法であって、
前記マイクロレンズと前記受光部との間の透明な層間絶縁膜に、該マイクロレンズの下方中央部に開口し、該受光部の平面視で中央部上方に開口する光導波路を構成するライトパイプを形成するライトパイプ形成工程を有する固体撮像素子の製造方法。
【請求項12】
請求項11に記載の固体撮像素子の製造方法であって、
前記ライトパイプ上に、前記マイクロレンズからの集光を該ライトパイプ内にさらに集光するための層内レンズを形成する層内レンズ形成工程を更に有する固体撮像素子の製造方法。
【請求項13】
請求項11または12に記載の固体撮像素子の製造方法であって、
前記ライトパイプ形成工程は、
前記層間絶縁膜上に、フォトリソ技術により第1レジスト膜を所定形状にパターニングする第1レジスト膜形成工程と、パターニングされた第1レジスト膜をマスクとして、該層間絶縁膜に、側面がテーパ状になるように所定深さにエッチングして上方にテーパ状に開放した第1凹部を形成する第1凹部形成工程と、該第1凹部内を透明な高屈折率膜で埋め込む工程と、該第1凹部内を埋め込んだ高屈折率膜上を覆うように、フォトリソ技術により第2レジスト膜を所定形状にパターニングする第2レジスト膜形成工程と、パターニングされた第2レジスト膜をマスクとして、該高屈折率膜に、側面がテーパ状になるように所定深さにエッチングして上方にテーパ状に開放した第2凹部を形成する第2凹部形成工程と、該第2凹部内を該層間絶縁膜の材料と同じ材料を埋め込んで断面平行四辺形状のライトパイプを形成する埋め込み工程とを有する固体撮像素子の製造方法。
【請求項14】
請求項11または12に記載の固体撮像素子の製造方法であって、
前記ライトパイプ形成工程は、
前記層間絶縁膜上に、フォトリソ技術により第1レジスト膜を所定形状にパターニングする第1レジスト膜形成工程と、パターニングされた第1レジスト膜をマスクとして、該層間絶縁膜に、側面がテーパ状になるように所定深さにエッチングして上方にテーパ状に開放した第1凹部を形成する第1凹部形成工程と、該第1凹部内を透明な高屈折率膜で埋め込む工程と、該第1凹部内を埋め込んだ高屈折率膜上を覆うように、フォトリソ技術により第3レジスト膜を所定形状にパターニングする第3レジスト膜形成工程と、パターニングされた第3レジスト膜をマスクとして、該高屈折率膜に、側面が垂直に切立つように所定深さにエッチングして上方に垂直に開放した第3凹部を形成する第3凹部形成工程と、該第3凹部内を該層間絶縁膜の材料と同じ材料を埋め込んで断面形状が逆直角台形状のライトパイプを形成する埋め込み工程とを有する固体撮像素子の製造方法。
【請求項15】
請求項11または12に記載の固体撮像素子の製造方法であって、
前記ライトパイプ形成工程は、
前記マイクロレンズと前記受光部との間の透明な層間絶縁膜上に、フォトリソ技術により、第1のライトパイプ形成位置に対応した開口部の側壁に断面テーパ形状を付けた状態でレジスト膜を所定形状にパターニングして第4レジスト膜を得る第4レジスト膜形成工程と、パターニングされた第4レジスト膜と共に該層間絶縁膜をエッチングすることにより、第4レジスト膜の開口部側面のテーパ形状を該層間絶縁膜に転写して上方にテーパ状に開放した第4凹部を形成する第4凹部形成工程と、第4凹部内を透明な高屈折率材料膜で埋め込む工程と、該高屈折率材料膜および該層間絶縁膜上に、フォトリソ技術により、第2のライトパイプ形成位置に対応した開口部の側壁に断面テーパ形状を付けた状態でレジスト膜を所定形状にパターニングして第5レジスト膜を得る第5レジスト膜形成工程と、パターニングされた該第5レジスト膜と共に該高屈折率材料膜をエッチングすることにより、該第5レジスト膜の開口部側面のテーパ形状を該高屈折率材料膜に転写して上方にテーパ状に開放した第5凹部を形成する第5凹部形成工程と、該第5凹部内を該層間絶縁膜の材料と同じ材料を埋め込んで左右に2個のライトパイプを形成する埋め込み工程とを有する固体撮像素子の製造方法。
【請求項16】
請求項12に記載の固体撮像素子の製造方法であって、
前記層内レンズ形成工程は、
前記ライトパイプおよび前記層間絶縁膜のうちの少なくとも該ライトパイプ上またはその上方に高屈折率材料膜を形成する高屈折率材料膜形成工程と、
該高屈折率材料膜上に感光性レジスト膜を成膜し、透過率階調マスクを用いて照射光量を平面的に制御して、該感光性レジスト膜をレンズ形状に形成するレジストレンズ形状形成工程と、
該レンズ形状の該感光性レジスト膜と該高屈折率材料膜とを同時にエッチングすることにより、該感光性レジスト膜のレンズ形状を反映した同じ高屈折率材料膜のレンズ形状に形成する高屈折率材料膜レンズ形状形成工程とを有する固体撮像素子の製造方法。
【請求項17】
請求項12に記載の固体撮像素子の製造方法であって、
前記層内レンズ形成工程は、
前記ライトパイプおよび前記層間絶縁膜のうちの少なくとも該ライトパイプ上またはその上方に高屈折率材料膜を形成する高屈折率材料膜形成工程と、
該高屈折率材料膜上に感光性レジスト膜を成膜し、リソグラフィ技術によりレジスト膜を所定形状にパターニングするレジスト膜形成工程と、
パターニングされたレジスト膜をリフローしてその表面張力により上に凸のレンズ形状を形成するレジストレンズ形状形成工程と、
該レンズ形状のレジスト膜と該高屈折率材料膜を同時にエッチングして、該レジスト膜のレンズ形状を反映した同じレンズ形状の該高屈折率材料膜を形成するレンズ形状形成工程とを有する固体撮像素子の製造方法。
【請求項18】
請求項1〜10のいずれかに記載の固体撮像素子を画像入力デバイスとして撮像部に用いた電子情報機器。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2012−142446(P2012−142446A)
【公開日】平成24年7月26日(2012.7.26)
【国際特許分類】
【出願番号】特願2010−294314(P2010−294314)
【出願日】平成22年12月28日(2010.12.28)
【出願人】(000005049)シャープ株式会社 (33,933)
【Fターム(参考)】