説明

基板搬送装置及び基板搬送方法

【課題】稼動速度で基板の載置位置が正常であるか否かを確実に検出すること。
【解決手段】基板を保持して搬送する水平、鉛直方向の移動及び鉛直軸回りに回転自在な搬送アームA3と、搬送アームとの間で基板を受け渡しすると共に、基板を載置して処理を施す熱処理装置70と、歪み量を測定する歪みセンサを同心円上の等間隔の位置に複数個備える、基板と同形状の歪みセンサ付きウエハWAと、搬送アーム及び熱処理装置の駆動部を制御すると共に、歪みセンサからの検出データを入力し、入力された検出データと予め記憶された正常動作時の歪みデータ標準データとを比較解析する判別部80Aを備える制御部80と、を具備し、歪みセンサ付きウエハを搬送アームから熱処理装置へ受け渡すとき、又は熱処理装置が歪み測定用基板を載置するときに、判別部によって歪みセンサからの検出データの値が正常であるか否かを判定し、その判定結果を制御部に伝達する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、基板搬送装置及び基板搬送方法に関する。
【背景技術】
【0002】
一般に、基板の製造工程においては、基板に対して処理を行う装置を複数個設け、これらの処理装置へ搬送装置により基板を順次搬送して、所定の処理が行われている。基板搬送装置では例えば基板を保持する搬送アームが熱処理部及び塗布処理部に向かって進退自在、鉛直軸周りに回転自在、横方向へ移動自在、及び昇降自在に形成されている。
【0003】
この種の装置において、基板が搬送アームから処理装置へ受け渡し、もしくは処理装置から搬送アームへの受け渡しが正常に行われた否かの確認は搬送アーム側に設けられた光センサによって行われている。これは熱処理装置などの高温度を発する装置側では光センサを設置できないためである。
【0004】
光センサは光を発する投光側と光を受ける受光側とからなり、投光した光の反射の受光があれば基板が存在し、受光がなければ基板が無いと判断して、受け渡し手順で基板の受け渡しが正しく行われたか否かを類推して判断して基板の搬送を行っている。
【0005】
従って、例えば搬送アームのフォークが塗布処理部にある塗布処理装置に基板を受け渡し、受光側が受光した状態から無い状態に変化すれば、塗布処理装置への受け渡しが成功したと判断して、塗布処理装置の処理が開始される。しかし、光センサは基板が塗布処理装置に正しく載置されたか否かは判別できないので、もし正しく載置されていない状態で処理を続行すれば、基板が破損して回復作業及び発生したパーティクルのために長時間の装置停止を余儀なくされてしまう。
【0006】
そこで、搬送アームと処理装置の間の位置調整と、処理装置の調整確認を定期的に実施している。これをティーチングと云う。しかし、ティーチングは手順毎に停止して調整を行うために、実際の稼動速度が異なるので、慣性力や遠心力によるずれまでは確認ができない。そのために稼動速度で調整が合っているか否かの確認が必要になるが、有効な対策が立てられていないのが現状である。
【0007】
特許文献1は前記の問題を解決するための方法である。特許文献1に記載の技術は、加速度センサを処理基板と同等の大きさの測定治具の中に備え、稼動速度での基板の受け渡し位置の精度を確認するものである。この特許文献1では、予め記憶してある稼動速度での正常搬送時の加速度センサの値と比較して、搬送精度の調整確認を行っている。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】米国特許公開第2008/0228430号明細書
【発明の概要】
【発明が解決しようとする課題】
【0009】
しかしながら、特許文献1に記載の技術においては、その構造上、大型化して実使用の基板と質量が異なるために、慣性力や遠心力、及び搬送アームの基板の把持力が異なることにより、実稼動とずれが発生する。また、基板を搬送するときの基板のどの位置がずれているかまで計ることは困難なために、搬送の位置決め精度確認には限界があった。
【0010】
本発明は、このような事情のもとになされたものであり、稼動速度で基板の載置位置が正常であるか否かを確実に検出することができる技術を提供することにある。
【課題を解決するための手段】
【0011】
前記課題を解決するために、本発明の基板搬送装置は、基板を保持して搬送する水平、鉛直方向の移動及び鉛直軸回りに回転自在な搬送アームと、前記搬送アームとの間で基板を受け渡しすると共に、基板を載置して処理を施す処理装置と、歪み量を測定する歪みセンサを同心円上の等間隔の位置に複数個備える前記基板と同形状の歪み測定用基板と、前記搬送アーム及び処理装置の駆動部を制御すると共に、前記歪みセンサからの検出データを入力し、入力された検出データと予め記憶された正常動作時の歪みデータ標準データとを比較解析する判別部を備える制御部と、を具備し、 前記歪み測定用基板を前記搬送アームから前記処理装置へ受け渡すとき、又は前記処理装置が歪み測定用基板を載置するときに、前記判別部によって歪みセンサからの検出データの値が正常であるか否かを判定し、その判定結果を前記制御部に伝達する、ことを特徴とする。
【0012】
本発明において、前記歪みセンサを、前記歪み測定用基板の同心円上の対向する位置に偶数個備える構造とする方がよい。
【0013】
また、前記判別部によって歪みセンサからの検出データの値が異常と判定したときに、前記異常状態を表示する表示部を更に具備する方がよい。
【0014】
また、前記判別部は、予め記憶された正常の搬送及び処理のときの歪みセンサの歪み量に基づいて設定された電圧の許容値及び一定時間内の許容値と、各歪みセンサの歪み量に応じた電圧値とを比較して、少なくとも1個の歪みセンサの歪み量に応じた電圧値が許容値を越えたか否かを判定するように形成されている方がよい。
【0015】
また、前記歪み測定用基板を前記搬送アームより前記処理装置へ受け渡すときの位置をティーチングするときに、受け渡すときの歪みセンサの検出データの値と搬送アームの座標位置を記憶する位置データ記憶部を更に備える構成とする方がよい。
【0016】
また、前記歪み測定用基板を処理装置へ受け渡すときの前記搬送アームの座標位置と歪みセンサの検出データの値、及び前記処理装置で基板を載置するときの各手順の最初と最後のときの歪みセンサの検出データの値を記憶する位置データ記憶部を更に備える構成とする方がよい。
【0017】
加えて、前記歪み測定用基板の同心円上に弾性変形用の凹溝を形成し、前記歪みセンサを、前記凹溝を跨いで弾性変形領域に設ける方がよい。
【0018】
また、本発明の基板搬送方法は、基板を保持して搬送する水平、鉛直方向の移動及び鉛直軸回りに回転自在な搬送アームから処理装置に基板を受け渡し、前記処理装置において基板を載置して処理を施す基板搬送方法であって、 前記基板と同形状の円板を歪み測定用基板として用意し、 前記歪み測定用基板に、この歪み測定用基板の歪み量を測定する歪みセンサを同心円上の等間隔の位置に複数個備えると共に、前記歪みセンサからの検出データを入力し、入力された検出データと予め記憶された正常動作時の歪みデータ標準データとを比較解析する判別部を備え、 前記歪み測定用基板を前記搬送アームから前記処理装置へ受け渡すとき、又は前記処理装置が歪み測定用基板を載置するときに、前記判別部によって歪みセンサからの検出データの値が正常であるか否かを判定し、その判定結果に基づいて前記搬送アーム、処理装置の駆動部を制御する、ことを特徴とする。
【発明の効果】
【0019】
本発明によれば、基板の歪み量を測定する歪みセンサを同心円上の対向する位置に複数個具備する歪み測定用基板と、歪み測定用基板を搬送アームから処理装置へ受け渡すとき、又は処理装置で基板を載置するときに、歪みセンサの検出データの値が正常であるか否かを判別することにより基板の歪み量の異常を容易に検出することができる。
【図面の簡単な説明】
【0020】
【図1】本発明に係る基板搬送装置を備えるレジスト塗布・現像処理装置の一例を示す概略平面図である。
【図2】前記レジスト塗布・現像処理装置の概略斜視図である。
【図3】前記レジスト塗布・現像処理装置の概略断面図である。
【図4】前記レジスト塗布・現像処理装置における処理ブロックを示す斜視図である。
【図5】本発明における熱処理装置、搬送アーム、及び制御部の関係を示す概略構成図である。
【図6A】本発明における塗布処理装置への基板の受け渡し状態を示す断面図である。
【図6B】前記塗布処理装置に基板を載置する状態を示す断面図である。
【図7】本発明における歪み測定用基板を示す平面図(a)及び断面図(b)である。
【図8】本発明における歪み測定用基板の別の実施形態を示す平面図(a)及び断面図(b)である。
【図9】本発明における歪みセンサの電気回路図である。
【図10】本発明における歪みセンサの電圧の許容値及び一定時間内の許容値と、歪みセンサの歪み量に応じた電圧値を比較するグラフである。
【発明を実施するための形態】
【0021】
以下に、本発明に係る基板搬送装置をウエハのレジスト塗布・現像処理装置に適用した場合について説明する。
【0022】
レジスト塗布・現像処理装置は、図1に示すようにキャリアブロックS1が設けられており、載置台21に載置された密閉型キャリア20に載置されているウエハWを搬送アームCが取り出して、隣接する処理ブロックS2に受け渡すように構成されている。また、搬送アームCはブロックS2にて処理されたウエハWを受け取って、キャリア20へ戻す役割も行う。なお、インターフェースブロックS3を介して処理ブロックS2に露光装置S4が連設されている。
【0023】
図2に示すように、処理ブロックS2は、下方側から、下段側の2段が現像処理を行うための第1の処理ブロック(DEV層)B1、レジスト膜の下層側に形成される反射防止膜の形成処理を行うための第2の処理ブロック(BCT層)B2、レジスト液の塗布処理を行うための第3の処理ブロック(COT層)B3、レジスト膜の上層側に形成される反射防止膜の形成処理を行うための第4の処理ブロック(TCT層)B4が積層されている。
【0024】
前記処理ブロック層B1〜B4は、図1に示すように、前面側にウエハWに薬液を塗布するための塗布処理部Bと、背面側に塗布処理部の前及び後処理を行なうための各種加熱処理及び冷却処理を行う熱処理部U3、前面側と背面側の間でウエハWの受け渡しを行うための搬送アームA1〜A4を備えている(図3参照)。この場合、積層された各層の装置レイアウトはいずれも同じである。前記処理ブロックの中で第1の処理ブロックであるDEV層B1のみが2段に積層されているので、図3に示すように、搬送アームA1は上下2段にウエハWを受け渡しために昇降可能になっている。
【0025】
また、図1及び図3に示すように、処理ブロックS2には棚ユニットU1が設けられており、棚ユニットU1間のウエハWの受け渡しは搬送アームDによって行われる。
【0026】
上記棚ユニットU1は、図3に示すように、処理ブロック層B1〜B4の各層に対応して上下に区画されており、処理ブロック層B1に対応する部分には受け渡しモジュールTRS1が2段積層され、処理ブロック層B2に対応する部分には受け渡しモジュールCPL2とバッファモジュールBUF2が積層され、処理ブロック層B3に対応する部分には受け渡しモジュールCPL3とバッファモジュールBUF3が積層され、また、処理ブロック層B4に対応する部分には受け渡しモジュールCPL4と受け渡しモジュールTRS4が積層されている。なお、処理ブロック層B1と処理ブロック層B2との間には、ウエハWを、棚ユニットU1と処理ブロックS2のインターフェースブロックS3側に配置された棚ユニットU2との間で搬送する領域が設けられており、この領域内にシャトルアームAが配設されている。また、シャトルアームAが配設され領域に対応する棚ユニットU1,U2には、それぞれ受け渡しモジュールCPL10,CPL11が設けられている。
【0027】
次に、前記塗布処理部Bを構成する塗布処理装置30について説明する。塗布処理装置30は、図6A及び図6Bに示すように、ウエハWの搬出入口30aを設けた筐体内に、ウエハW又はウエハWと同形状に形成される後述する歪み測定用基板WA(以下に歪みセンサ付きウエハWAという)を水平状態に載置するスピンチャック31が配設されている。スピンチャック31は、回転モータ32によって鉛直方向に回転自在に形成されており、また、スピンチャック31の上面に開口する真空引き孔33が回転モータ32を貫通して設けられ、図示しない真空装置に接続されている。この真空引き孔33を真空状態にすることによってウエハW,WAがスピンチャック31に吸着保持される。なお、真空引きセンサ33sによってウエハW,WAが保持されたか否かが確認できるようになっている。
【0028】
スピンチャック31の下方側には、搬出入口30aを介して匡体内に進入する搬送アームA3との間でウエハW,WAを受け渡しする複数例えば3本の昇降ピン34が昇降可能に配設されている。この昇降ピン34はアップセンサ34sによってウエハW,WAの受け渡し状態の高さ、すなわち搬送アームA3の座標軸を検出できるように形成されている。
【0029】
また、スピンチャック31の上方側には、通常の塗布工程時にウエハWにシンナーを塗布するシンナーノズル37とレジストを塗布するレジストノズル36が配設されている。これらシンナーノズル37とレジストノズル36は、図示しない移動機構によってウエハWの側方とウエハW中心上方位置に移動可能に形成されている。
【0030】
スピンチャック31の外方及び下方側はカップ40によって包囲されている。カップ40には、塗布した液が裏面に回り込み装置内が汚染されるのを防ぐために、液侵入阻止部35が設けられている。この液侵入阻止部35はウエハWの裏面内側にウエハ形状に合わせて環状構造になっており、このウエハWと環状の液侵入阻止部35の頂点35aの隙間は数mmでできる限り狭くする必要がある。また、カップ40の下端部側には、不要なレジスト液を排出する排液口36と、レジスト液が飛散しないように空気を排気する排気口37が設けられている。
【0031】
熱処理部U3を構成する熱処理装置70は、図3に示すように、ウエハWを載置する熱板71と、搬出入口70aを介して進入する搬送アームA3との間でウエハWを受け渡しする複数例えば3本の昇降ピン72とを具備している。
【0032】
次に、搬送アームの基本動作について搬送アームA3を代表して説明する。図4はCOT層B3を示しており、熱処理部U3は加熱処理装置や冷却処理装置等の熱処理装置70群を積層した棚構造になっている。熱処理部U3に対向する位置に塗布処理部Bが配置されている。熱処理部U3と塗布処理部Bの間に搬送アームA3が配設されている。また、図4に示すように、熱処理装置70にウエハWを搬入出するための受け渡し口70aが設けられている。
【0033】
搬送アームA3は、Y軸である水平の横方向への移動、Z軸である鉛直の昇降方向への移動、θ軸である鉛直軸回りに回転、及び水平のX軸である塗布処理部B及び熱処理部U3の受け渡し口20に進退しての挿入が可能に構成されている。搬送アームA3にはウエハWを保持するフォークA31とA32が上下に設けられ、個別に各熱処理装置70の受け渡し口70aに挿入される機構となっている。また、搬送アームA3には、フォークA31,A32に保持されるウエハWの有無を検知するウエハ確認用センサA33が設けられている。この場合、ウエハ確認用センサA33は、図4に示すように、搬送アームA3の側方からフォークA31,A32の上方側に配設されるブラケットA34の上部片に取り付けられる投光素子A33aと受光素子A33bとからなる反射型光センサにて形成されている。なお、搬送アームA3は、搬送アームA3を鉛直軸回りに回転するモータA35の回転したことを報告するためのエンコーダA36を具備しており、エンコーダA36からの信号が制御部80に伝達される。
【0034】
以下に、稼動例を図1〜3を参照して説明する。図3に示すように、密閉型キャリア20のウエハWを処理ブロックS2のBCT層B2で処理する場合は、キャリアブロックS1の載置台21に載置されている密閉キャリア20の中にあるウエハWを、搬送アームCによって棚ユニットU1の受け渡しモジュールCPL2に搬送し載置する。BCT層B2の搬送アームA2が受け渡しモジュールCPL2よりウエハWを取り出し、BCT層B2の図示しない反射防止膜コータ、加熱、冷却装置に順次搬送して処理が行われ、反射防止膜が形成される。
【0035】
次に、ウエハWは搬送アームA2によって棚ユニットU1の受け渡しモジュールBUF2に載置される。すると、搬送アームDがBUF2からウエハWを取り出し、棚ユニットU1の受け渡しモジュールCPL3に載置する。すると、COT層B3の搬送アームA3が受け渡しモジュールCPL3からウエハWを取り出し、COT層B3の各処理装置(塗布処理装置)によりレジスト膜が形成される。レジスト膜が形成されたウエハWは搬送アームA3により受け渡しモジュールBF3へ載置される。
【0036】
第4の処理ブロック(TCT層)B4でレジスト膜の上層側に形成される反射防止膜の形成処理を行う場合は、搬送アームDが受け渡しモジュールBUF3からウエハWを取り出し、棚ユニットU1の受け渡しモジュールCPL4に載置する。すると、TCT層の搬送アームA4前記CPL4ら取り出し、TCT層B4の各処理装置(塗布処理装置)により反射防止膜が形成される。反射防止膜が形成されたウエハWは搬送アームA4により受け渡しモジュールTRS4へ載置される。
【0037】
一方、BCT層B2とDEV層B1の間には棚ユニットU1に設けられた受け渡しモジュールCPL10から棚ユニットU2の受け渡しモジュールCPL11に直接ウエハWを専用に搬送するシャトルアームAが備えられている。レジスト膜や反射防止膜が塗布されたウエハWは棚ユニットU1の搬送アームDによって受け渡しモジュールCPL10に受け渡される。受け渡しモジュールCPL10のウエハWは、シャトルアームAによって受け渡しモジュールCPL11に受け渡され、インターフェースブロックS3送られる。
【0038】
次に、ウエハWはインターフェースアームEにより露光装置S4に搬送され、露光処理が行われた後に、棚ユニットU2の受け渡しモジュールTRS3に載置され処理ブロックS2のDEV層B1で現像処理が行われ、搬送アームA1により受け渡しモジュールTRS1に載置され、その後に搬送アームCによりキャリア20に戻される。
【0039】
次に、制御部80の動作を、図5を参照して説明する。制御部80はレジスト塗布・現像装置全体を制御するもので、動作の判断及び命令を行う中央演算処理装置であるCPU、プログラムを格納するプログラム格納部{なお、以下に各プログラム格納部にはプログラムに符号を付して説明する。}やデータを記憶するメモリ部、及び入出力部で構成されている。装置を動作させるためのプログラムはDVDやCDに書かれたプログラムがキーボード部85にある読み取り装置を介してメモリに記憶される。
【0040】
制御プログラム90がメモリに記憶されて、本レジスト塗布・現像処理装置の全体の制御を開始する。キーボード部85からの命令(レシピー)に従って制御プログラム90が処理装置制御プログラム89を介して出力部82から命令を出す、例えば図5の場合はモータA35に回転命令を与える。次に、前記モータA35に直結されている図示しないタイミングベルトを介在して搬送アームA3のフォークA31が駆動される。
【0041】
ウエハWが熱処理装置70に挿入され、昇降ピン72がアップして、ウエハWを受け取る。フォークA31が元に戻り、昇降ピン72がダウンして熱板71上に載置される。このときモータA35の回転したことを報告するためのエンコーダA36により入力部83を介して処理装置制御プログラム89に伝えられる。
【0042】
前記の一連の動作を正常に行うための搬送アームA3及び熱処理装置70の位置調整であるアライメントは、図5に示すティーチングプログラム94によって行われる。すなわち、まず、キーボード部85よりアライメントプログラムのスタートの命令を入力する。ティーチングはステップ毎に行われる。エンジニアは目視でもしくはゲージを使用して調整を確認する。
【0043】
調整がずれている場合はメカニズムの調整、もしくはキーボード部85より補正値を入力して調整を行う。調整値が決定したらアライメントデータ記憶部93に記憶させる。実際の稼動における搬送アームや処理装置の動作は前記アライメントデータ記憶部のデータ93に従って位置決めが行われる。
【0044】
ティーチングは静止状態でのアライメントの確認を行うが、稼動速度での調整確認は、後述する歪み測定用基板WA(以下に歪みセンサ付きウエハWAという)と検査プログラム92を使用して行う。検査プログラム92で位置調整検査を行うときは、歪みセンサ付きウエハWAを使用する。過去の正常動作のときの歪みセンサ付きウエハWAの歪みウエハデータは歪みウエハ標準データとして歪みウエハ標準データ記憶部88に蓄積され、歪み量の許容値を決定する参照データとして使用される。
【0045】
以下に、歪みセンサ付きウエハWAについて図7を参照して説明する。歪みセンサ付きウエハWAはウエハWの同心円上の等間隔の対向する位置に偶数個(図面では90度間隔の4固の場合を示す)の歪みセンサSE1〜SE4を備えている。この場合、歪みセンサSE1〜SE4は、歪みセンサ付きウエハWAの同心円上に形成された弾性変形用の凹溝Wgを跨いで弾性変形領域に備えられている。凹溝Wgを設けた理由は、歪みセンサ付きウエハWAの弾性力が少ない場合においては、歪みセンサSE1〜SE4の曲がり度が少なく、測定できない可能性もあるので、同心円上に凹溝Wgを設けることによって弾力性を高める弾性領域を形成するためである。なお、凹溝Wgは必ずしも全周に設ける必要はなく、歪みセンサSE1〜SE4を取り付ける箇所のみに設けるようにしてもよい。
【0046】
このように形成することにより、どの場所で歪みが発生したかを確認することができる。各歪みセンサSE1〜SE4の歪みの信号はセンサケーブル105により歪みセンサ付きウエハWAの中心部に設けられたセンサ回路101に入力される。ここでアナログ信号をデジタル信号に変換して送信部102から無線でレジスト塗布・現像装置の制御部80の受信部81に送信される。歪みセンサ付きウエハWAの電力はバッテリ部103(電圧供給部)より供給される。
【0047】
歪みセンサ付きウエハWAは必ずしも前記構造のものに限定されるものではなく、歪みセンサを更に追加しても良い。例えば、図8に示すように、同心円上に外周凹溝Wg1と内周凹溝Wg2を設けて二重の弾性領域を形成した歪みセンサ付きウエハWBを用意し、この歪みセンサ付きウエハWBにおける外周凹溝Wg1と内周凹溝Wg2を跨いだ位置に、それぞれ等間隔(例えば45度)かつ互いに対向する位置に偶数個の歪みセンサSE11〜SE18;SE21〜SE28を備える構造としても良い。この場合、外周凹溝Wg1と内周凹溝Wg2を跨いで配置される第1群の歪みセンサSE11,SE21と第5群の歪みセンサSE15,SE25が対向し、順次第2群の歪みセンサSE12,SE22と第6群の歪みセンサSE16,SE26、第3群の歪みセンサSE13,SE23と第7群の歪みセンサSE17,SE27、及び第4群の歪みセンサSE14,SE24と第8群の歪みセンサSE18,SE28が対向配置されている。また、各歪みセンサSE11〜SE18;SE21〜SE28の歪みの信号はセンサケーブル105により歪みセンサ付きウエハWBの中心部に設けられたセンサ回路101に入力される。ここでアナログ信号をデジタル信号に変換して送信部102から無線でレジスト塗布・現像装置の制御部80の受信部81に送信される。
【0048】
前記説明では、歪みセンサ付きウエハWAに同心円上に凹溝Wgを設ける場合について説明したが、歪みセンサ付きウエハWAの弾性力が高い場合は、凹溝Wgを設けずに歪みセンサSE1〜SE4を直接歪みセンサ付きウエハWAに貼り付けることも可能である。また、前記歪みセンサ付きウエハWA,WBは、上述したように、弾性変形が可能な材質である方が好ましく、例えばポリ塩化ビニール(硬質)(PVC),ガラス繊維強化プラスチック(FRP),アクリロニトリブタジエンスチレン(ABS),エポキシ樹脂(EP),ポリカーボネート(PC),ポリイミド(PI),アクリル樹脂(PMMA),ポリスチレン(PS),不飽和ポリエステル樹脂(UP)等の歪みゲージが使用できる材質の物であれば構わない。また、弾性力が強く歪みゲージが適用しにくい材料でも薄膜化するか、凹溝の部分を薄膜化することにより測定を行うことができる。
【0049】
以下に図9に示す回路図を参照して、歪みセンサSE1〜SE4について説明する。歪みセンサSE1〜SE4(以下に歪みセンサSE1で代表する)の抵抗変化は微少なのでホイートストンブリッジ回路を用いて電圧に変換する。歪みセンサSE1の一端をブリッジの一つに接続する。他のブリッジの抵抗は固定型を用いる。ここでは歪みセンサが4つあるタイプで図7に示すように歪みセンサ付きウエハWAの対向する位置(90度間隔)で配置してある。この配置により、歪みセンサ付きウエハWAのどの位置で歪みが発生したことが解析できるので、位置調整が容易になる。
【0050】
ブリッジへはバッテリ部103(電圧供給部)から端子V1とV2を介して電力が供給されている。歪みセンサ付きウエハWAが歪んだ場合は歪みセンサ例えば歪みセンサSE1の抵抗値SE1R1が変化してブリッジ回路センサSE1の電圧検出が変化する。電圧の変化は電圧検出部104によって検出され、これをセンサ回路101がアナログデータをデジタルデータに変換して送信部102を介して、レジスト塗布・現像装置の制御部80の制御下にある受信部81にデータが送られる。
【0051】
制御部80では歪み受信部81からの歪みデータが歪みウエハデータ入力部86に入力され、制御部80下の判別部80Aにおいて判別される。すなわち、制御部80に入力された歪みデータと予め記憶されていた正常動作時のデータである歪みウエハ標準データ記憶部88のデータと歪みウエハデータ分析プログラム87が比較する。なお、判別部80は、歪みウエハデータ入力部86と歪みウエハデータ分析プログラム87と歪みウエハ標準データ記憶部88とで形成されている。
【0052】
歪みセンサ付きウエハWA上の歪みセンサの位置は搬送アームA3上でも、処理装置上でも一定方向を、向くように制御が行われる。これは、上述したように、搬送アームA3及び塗布用のモータA35にエンコーダA36が備えられているので、常に指定した方向に歪みセンサ付きウエハWAが向くようにできるからである。これにより、歪みセンサが歪んだ場合に搬送アームA3及び処理装置のどこで歪みが発生したかを判断することができる。
【0053】
次に、比較を図10のグラフを使用して説明する。実際の比較は制御部80内のデジタルで比較が行われる。E1が歪みデータの電圧軸の許容値で、TDが時間軸の許容値である。E0が歪みセンサの値で、例えばE0の値が歪んで電圧が発生したT1のタイミングの場合はE0がE1に比較して低いので異常とは判断しない。次に、T2のタイミングではE0がE1を越えているがTDの時間より以前にE1を下回るので異常とは判断しない。T3のタイミングではE0が電圧の許容値であるE0と時間の許容値であるTDを越えているので異常と判断する。
【0054】
次に、COT層B3の塗布処理装置30を使用して検査プログラムの動作を説明する。搬送アームA3のフォークA31が歪みセンサ付きウエハWAを塗布処理装置30の搬入口30aから挿入する。挿入が完了したら、昇降ピン34がアップして歪みセンサ付きウエハWAを持ち上げる。このとき、昇降ピンのアップセンサ34sがオンになる。この時点で搬送アームA3の座標軸と昇降ピンアップと歪みセンサのデータが制御部80に記録される。同時に、上述した制御部80下の判別部80Aにおいて歪みセンサの歪み量と予め設定してある歪みの許容値を比較して、許容値内であれば、次のステップへ移る。
【0055】
次にフォークA31が待機位置に戻る。搬送アームA3の赤外線発光部A33aの光が、歪みセンサ付きウエハWAが無いことにより反射しないために、受光部A33bで光が受光せず、受け渡しが完了したことが確認される。図6Aに示すように、昇降ピン34がダウンされウエハWがスピンスピンチャック31上を載置される。同時にスピンチャック31と回転モータ32を貫通している真空引き孔33が真空引きされることにより歪みセンサ付きウエハWAが固定される。歪みセンサ付きウエハWAが固定されたか否かは真空引きセンサ33sによって確認される。
【0056】
検査プログラムの場合、液塗布は行わずに回転モータ32の回転の手順にジャンプするが、通常はシンナーノズル37によるシンナー塗布、レジストノズル36によるレジスト塗布が行われる。レジスト液は回転モータ32の回転によってウエハW上に広げられる。不要なレジスト液は排液口36から廃棄される。又、レジスト液が飛散しないように排気口37から空気を排気している。
【0057】
塗布した液が裏面に回り込み装置内が汚染されるのを防ぐために、環状の液侵入阻止部35が設けられており、この環状の液侵入阻止部35の頂点35aと歪みセンサ付きウエハWAの隙間は数ミリメートルでできる限り狭くする必要がある。しかし、何らかの原因で、図6Bに示すように、液侵入阻止部35が上方にずれた結果、液侵入阻止部35の頂点35aが歪みセンサ付きウエハWAを突き上げることになり、歪みセンサ付きウエハWAの歪みセンサ例えばSE1に歪みが発生する。
【0058】
歪みセンサSE1に歪みが発生すると、上述したように、歪みセンサSE1の抵抗値SE1R1が変化してブリッジ回路センサSE1の電圧検出が変化する。電圧の変化は電圧検出部104によって検出され、これをセンサ回路101がアナログデータをデジタルデータに変換して送信部102を介して、制御部80の制御下にある受信部81にデータが送られる。
【0059】
制御部80では歪み受信部81からの歪みデータが歪みウエハデータ入力部86に入力され、制御部80下の判別部80Aにおいて判別される。すなわち、制御部80に入力された歪みデータと予め記憶されていた正常動作時のデータである歪みウエハ標準データ記憶部88のデータと歪みウエハデータ分析プログラム87が比較する。これにより、予め記憶された正常の搬送及び処理のときの歪みセンサSE1の歪み量に基づいて設定された電圧の許容値E1及び一定時間内の許容値TDと、歪みセンサSE1の歪み量に応じた電圧値E0とを比較して、歪みセンサSE1の歪み量に応じた電圧値E0が許容値E1,TDを越えたか否かを判定する。
【0060】
異常と判断した場合は、制御プログラムが直ちに搬送アームA3及び塗布処理装置30の動作を停止すると共に、表示プログラム91を介して、ディスプレイ部84(表示部)に異常を表示し、歪みセンサの番号、搬送アームA3の座標軸、処理装置の番号、処理手順(具体的には、歪みセンサ付きウエハWAをスピンチャック31に載置する手順)の番号、推測される歪み箇所を表示する。
【0061】
前記説明では、搬送アームA3によって保持された歪みセンサ付きウエハWAを塗布処理装置30に受け渡す場合について説明したが、その他の搬送アームと各処理装置(塗布処理装置、熱処理装置)に歪みセンサ付きウエハWAを受け渡すとき、又は各処理装置が歪みセンサ付きウエハWAを載置するときに、前記と同様に動作が正常か否かを判別することができる。
【0062】
これらの表示により異常がどの装置の、どの表示軸もしくはどの手順で、どの方向で発生したかを容易に把握することができる。また、TDを越えない時間の歪みでもメモリに記憶しておき調整ずれの傾向を表示して位置調整の補助データとして使用する。
【0063】
なお、前記実施形態では、歪みセンサ付きウエハ上の歪みセンサを該ウエハの同心円上の対向する位置に偶数個を配置する場合について説明したが、歪みセンサ付きウエハの重心が該ウエハの中心であれば、歪みセンサは個数が偶数でなくても構わない。例えば歪みセンサ3個を同心円上に60度間隔で配置する方法もある。
【符号の説明】
【0064】
A シャトルアーム
A1〜A4 処理ブロック部搬送アーム
B1〜B4 第1〜第4の処理ブロック層
B 塗布処理装置部
U3 熱処理装置部
S1 キャリアブロック部
S2 処理ブロック部
S3 インターフェースブロック部
S4 露光装置
W 半導体ウエハ(基板)
WA,WB 歪みセンサ付きウエハ(歪み測定用基板)
Wg,Wg1,Wg2 凹溝
SE1〜SE4,SE11〜SE18,SE21〜SE28 歪みセンサ
30 塗布処理装置
70 熱処理装置
80 制御部
80A 判別部
84 ディスプレイ部(表示部)
86 歪みウエハデータ入力部
87 歪みウエハデータ分析プログラム格納部
88 歪みウエハ標準データ記憶部

【特許請求の範囲】
【請求項1】
基板を保持して搬送する水平、鉛直方向の移動及び鉛直軸回りに回転自在な搬送アームと、前記搬送アームとの間で基板を受け渡しすると共に、基板を載置して処理を施す処理装置と、歪み量を測定する歪みセンサを同心円上の等間隔の位置に複数個備える前記基板と同形状の歪み測定用基板と、前記搬送アーム及び処理装置の駆動部を制御すると共に、前記歪みセンサからの検出データを入力し、入力された検出データと予め記憶された正常動作時の歪みデータ標準データとを比較解析する判別部を備える制御部と、を具備し、
前記歪み測定用基板を前記搬送アームから前記処理装置へ受け渡すとき、又は前記処理装置が歪み測定用基板を載置するときに、前記判別部によって歪みセンサからの検出データの値が正常であるか否かを判定し、その判定結果を前記制御部に伝達する、
ことを特徴とする基板搬送装置。
【請求項2】
前記歪みセンサは、前記歪み測定用基板の同心円上の対向する位置に偶数個備えられている、ことを特徴とする請求項1記載の基板搬送装置。
【請求項3】
前記判別部によって歪みセンサからの検出データの値が異常と判定したときに、前記異常状態を表示する表示部を更に具備することを特徴とする請求項1又は2記載の基板搬送装置。
【請求項4】
前記判別部は、予め記憶された正常の搬送及び処理のときの歪みセンサの歪み量に基づいて設定された電圧の許容値及び一定時間内の許容値と、各歪みセンサの歪み量に応じた電圧値とを比較して、少なくとも1個の歪みセンサの歪み量に応じた電圧値が許容値を越えたか否かを判定するように形成されている、ことを特徴とする請求項1ないし3のいずれかに記載の基板搬送装置。
【請求項5】
前記歪み測定用基板を前記搬送アームより前記処理装置へ受け渡すときの位置をティーチングするときに、受け渡すときの歪みセンサの検出データの値と搬送アームの座標位置を記憶する位置データ記憶部を更に備えたことを特徴とする請求項1ないし4のいずれかに記載の基板搬送装置。
【請求項6】
前記歪み測定用基板を処理装置へ受け渡すときの前記搬送アームの座標位置と歪みセンサの検出データの値、及び前記処理装置で基板を載置するときの各手順の最初と最後のときの歪みセンサの検出データの値を記憶する位置データ記憶部を更に備えたことを特徴とする請求項1ないし5のいずれかに記載の基板搬送装置。
【請求項7】
前記歪み測定用基板の同心円上に弾性変形用の凹溝を形成し、前記歪みセンサを前記凹溝を跨いで弾性変形領域に具備したことを特徴とする請求項1ないし6のいずれかに記載の基板搬送装置。
【請求項8】
基板を保持して搬送する水平、鉛直方向の移動及び鉛直軸回りに回転自在な搬送アームから処理装置に基板を受け渡し、前記処理装置において基板を載置して処理を施す基板搬送方法であって、
前記基板と同形状の円板を歪み測定用基板として用意し、
前記歪み測定用基板に、この歪み測定用基板の歪み量を測定する歪みセンサを同心円上の等間隔の位置に複数個備えると共に、前記歪みセンサからの検出データを入力し、入力された検出データと予め記憶された正常動作時の歪みデータ標準データとを比較解析する判別部を備え、
前記歪み測定用基板を前記搬送アームから前記処理装置へ受け渡すとき、又は前記処理装置が歪み測定用基板を載置するときに、前記判別部によって歪みセンサからの検出データの値が正常であるか否かを判定し、その判定結果に基づいて前記搬送アーム、処理装置の駆動部を制御する、
ことを特徴とする基板搬送方法。
【請求項9】
前記判別部によって歪みセンサからの検出データの値が異常と判定したときに、前記搬送アーム及び処理装置の動作を停止すると共に、前記異常状態を表示部により表示することを特徴とする請求項8記載の基板搬送方法。
【請求項10】
予め記憶された正常の搬送及び処理のときの歪みセンサの歪み量に基づいて設定された電圧の許容値及び一定時間内の許容値と、各歪みセンサの歪み量に応じた電圧値とを比較して、少なくとも1個の歪みセンサの歪み量に応じた電圧値が許容値を越えたか否かを判定する、ことを特徴とする請求項8又は9記載の基板搬送方法。
【請求項11】
前記歪み測定用基板を搬送アームより前記処理装置へ受け渡すときの位置をティーチングするときに、受け渡すときの歪みセンサの検出データの値と搬送アームの座標位置を記憶する、ことを特徴とする請求項8ないし10のいずれかに記載の基板搬送方法。
【請求項12】
前記歪み測定用基板を処理装置へ受け渡すときの前記搬送アームの座標位置と歪みセンサの検出データの値、及び前記処理装置で基板を載置するときの各手順の最初と最後のときの歪みセンサの検出データの値を記憶する、ことを特徴とする請求項8ないし11のいずれかに記載の基板搬送方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6A】
image rotate

【図6B】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2012−4490(P2012−4490A)
【公開日】平成24年1月5日(2012.1.5)
【国際特許分類】
【出願番号】特願2010−140663(P2010−140663)
【出願日】平成22年6月21日(2010.6.21)
【出願人】(000219967)東京エレクトロン株式会社 (5,184)
【Fターム(参考)】