説明

微細構造の形成方法、レーザー照射装置、及び基板

【課題】基板における配置に左右されず、ほぼ一定のエッチング速度で微細孔及び微細溝等の微細構造を形成することができる微細構造の形成方法、該形成方法に使用されるレーザー照射装置、及び該形成方法を用いて製造された基板の提供。
【解決手段】基板1において孔状をなす微細構造を設ける領域に、パルス時間幅がピコ秒オーダー以下のパルス幅を有するレーザー光51を照射し、該レーザー光51が集光した焦点56を走査して改質部53を形成する工程Aと、改質部53が形成された基板1に対してエッチング処理を行い、該改質部53を除去して微細構造を形成する工程Bと、を含む微細構造の形成方法であって、前記工程Aにおいて、レーザー光51として直線偏光レーザー光を用い、該直線偏光の向きPを、焦点56を走査する方向に対して一定の方向に維持しつつレーザー照射することを特徴とする微細構造の形成方法。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、レーザー光を用いて基板に微細構造を形成する方法、該方法で使用されるレーザー照射装置、及び該方法を用いて製造された基板、並びに微細孔を有する基板に関する。より詳しくは、本発明は、レーザー光を用いて基板に微細孔を形成する方法、該方法で使用されるレーザー照射装置、及び該方法を用いて製造された基板、並びに微細孔を有する基板に関する。
【背景技術】
【0002】
従来、基板の一方の主面および他方の主面に実装された複数のデバイス間を電気的に接続する方法として、基板の両主面を貫通する微細孔や基板表面近傍に微細溝等の微細構造を形成し、さらに該微細孔や該微細溝に導電性物質を充填した配線を設ける方法が用いられている。例えば、特許文献1には、基板の厚み方向とは異なる方向に延びる部分を有する微細孔に導電性物質を充填してなる貫通配線を備えた貫通配線基板が記載されている。
【0003】
このような配線基板における微細孔及び微細溝等の微細構造を形成する方法としては、レーザーを用いてガラス等の基板の一部を改質した後、改質した部分をエッチングにより除去する方法が挙げられる。具体的には、まず光源としてフェムト秒レーザーを用い、該レーザーを基板に照射して基板内部の改質すべき箇所にレーザー焦点を結び、該焦点を移動させて改質すべき領域を走査することによって、基板内部に所定形状の改質部を形成する。次いで、改質部が形成された基板を所定の薬液に浸漬するウェットエッチング法により、該改質部が基板内から除去されて微細孔及び微細溝等の微細構造が形成される。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2006−303360号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
従来方法では、ウェットエッチング法で改質部を基板から除去する際、改質部の形状が同程度の複雑さであっても、基板における配置が相違する個々の微細孔において、エッチングの容易さ(エッチング速度)が異なるという問題があった。例えば、図24に示す基板101では、第一の改質部102は容易にエッチングされるが、第二の改質部103はエッチングされ難く、エッチング時間が長くなってしまうことがあった。このため、改質部103のエッチングが完了するまでに、レーザーが照射されていない非改質部のエッチングが過度に進行してしまうという問題があった。
【0006】
本発明は上記事情に鑑みてなされたものであり、基板における配置に左右されず、ほぼ一定のエッチング速度で微細孔等の微細構造を形成することができる微細構造の形成方法、該形成方法に使用されるレーザー照射装置、及び該形成方法を用いて製造された基板、並びに微細孔を有する基板を提供することを課題とする。
【課題を解決するための手段】
【0007】
本発明の請求項1に記載の微細構造の形成方法は、基板において孔状をなす微細構造を設ける領域に、パルス時間幅がピコ秒オーダー以下のパルス幅を有するレーザー光を照射し、該レーザー光が集光した焦点を走査して改質部を形成する工程Aと、前記改質部が形成された前記基板に対してエッチング処理を行い、該改質部を除去して微細構造を形成する工程Bと、を含む微細構造の形成方法であって、前記工程Aにおいて、前記レーザー光として直線偏光レーザー光を用い、該直線偏光の向きを、前記焦点を走査する方向に対して一定の方向に維持しつつレーザー光照射することを特徴とする。
本発明の請求項2に記載の微細構造の形成方法は、請求項1において、前記一定の方向を垂直とすることを特徴とする。
本発明の請求項3に記載のレーザー照射装置は、基板において孔状をなす微細構造を設ける領域に、パルス時間幅がピコ秒オーダー以下のパルス幅を有する直線偏光レーザー光を照射し、該レーザー光を集光した焦点を走査して改質部を形成する際、該直線偏光の向きを、前記焦点を走査する方向に対して一定の方向に維持しつつレーザー照射する手段を備えたことを特徴とする。
本発明の請求項4に記載のレーザー照射装置は、請求項3において、前記手段は移相子であり、該移相子は、前記焦点の走査方向の変更に応じて、該変更後の走査方向に対する前記レーザー光の直線偏光の向きを、一定の方向に合わせるように機能することを特徴とする。
本発明の請求項5に記載のレーザー照射装置は、請求項3又は4において、前記手段は基板ステージであり、該基板ステージは、前記焦点の走査方向の変更に応じて、該変更後の走査方向に対する前記レーザー光の直線偏光の向きを、一定の方向に合わせるように機能することを特徴とする。
本発明の請求項6に記載の基板は、請求項1又は2に記載の微細構造の形成方法を用いて製造された基板であって、前記微細構造の内壁面に縞状の凹凸プロファイルが形成された部位を含むことを特徴とする。
本発明の請求項7に記載の基板は、請求項6において、前記基板が、その内部に流体が流通するための流路を有していることを特徴とする。
本発明の請求項8に記載の基板は、微細孔を有する基板であって、該微細孔の内壁面の少なくとも一部には、該微細孔の延伸方向に沿った縞状の凹凸プロファイルが形成されていることを特徴とする。
【発明の効果】
【0008】
本発明の微細構造の形成方法によれば、レーザー光の直線偏光の向きをレーザー光の焦点の走査方向に対して一定の方向に維持しつつレーザー照射することにより、微細構造となる改質部におけるエッチングされやすいエリアとエッチングされにくいエリアとを前記走査方向に対して交互に一定の方向で形成することができる。つまり、前記改質部は、基板において形成された位置に依存せず、何処に形成されても同じ状態でエッチングされやすいエリアとエッチングされにくいエリアとが形成される。すなわち、エッチングされやすさが同程度になっている。このため、前記改質部の基板における配置や形状に左右されず、ほぼ一定のエッチング速度で微細構造を形成することができるので、微細孔等の微細構造の大きさを精度良く制御することができる。
【0009】
前記直線偏光の向きを、前記レーザー光の焦点を走査する方向に対して垂直に維持しつつレーザー光照射した場合には、微細構造となる改質部におけるエッチングされやすいエリアとエッチングされにくいエリアとを前記走査方向に対して平行に並走させて形成することができる。このため、前記改質部の基板における配置や形状に左右されず、ほぼ一定のエッチング速度、且つ最も速いエッチング速度で微細構造を形成することができるので、微細孔等の微細構造の大きさを精度良く制御しつつ、加工時間を短縮することができる。各微細構造となる改質部のエッチング時間は、当該微細構造となる改質部の長さに依存するため、微細構造の設計段階でエッチング時間を算出することができ、生産管理が容易になる。また、エッチング速度が速く、短時間でエッチングが済むため、非改質部が過度にエッチングされず、高いアスペクト比のビアを作製することができる。
【0010】
また、本発明のレーザ照射装置によれば、レーザー光の有する直線偏光の向きをレーザー光の焦点の走査方向に対して一定の方向に維持する手段を有するため、当該基板に所望の形状で形成された改質部において、エッチングされ易いエリアとエッチングされにくいエリアを前記走査方向に対して交互に一定の方向で形成することができる。この結果、別途行われるウェットエッチング工程において、前記基板における改質部の配置や形状に左右されずに、ほぼ一定のエッチング速度で該改質部を前記基板から除去することができるので、形成される微細孔等の微細構造の大きさを精度良く制御することができる。
【0011】
また、本発明の微細構造の形成方法を用いて製造された基板によれば、該基板内に精度の良い形状で形成された微細構造を有する基板を提供することができる。さらに、該基板に形成した微細孔等の微細構造の壁面に縞状の凹凸プロファイル(筋痕)が形成された部位を設けられる。
前記微細孔等の微細構造には流体を流入させることができる。特に、レーザー光の直線偏向の向きを、レーザー光の焦点を走査する方向に対して垂直に維持しつつ前記微細構造を形成した場合、該流体が微細構造の壁面の凹凸プロファイルに沿って流れやすくなるため、該流体の流入をスムーズにする効果がある。
【0012】
この微細構造を貫通配線として用いる場合、該微細構造に導電性物質を充填または成膜することによって、高精度の形状を有する配線を備えた配線基板を提供することができる。また、微細構造に導電性物質を充填または成膜した際に、該縞状の凹凸プロファイルが存在することによって、微細構造内に流入した導電性物質と基板との密着性が向上するため、導電性物質と基板とが安定して一体化した配線基板を提供することができる。
さらに、レーザー光の直線偏向の向きを、レーザー光の焦点を走査する方向に対して垂直に維持しつつ前記微細構造を形成した場合、該微細構造に導電性物質を充填または成膜する際に、該縞状の凹凸プロファイルを伝って導電性物質が微細構造内に流入するため、該導電性物質を充填または成膜することが容易となる。前記凹凸プロファイルに沿ってスムーズに導電性物質を流入させることができるので、微細構造内に導電性物質をムラ無く充填または成膜することができる。
【0013】
また、前記微細構造を流体を流通するための流路として用いる場合、該流路に沿って前記縞状の凹凸プロファイルが設けられていると、該流路内を流れる流体が該縞状の凹凸プロファイルに沿って流れやすくなるため、該流体が該流路をスムーズに流通できる。
前記基板が流路に用いられる微細孔を有する場合には、該微細孔(流路)に目的に応じて様々な流体を流通することができる。例えば、前記基板を配線基板として用いる場合、該微細孔(流路)に空気や水等の冷媒を流通するとき、この冷却機能によって、該配線基板に発熱量の大きいデバイスを実装した場合であっても、温度上昇を効果的に低減することが可能になる。その他、前記基板を、マイクロフルイディクス技術を利用したバイオ実験システムを集積化した基板として用いる場合、前記微細孔(流路)には、DNA(核酸)、タンパク質、脂質等の生体高分子溶液を流通させる流路に適用することもできる。
【0014】
また、本発明の微細孔を有する基板によれば、該基板が前記微細孔(貫通孔)を有し、該微細孔の内壁面の少なくとも一部には、該微細孔の延伸方向に沿った縞状の凹凸プロファイルが形成されているので、前記微細構造の形成方法を用いて製造された基板と同様の効果が得られる。
【0015】
前記効果とは、すなわち、該基板を用いて、該微細孔に導電性物質を充填または成膜した貫通配線基板を製造する場合、該微細孔内に流入した導電性物質と基板との密着性が向上するため、導電性物質と基板とが安定して一体化した配線基板とすることができる。このとき、該微細孔に導電性物質を充填または成膜する際に、該縞状の凹凸プロファイルを伝って導電性物質が微細孔内にスムーズに流入するため、該導電性物質を充填または成膜することが容易となり、微細孔内に導電性物質をムラ無く充填または成膜することができる。また、前記微細孔を流体を流通するための流路として用いる場合、該流路内を流れる流体が該流路に沿った縞状の凹凸プロファイルを伝わって流れやすくなるため、該流体が該流路をスムーズに流通できる。
【0016】
前記微細孔を有する基板における微細孔は、目的に応じて様々な流体を流通することができる。例えば、前記基板を配線基板として用いる場合、該微細孔(流路)に空気や水等の冷媒を流通するとき、この冷却機能によって、該配線基板に発熱量の大きいデバイスを実装した場合であっても、温度上昇を効果的に低減することが可能になる。その他、前記基板を、マイクロフルイディクス技術を利用したバイオ実験システムを集積化した基板として用いる場合、前記微細孔(流路)には、DNA(核酸)、タンパク質、脂質等の生体高分子溶液を流通させる流路に適用することもできる。
【図面の簡単な説明】
【0017】
【図1】本発明にかかる配線基板の一例を示す図であり、(A)は平面図、(B)は平面図(A)のx1−x1線に沿った断面図、(C)は平面図(A)のy−y線に沿った断面図、(D)は平面図(A)のx2−x2線に沿った断面図である。
【図2】本発明にかかる配線基板の他の一例を示す図であり、(A)は平面図、(B)は平面図(A)のx1−x1線に沿った断面図、(C)は平面図(A)のy1−y1線に沿った断面図、(D)は平面図(A)のx2−x2線に沿った断面図、(E)は平面図(A)のy2−y2線に沿った断面図である。
【図3】本発明にかかる微細構造の形成方法の一例における基板を示す図であり、(A)は平面図、(B)は平面図(A)のx1−x1線に沿った断面図、(C)は平面図(A)のy−y線に沿った断面図、(D)は平面図(A)のx2−x2線に沿った断面図であるである。
【図4】本発明にかかる微細構造の形成方法の一例における基板を示す図であり、(A)は平面図、(B)は平面図(A)のx1−x1線に沿った断面図、(C)は平面図(A)のy−y線に沿った断面図、(D)は断面図(B)の領域βの拡大図、(E)は断面図(B)の領域γの拡大図である。
【図5】本発明にかかる微細構造の形成方法の一例における基板を示す図であり、(A)は図4の平面図(A)のx2−x2線に沿った断面図、(B)は断面図(A)の拡大図である。
【図6】本発明にかかる微細構造の形成方法の一例における基板を示す図であり、(A)は平面図、(B)は平面図(A)のx1−x1線に沿った断面図、(C)は平面図(A)のy−y線に沿った断面図、(D)は平面図(A)のx2−x2線に沿った断面図であるである。
【図7】本発明にかかる微細構造の形成方法の一例により製造された基板を示す図であり、(A)は平面図、(B)は平面図(A)のx1−x1線に沿った断面図、(C)は平面図(A)のy−y線に沿った断面図、(D)は平面図(A)のx2−x2線に沿った断面図である。
【図8】本発明にかかる微細構造の形成方法の他の一例における基板を示す図であり、(A)は平面図、(B)は平面図(A)のx1−x1線に沿った断面図、(C)は平面図(A)のy1−y1線に沿った断面図、(D)は平面図(A)のx2−x2線に沿った断面図、(E)は平面図(A)のy2−y2線に沿った断面図である。
【図9】本発明にかかる微細構造の形成方法の他の一例における基板を示す図であり、(A)は平面図、(B)は平面図(A)のx1−x1線に沿った断面図、(C)は平面図(A)のy1−y1線に沿った断面図、(D)は断面図(B)の領域ζの拡大図、(E)は断面図(B)の領域ηの拡大図である。
【図10】本発明にかかる微細構造の形成方法の他の一例における基板を示す図であり、(A)は図9(A)の平面図におけるx2−x2線に沿った断面図であり、(B)は断面図(A)の拡大図であり、(C)は図9(A)の平面図におけるy2−y2線に沿った断面図であり、(D)は断面図(C)の拡大図である。
【図11】本発明にかかる微細構造の形成方法の他の一例における基板を示す図であり、(A)は平面図、(B)は平面図(A)のx−x線に沿った断面図、(C)は平面図(A)のy−y線に沿った断面図である。
【図12】本発明にかかる微細構造の形成方法の他の一例により製造された基板を示す図であり、(A)は平面図、(B)は平面図(A)のx−x線に沿った断面図、(C)は平面図(A)のy−y線に沿った断面図である。
【図13】本発明にかかるレーザー照射装置の一例の概略構成図である。
【図14】本発明にかかるレーザー照射装置を用いた配線基板の製造方法の一例を示すフローチャート図である。
【図15】(A)は基板の平面図、(B)は平面図(A)のx−x線に沿った断面図、(C)は平面図(A)のy1−y1線に沿った断面図、(D)は平面図(A)のy2−y2線に沿った断面図である。
【図16】(A)は基板の平面図、(B)は平面図(A)のx−x線に沿った断面図、(C)は平面図(A)のy1−y1線に沿った断面図、(D)は平面図(A)のy2−y2線に沿った断面図である。
【図17】(A)は図16の断面図(C)における領域F1の拡大図であり、(D)は図16の断面図(D)における領域F2の拡大図である。
【図18】微細構造の形成方法を説明する基板の平面図である。
【図19】(A)は基板の平面図、(B)は平面図(A)のy1−y1線に沿った断面図、(C)は平面図(A)のy2−y2線に沿った断面図である。
【図20】(A)は基板の平面図、(B)及び(C)は拡大図である。
【図21】(A)及び(B)は、図20の平面図(A)におけるy1−y1線及びy2−y2線に沿う断面図であり、(C)及び(D)は拡大図である。
【図22】(A)は基板の平面図、(B)は平面図(A)のy1−y1線に沿った断面図、(C)は平面図(A)のy2−y2線に沿った断面図である。
【図23】(A)は、図22の平面図(A)のx−x線に沿った断面を示す斜視図であり、(B)は、図21の平面図(A)のx−x線に沿った断面図である。
【図24】微細構造である微細孔が形成された基板の一例である。
【発明を実施するための形態】
【0018】
以下、好適な実施の形態に基づき、図面を参照して本発明を説明する。
なお、以下では基板に微細構造を形成し、該微細構造を貫通配線又は流路として用いる場合を例に挙げて説明しているが、本発明における基板に形成された微細構造の用途はこれに限定されるものではない。
<第一実施形態:貫通配線基板10>
図1は、本発明にかかる配線基板の第一実施形態である貫通配線基板10の平面図(A)、及び断面図(B)〜(D)である。断面図(B)は平面図(A)のx1−x1線に沿った断面を示し、断面図(C)は平面図(A)のy−y線に沿った断面を示し、断面図(D)は平面図(A)のx2−x2線に沿った断面図を示す。
この貫通配線基板10は、基板1を構成する一方の主面2と他方の主面3とを結ぶように第一の微細孔4及び第二の微細孔5を配し、各微細孔中に導電性物質6を充填または成膜してなる第一の貫通配線7及び第二の貫通配線8を備えている。
【0019】
第一の貫通配線7は、一方の主面2に露呈する開口部9から屈曲部11まで基板1の厚み方向に延伸する領域αと、屈曲部11から屈曲部12まで基板1の主面と平行に、且つ基板1の横方向(X方向)に延伸する領域βと、屈曲部12から他方の主面3に露呈する開口部13まで基板1の厚み方向に延伸する領域γとからなる。
【0020】
第一の貫通配線7の領域α、領域β、及び領域γには、第一の微細孔4の領域α、領域β、及び領域γが対応する。
第一の微細孔4の領域α〜γには、その微細孔の内壁面に縞状の凹凸プロファイル(筋痕)が形成された部分が含まれる(不図示)。該縞状の凹凸プロファイルは、第一の微細孔4の延伸方向に対してほぼ平行に筋状(線状)に形成された凹凸である。第一の微細孔4に該縞状の凹凸プロファイルが形成されていると、微細孔内に充填または成膜した導電性物質と基板との密着性が向上するとともに、導電性物質6を充填または成膜して第一の貫通配線7を形成する際に、導電性物質6が第一の微細孔4中にスムーズに流入し易くなるので好ましい。
【0021】
第二の貫通配線8は、一方の主面2に露呈する開口部14から屈曲部15まで基板1の厚み方向に延伸する領域αと、屈曲部15から屈曲部16まで基板1の主面と平行に、且つ基板1の縦方向(Y方向)に延伸する領域βと、屈曲部16から他方の主面3に露呈する開口部17まで基板1の厚み方向に延伸する領域γとからなる。
【0022】
第二の貫通配線8の領域α、領域β、及び領域γには、第二の微細孔5の領域α、領域β、及び領域γが対応する。
第二の微細孔5の領域α〜γには、その微細孔の内壁面に縞状の凹凸プロファイル(筋痕)が形成された部分が含まれる(不図示)。該縞状の凹凸プロファイルは、第二の微細孔5の延伸方向に対してほぼ平行に筋状(線状)に形成された凹凸である。第二の微細孔5の延伸方向に沿って該縞状の凹凸プロファイルが形成されていると、微細孔内に充填または成膜した導電性物質と基板との密着性が向上するとともに、導電性物質6を充填または成膜して第二の貫通配線8を形成する際に、導電性物質6が第二の微細孔5中にスムーズに流入し易くなるので好ましい。
【0023】
本発明にかかる配線基板は、その内部に、微細構造(微細孔)からなる流体を流通するための流路を有することが好ましい。該流路を流通する流体としては、例えば水(HO)、空気等が挙げられる。これらの流体は基板を冷却する冷媒として機能しうる。その他、DNA(核酸)、タンパク質、脂質等の生体高分子溶液などを流通させる流路に適用することもできる。
流路を設けることによって、配線基板に接続されたデバイスの電極が高密度に配置されたものであっても、該配線基板周辺の温度上昇を効果的に低減することが可能になる。該温度上昇の低減の効果をさらに高めるために、該流路は、基板の両主面に沿う方向に配されることが好ましい。
さらに、該流路を構成する微細孔(微細構造)の内壁面の少なくとも一部分には、縞状の凹凸プロファイルが形成されているので、流路の延伸方向に沿って該縞状の凹凸プロファイルが形成されている場合には、流路内を流れる流体が該縞状の凹凸プロファイルに沿って流れやすくなり、該流体が該流路をスムーズに流通できる。
【0024】
本発明にかかる貫通配線基板10においては、第三の微細孔g1からなる流路G1が、基板1の両主面に沿うように、基板1の横方向(X方向)に延伸して設けられている(図1)。第三の微細孔g1は、基板1の対向する二つの側面に、流体が出入りするための開口部を有する。
【0025】
<第二実施形態:表面配線基板30>
図2は、本発明にかかる配線基板の第二実施形態である表面配線基板30の平面図(A)、及び断面図(B)〜(E)である。断面図(B)は平面図(A)のx1−x1に沿った断面を示し、断面図(C)は平面図(A)のy1−y1線に沿った断面を示し、断面図(D)は平面図(A)のx2−x2線に沿った断面を示し、断面図(E)は平面図(A)のy2−y2線に沿った断面を示す。
この表面配線基板30は、基板31を構成する一方の主面32の表面に形成された第一の微細溝34を配し、その微細溝34に導電性物質36を充填または成膜してなる第一の表面配線37を備え、且つ、第一の微細孔g2からなる第一流路G2及び第二の微細孔g3からなる第二流路G3が設けられている。
【0026】
第一の表面配線37は、一端部38から屈曲部39まで基板31の横方向(X方向)に延伸する領域ζと、屈曲部39から他端部40まで基板31の縦方向(Y方向)に延伸する領域ηとからなる。
第一の表面配線37の領域ζ及び領域η、並びに一端部38、屈曲部39、及び他端部40には、第一の微細溝34の領域ζ及び領域η、並びに一端部38及び他端部40が対応する。
【0027】
第一の微細溝34の領域ζ及び領域ηには、その微細溝の内壁面(底面)に縞状の凹凸プロファイル(筋痕)が形成された部分が含まれる(不図示)。該縞状の凹凸プロファイルは、第一の微細溝34の延伸方向に対してほぼ平行に筋状(線状)に形成された凹凸である。
【0028】
本発明にかかる表面配線基板30においては、第一の微細孔g2からなる第一流路G2が、基板1の両主面に沿うように、基板1の横方向(X方向)に延伸して設けられている(図2)。第一の微細孔g2は、基板1の対向する二つの側面に、流体が出入りするための開口部を有する。
【0029】
本発明にかかる表面配線基板30においては、第二の微細孔g3からなる第二流路G3が、基板1の両主面に沿うように、基板1の縦方向(Y方向)に延伸して設けられている(図2)。第二の微細孔g3は、基板1の対向する二つの側面に、流体が出入りするための開口部を有する。
【0030】
貫通配線基板10及び表面配線基板30における基板1,31の材料としては、例えばガラス、サファイア等の絶縁体や、シリコン(Si)等の半導体が挙げられる。これらの材料であれば、半導体デバイスとの線膨張係数差が小さいため、貫通配線基板10及び表面配線基板30と半導体デバイスとを、半田等を用いて接続する際に、位置ズレが生じず、精度の高い接続が可能となる。さらに、これらの材料のなかでも、絶縁性のガラスが好ましい。基板材料がガラスであると、微細孔及び微細溝の内壁面に絶縁層を形成する必要がなく、浮遊容量成分の存在等による高速伝送の阻害要因がない等の利点がある。
【0031】
基板1,31の厚さ(一方の主面2,32から他方の主面3,33までの距離)は適宜設定することができ、例えば約150μm〜1mmの範囲が挙げられる。
貫通配線基板10及び表面配線基板30に配された各微細孔7,8及び第一の微細溝37に充填または成膜する導電性物質6,36としては、例えば金錫(Au−Sn)、銅(Cu)等が挙げられる。
【0032】
本発明にかかる配線基板に備えられる微細構造の形状、並びに貫通配線、表面配線、及び流路のパターンや断面形状は、以上の例示に限定されるものではなく、適宜設計することが可能である。
【0033】
<貫通配線基板10を製造する方法>
次に、本発明の配線基板における微細孔の形成方法の一例として、貫通配線基板10を製造する方法を、図3〜7に示す。
ここで、図3〜7は、貫通配線基板10を製造する基板1の平面図および断面図である。図3中、(A)は基板1の平面図であり、(B)、(C)、及び(D)はそれぞれ該平面図のx1−x1線、y−y線、及びx2−x2線に沿う基板1の断面図である。
【0034】
[工程A]
まず、図3に示すように、基板1に第一のレーザー光51、第二のレーザー光52、及び第三のレーザー光61を照射して、基板1内に基板1の材料が改質されてなる第一の改質部53、第二の改質部54、及び第三の改質部62を形成する。各改質部は、第一の貫通配線7、第二の貫通配線8、及び流路G1が設けられる領域にそれぞれ形成される。
【0035】
基板1の材料としては、例えばガラス、サファイア等の絶縁体や、シリコン(Si)等の半導体が挙げられる。これらの材料であれば、半導体デバイスとの線膨張係数差が小さいため、貫通配線基板10と半導体デバイスとを、半田等を用いて接続する際に、位置ズレが生じず、精度の高い接続が可能となる。さらに、これらの材料のなかでも、絶縁性のガラスが好ましい。基板材料がガラスであると、微細孔の内壁面に絶縁層を形成する必要がなく、浮遊容量成分の存在等による高速伝送の阻害要因がない、等の利点がある。
基板1の厚さは適宜設定することができ、例えば約150μm〜1mmの範囲に設定すればよい。
【0036】
第一のレーザー光51、第二のレーザー光52、及び第三のレーザー光61は、基板1の一方の主面2側から照射され、基板1内の所望の位置で第一の焦点56、第二の焦点57、及び第三の焦点63を結ぶ。各焦点56,57,63を結んだ位置で、基板1の材料が改質される。
したがって、第一のレーザー光51、第二のレーザー光52、及び第三のレーザー光61を照射しながら、第一の焦点56、第二の焦点57、及び第三の焦点63の位置を順次ずらして走査(移動)して、第一の微細孔4、第二の微細孔5、及び第三の微細孔g1が設けられる領域の全部に対して、各焦点56,57,63を結ぶことによって、第一の改質部53、第二の改質部54、及び第三の改質部62を形成することができる。
【0037】
各レーザー光51,52,61は、基板1の一方の主面2及び/又は他方の主面3側から照射してもよいし、基板1の側面から照射してもよい。各レーザー光51,52の光軸が基板1に入射する角度は所定の角度に設定される。各レーザー光51,52,61は単一のレーザー光を用いて順に照射してもよいし、複数のレーザー光を用いて同時に照射してもよい。
【0038】
また、各レーザー光51,52を走査する方向としては、例えば図3に示した各改質部53,54に沿った実線の矢印のように、一筆書きの方向が挙げられる。すなわち、前記矢印は、基板1の他方の主面3の開口部13,17となる部位から、一方の主面2の開口部9,14となる部位まで、該焦点56,57を走査することを表す。このとき、前記矢印の向きで一筆書きの走査を行うことが、製造効率上好ましい。
【0039】
第三のレーザー光61を走査する方向としては、例えば図3に示した第三の改質部62に沿った実線の矢印のように、一筆書きの方向が挙げられる。すなわち、前記矢印は、基板1の対向する二つの側面のうち、一方の側面の開口部となる部位から、他方の側面の開口部となる部位まで、第三の焦点63を走査することを表す。このとき、前記矢印の向きで一筆書きの走査を行うことが、製造効率上好ましい。
【0040】
第一のレーザー光51は、直線偏光されたレーザー光である。該直線偏光の向きPは、レーザー光照射中常に、第一のレーザー光51の焦点56の走査方向に対して垂直に維持される。
すなわち、第一のレーザー光51の直線偏光の向きPは、第一の改質部53が延伸する方向(X方向又は基板厚み方向)に対して常に垂直である。図3(A)では第一のレーザー光51の直線偏光の向きPを実線の両方矢印で示し、図3(B)では該直線偏光の向きPを、紙面奥行き及び手前方向を表す丸印で示している。
【0041】
第二のレーザー光52は、直線偏光されたレーザー光である。該直線偏光の向きQは、レーザー光照射中常に、第二のレーザー光52の焦点57の走査方向に対して垂直に維持される。
すなわち、第二のレーザー光52の直線偏光の向きQは、第二の改質部54が延伸する方向(Y方向又は基板厚み方向)に対して常に垂直である。図3(A)では第二のレーザー光52の直線偏光の向きQを実線の両方矢印で示し、図3(C)では該直線偏光の向きQを、紙面奥行き及び手前方向を表す丸印で示している。
【0042】
第三のレーザー光61は、直線偏光されたレーザー光である。該直線偏光の向きTは、レーザー光照射中常に、第三のレーザー光61の焦点63の走査方向に対して垂直に維持される。
すなわち、第三のレーザー光61の直線偏光の向きTは、第三の改質部62が延伸する方向(X方向)に対して常に垂直である。図3(A)では第三のレーザー光61の直線偏光の向きTを実線の両方矢印で示し、図3(D)では該直線偏光の向きTを、紙面奥行き及び手前方向を表す丸印で示している。
【0043】
このように第一のレーザー光51、及び第二のレーザー光52の直線偏光の向きP,Qを制御することによって、形成される第一の改質部53、及び第二の改質部54において、エッチングされやすい(エッチング速度が速い)エリア53s,54sと、エッチングされにくい(エッチング速度が遅い)エリア53h,54hとが、第一の改質部53、及び第二の改質部54のそれぞれの延伸方向に対して平行に、交互に並走して形成される(図4)。
なお、図4で示す各エリアの本数は特定の本数に限定されるものではない。該本数は使用するレーザー光の使用条件や直線偏光の程度を制御することによって変更されうる。
【0044】
図4(B)に示すように、第一の改質部53において、エッチング速度が速いエリア53sとエッチング速度が遅いエリア53hとが、第一の改質部53の領域αでは基板1の厚み方向に延伸し、第一の改質部53の領域βでは基板1の横方向(X方向)に延伸し、第一の改質部53の領域γでは基板1の厚み方向に延伸している。
【0045】
前記領域βを基板1の一方の主面2側から矢印V1の方向で見ると、第一の改質部53の延伸方向と平行に、エッチング速度の速いエリア53sとエッチング速度の遅いエリア53hとが並走している(図4(D))。図では、2本のエッチング速度の遅いエリア53hが、3本のエッチング速度の速いエリア53sに挟まれて互い違いに並走している。
【0046】
前記領域γを基板1の側面側から矢印V2の方向で見ると、第一の改質部53の延伸方向と平行に、エッチング速度の速いエリア53sとエッチング速度の遅いエリア53hとが並走している(図4(E))。図では、2本のエッチング速度の遅いエリア53hが、3本のエッチング速度の速いエリア53sに挟まれて互い違いに並走している。
【0047】
また、第二の改質部54においても、前述の第一の改質部53と同様に、エッチング速度の速いエリアとエッチング速度が遅いエリアとが、第二の改質部54の領域αでは基板1の厚み方向に延伸し、第二の改質部54の領域βでは基板1の縦方向(Y方向)に延伸し、第二の改質部54の領域γでは基板1の厚み方向に延伸している(図4(C))。
【0048】
また、第三のレーザー光61の直線偏光の向きTを制御することによって、形成される第三の改質部62において、エッチングされやすい(エッチング速度が速い)エリア62sと、エッチングされにくい(エッチング速度が遅い)エリア62hとが、第三の改質部62の延伸方向(X方向)に対して平行に、交互に並走して形成される(図5)。
ここで、図5で示す各エリアの本数は特定の本数に限定されるものではない。該本数は使用するレーザー光の使用条件や直線偏光の程度を制御することによって変更されうる。
なお、図5(A)は、図4(A)の平面図におけるx2−x2線に沿った断面図であり、図5(B)は基板1の一方の主面2側から矢印V3の方向で見た図である。
【0049】
このように、照射レーザーの直線偏光の向きP,Q,Tを、各改質部53,54,62の延伸方向に対して垂直に維持しつつレーザー走査することによって、形成された各改質部53,54,62の全領域において、その延伸方向に対して平行に並走するエッチング速度の異なるエリアが互い違いに形成される。
その結果、後段のエッチング工程(工程B)において、各改質部53,54,62の全領域のエッチング速度を一定にすることができ、形成される各微細孔4,5の径(太さ)をばらつきなく制御することができる。本実施例では、各改質部53,54,62の太さは4μmとなるように制御した。
【0050】
なお、前述の照射レーザー光の直線偏光の向きP,Q,Tを変更して、各改質部53,54,62の延伸方向に対して平行に維持しつつ各レーザー光51,52,61の各焦点56,57,63を走査してもよい。この場合、形成された各改質部53,54,62の全領域において、その延伸方向に対して垂直に、エッチング速度の速いエリアとエッチング速度の遅いエリアとが互い違いに形成される。この場合においても、後段のエッチング工程(工程B)において、各改質部53,54,62の全領域のエッチング速度を一定にすることができる。
【0051】
さらに、前述の照射レーザー光の直線偏光の向きP,Q,Tを、各改質部53,54,62の延伸方向に対して、垂直又は平行に限らない任意の方向で、常に一定に維持しつつ各レーザー光51,52,61の各焦点56,57,63を走査してもよい。この場合、形成された各改質部53,54,62の全領域において、その直線偏光P,Q,Tの向きと垂直な方向で、エッチング速度の速いエリアとエッチング速度の遅いエリアとが互い違いに形成される。この場合においても、後段のエッチング工程(工程B)において、各改質部53,54,62の全領域のエッチング速度を一定にすることができる。
【0052】
前述の照射レーザー光の直線偏光の向きP,Q,Tの、各改質部53,54,62の延伸方向に対する方向は、後段のエッチング工程(工程B)におけるエッチング速度に影響する。改質部の単位長さ当たりのエッチング速度を高める観点から、照射レーザー光の直線偏光の向きP,Q,Tは、各改質部53,54,62の延伸方向に対して垂直に維持しつつレーザー照射することが好ましい。該直線偏光の向きP,Q,Tを、前記延伸方向に対して垂直に維持して形成された改質部の単位長さ当たりのエッチング速度は、該直線偏光の向きP,Q,Tを、前記延伸方向に対して平行に維持して形成された改質部の単位長さ当たりのエッチング速度よりも、約2倍速い。
【0053】
照射するレーザー光51,52,61の光源としては、例えばフェムト秒レーザーを挙げることができる。レーザー光51,52,61の直線偏光を前述のように制御しつつ照射することによって、例えば径が数μm〜数十μmとした改質部53,54,62を形成できる。また、基板1内部におけるレーザー光51,52,61の焦点56,57,63を結ぶ位置を制御することにより、所望の形状を有する改質部53,54,62を形成できる。
【0054】
[工程B]
図6に示すように、第一の改質部53、第二の改質部54及び第三の改質部62を形成した基板1をエッチング液(薬液)59に浸漬して、ウェットエッチングすることによって、各改質部53,54、62を基板1から除去する。その結果、第一の改質部53、第二の改質部54、第三の改質部62が存在した領域に、第一の微細孔4、第二の微細孔5、及び第三の微細孔g1が形成される(図7)。本実施形態では基板1の材料としてガラスを用い、エッチング液59としてフッ酸(HF)の10質量%溶液を主成分とする溶液を用いた。
【0055】
このエッチングは、基板1の改質されていない部分に比べて、第一の改質部53、第二の改質部54、第三の改質部62が非常に速くエッチングされる現象を利用するものであり、結果として各改質部53,54,62の形状に応じた各微細孔4,5,g1を形成することができる。
また、エッチングの時間を適宜調整することによって、各微細孔4,5,g1の内壁面に形成された縞状の凹凸プロファイルを残す程度を、所望に調整することができる。すなわち、エッチング時間を短くすれば該縞状の凹凸プロファイルを多く残すことができ、エッチング時間を長くすれば該縞状の凹凸プロファイルを少し残すか又は完全に除くことができる。
【0056】
前記エッチング液59は特に限定されず、例えばフッ酸(HF)を主成分とする溶液、フッ酸に硝酸等を適量添加したフッ硝酸系の混酸等を用いることができる。また、基板1の材料に応じて、他の薬液を用いることもできる。
【0057】
[工程C]
第一の微細孔4、第二の微細孔5、及び第三の微細孔g1が形成された基板1において、各微細孔4,5に導電性物質6を充填または成膜して、第一の貫通配線7及び第二の貫通配線8を形成する。該導電性物質6としては、例えば金錫(Au−Sn)、銅(Cu)等が挙げられる。該導電性物質6の充填または成膜方法としては、溶融金属吸引法、めっきなど、適宜用いることができる。
【0058】
第一の微細孔4及び第二の微細孔5に導電性物質6を充填または成膜する間、基板1の側面に開口した第三の微細孔g1の二つの開口部は、レジスト等で一時的に適宜蓋をしておけば、第三の微細孔g1内に導電性物質6が充填または成膜されないようにすることができる。その結果、第三の微細孔g1は流体が流通できる貫通した孔として保たれるので、流路G1として用いられる。
【0059】
以上の工程A〜Cにより、図1に示した貫通配線基板10が得られる。
さらに所望に応じて、各貫通配線7,8の開口部9,13,14,17上にランド部を形成してもよい。ランド部の形成方法は、めっき法、スパッタ法など、適宜用いることができる。
【0060】
<表面配線基板30を製造する方法>
次に、本発明の配線基板における微細孔及び微細溝の形成方法の他の一例として、表面配線基板30を製造する方法を、図8〜12を参照して説明する。
ここで、図8〜12は、表面配線基板30を製造する基板31の平面図および断面図である。図8中、(A)は基板31の平面図であり、(B)、(C)、(D)、及び(E)はそれぞれ該平面図のx1−x1線、y1−y1線、x2−x2線、及びy2−y2線に沿う基板31の断面図である。
【0061】
[工程A]
まず、図8に示すように、基板31に第一のレーザー光71、第二のレーザー光72、、第三のレーザー光65、及び第四のレーザー光68を照射して、基板31の一方の主面32の表面近傍に基板31の材料が改質されてなる第一の改質部73、第二の改質部66、及び第三の改質部69を形成する。第一の改質部73は、第一の表面配線37が設けられる領域に形成される。第二の改質部66は、第一流路G2が設けられる領域に形成される。第三の改質部69は、第二流路G3が設けられる領域に形成される。
【0062】
基板31の材料としては、例えばガラス、サファイア、等の絶縁体や、シリコン(Si)等の半導体が挙げられる。これらの材料であれば、半導体デバイスとの線膨張係数差が小さいため、表面配線基板30と半導体デバイスとを、半田等を用いて接続する際に、位置ズレが生じず、精度の高い接続が可能となる。さらに、これらの材料のなかでも、絶縁性のガラスが好ましい。基板材料がガラスであると、微細孔の内壁面に絶縁層を形成する必要がなく、浮遊容量成分の存在等による高速伝送の阻害要因がない、等の利点がある。
基板31の厚さは適宜設定することができ、例えば約150μm〜1mmの範囲に設定すればよい。
【0063】
第一のレーザー光71、第二のレーザー光72、第三のレーザー光65、及び第四のレーザー光68は、基板31の一方の主面2側から照射され、基板31の表面近傍の所望の位置で第一の焦点74、第二の焦点75、第三の焦点67、及び第四の焦点70を結ぶ。各焦点74,75,67,70を結んだ位置で、基板31の材料が改質される。
したがって、各レーザー光71,72,65,68を照射しながら、各焦点74,75,67,70の位置を順次ずらして走査(移動)して、第一の微細溝34、第一流路G2、及び第二流路G3が設けられる領域の全部に対して、各焦点74,75,67,70を結ぶことによって、第一の改質部73、第二の改質部66、及び第三の改質部69を形成することができる。
【0064】
各レーザー光71,72,65,68は、基板31の一方の主面32及び/又は他方の主面33側から照射してもよいし、基板31の側面から照射してもよい。各レーザー光71,72,65,68の光軸が基板31に入射する角度は所定の角度に設定される。各レーザー光71,72,65,68は単一のレーザー光を用いて順に照射してもよいし、複数のレーザー光を用いて同時に照射してもよい。
【0065】
また、各レーザー光71,72の各焦点74,75を走査する方向としては、例えば図8に示した第一の改質部73に沿った実線の矢印のように、一筆書きの方向が挙げられる。すなわち、前記矢印は、第一のレーザー光71が第一の改質部73の一端部38となる部位から屈曲部39となる部位まで、第二のレーザー光72が第一の改質部73の屈曲部となる部位から他端部40となる部位まで、各焦点74,75を走査することを表す。このとき、前記矢印の向きで一筆書きの走査を行うことが、製造効率上好ましい。
【0066】
第三のレーザー光65を走査する方向としては、例えば図8に示した第二の改質部66に沿った実線の矢印のように、一筆書きの方向が挙げられる。すなわち、前記矢印は、基板31の対向する二つの側面のうち、一方の側面の開口部となる部位から、他方の側面の開口部となる部位まで、第三の焦点67を走査することを表す。このとき、前記矢印の向きで一筆書きの走査を行うことが、製造効率上好ましい。
【0067】
第四のレーザー光68を走査する方向としては、例えば図8に示した第三の改質部69に沿った実線の矢印のように、一筆書きの方向が挙げられる。すなわち、前記矢印は、基板31の対向する二つの側面のうち、一方の側面の開口部となる部位から、他方の側面の開口部となる部位まで、第四の焦点70を走査することを表す。このとき、前記矢印の向きで一筆書きの走査を行うことが、製造効率上好ましい。
【0068】
第一のレーザー光71は、直線偏光されたレーザー光である。該直線偏光の向きPは、レーザー光照射中常に、第一のレーザー光71の焦点74の走査方向に対して垂直に維持される。
すなわち、第一のレーザー光71の直線偏光の向きPは、第一の改質部73の領域ζが延伸する方向(X方向)に対して常に垂直である。図8(A)では第一のレーザー光71の直線偏光の向きPを実線の両方矢印で示し、図8(B)では該直線偏光の向きPを、紙面奥行き及び手前方向を表す丸印で示している。
【0069】
第二のレーザー光72は、直線偏光されたレーザー光である。該直線偏光の向Qきは、レーザー光照射中常に、第二のレーザー光72の焦点75の走査方向に対して垂直に維持される。
すなわち、第二のレーザー光72の直線偏光の向きQは、第一の改質部73の領域ηが延伸する方向(Y方向)に対して常に垂直である。図8(A)では第二のレーザー光72の直線偏光の向きQを実線の両方矢印で示し、図8(C)では該直線偏光の向きQを、紙面奥行き及び手前方向を表す丸印で示している。
【0070】
第三のレーザー光65は、直線偏光されたレーザー光である。該直線偏光の向きTは、レーザー光照射中常に、第三のレーザー光65の焦点67の走査方向に対して垂直に維持される。
すなわち、第三のレーザー光65の直線偏光の向きTは、第三の改質部66が延伸する方向(X方向)に対して常に垂直である。図8(A)では第三のレーザー光65の直線偏光の向きTを実線の両方矢印で示し、図8(D)では該直線偏光の向きTを、紙面奥行き及び手前方向を表す丸印で示している。
【0071】
第四のレーザー光68は、直線偏光されたレーザー光である。該直線偏光の向きJは、レーザー光照射中常に、第四のレーザー光68の焦点70の走査方向に対して垂直に維持される。
すなわち、第四のレーザー光68の直線偏光の向きJは、第四の改質部69が延伸する方向(Y方向)に対して常に垂直である。図8(A)では第四のレーザー光68の直線偏光の向きJを実線の両方矢印で示し、図8(E)では該直線偏光の向きJを、紙面奥行き及び手前方向を表す丸印で示している。
【0072】
このように第一のレーザー光71及び第二のレーザー光72の直線偏光の向きP,Qを制御することによって、形成される第一の改質部73において、エッチングされやすい(エッチング速度が速い)エリア73sと、エッチングされにくい(エッチング速度が遅い)エリア73hとが、第一の改質部73の領域ζ及びηのそれぞれの延伸方向に対して平行に、交互に並走して形成される(図9)。
ここで、図9で示す各エリアの本数は特定の本数に限定されるものではない。該本数は使用するレーザー光の使用条件や直線偏光の程度を制御することによって変更されうる。
【0073】
図9(B)に示すように、第一の改質部73において、エッチング速度が速いエリア73sとエッチング速度が遅いエリア73hとが、第一の改質部73の領域ζでは基板1のの横方向(X方向)に延伸し、第一の改質部73の領域ηでは基板1の縦方向(Y方向)に延伸している。
【0074】
前記領域ζを基板31の一方の主面32側から矢印V1の方向で見ると、第一の改質部73の延伸方向と平行に、エッチング速度の速いエリア73sとエッチング速度の遅いエリア73hとが並走している(図9(D))。図では、2本のエッチング速度の遅いエリア73hが、3本のエッチング速度の速いエリア73sに挟まれて互い違いに並走している。
【0075】
前記領域ηを基板31の一方の主面32側から矢印V2の方向で見ると、第一の改質部73の延伸方向と平行に、エッチング速度の速いエリア73sとエッチング速度の遅いエリア73hとが並走している(図9(E))。図では、2本のエッチング速度の遅いエリア73hが、3本のエッチング速度の速いエリア73sに挟まれて互い違いに並走している。
【0076】
また、第三のレーザー光65及び第四のレーザー光68の直線偏光の向きT,Jを制御することによって、形成される第二の改質部66及び第三の改質部69において、エッチングされやすい(エッチング速度が速い)エリア66s,69sと、エッチングされにくい(エッチング速度が遅い)エリア66h,69hとが、第二の改質部66及び第三の改質部69のそれぞれの延伸方向(X方向,Y方向)に対して平行に、交互に並走して形成される(図10)。
ここで、図10で示す各エリアの本数は特定の本数に限定されるものではない。該本数は使用するレーザー光の使用条件や直線偏光の程度を制御することによって変更されうる。
【0077】
なお、図10(A)は、図9(A)の平面図におけるx2−x2線に沿った断面図であり、図10(B)は基板31の一方の主面32側から矢印V3の方向で見た図であり、図10(C)は、図9(A)の平面図におけるy2−y2線に沿った断面図であり、図10(D)は基板31の一方の主面32側から矢印V4の方向で見た図である。
【0078】
このように、照射レーザー光の直線偏光の向きP,Qを、第一の改質部73の領域ζ及びηの延伸方向に対して垂直に維持しつつレーザー照射することによって、形成された第一の改質部73の全領域において、その延伸方向に対して平行に並走するエッチング速度の異なるエリアが互い違いに形成される。
その結果、後段のエッチング工程(工程B)において、第一の改質部73の全領域のエッチング速度を一定にすることができ、形成される第一の微細溝34の径(太さ)を全領域でばらつきなく制御することができる。
【0079】
また、照射レーザー光の直線偏光の向きT,Jを、第二の改質部66及び第三の改質部69の延伸方向に対して垂直に維持しつつレーザー照射することによって、形成された第二の改質部66及び第三の改質部69の全領域において、その延伸方向に対して平行に並走するエッチング速度の異なるエリアが互い違いに形成される。
その結果、後段のエッチング工程(工程B)において、第二の改質部66及び第三の改質部69の全領域のエッチング速度を一定にすることができ、形成される第一の微細孔g2及び第二の微細孔g3の径(太さ)を全領域でばらつきなく制御することができる。なお、本実施例では、第二の改質部66及び第三の改質部69の太さは4μmとなるようにした。
【0080】
なお、前述の照射レーザー光の直線偏光の向きP,Qを変更して、第一の改質部73の延伸方向に対して平行に維持しつつレーザー走査してもよい。この場合、形成された第一の改質部73の全領域において、その延伸方向に対して垂直に、エッチング速度の速いエリアとエッチング速度の遅いエリアとが互い違いに形成される。この場合においても、後段のエッチング工程(工程B)において、第一の改質部73の全領域のエッチング速度を一定にすることができる。
【0081】
同様に、前述の照射レーザー光の直線偏光の向きT,Jを変更して、第二の改質部66及び第三の改質部69のそれぞれの延伸方向に対して平行に維持しつつレーザー走査してもよい。この場合、形成された第二の改質部66及び第三の改質部69の全領域において、それぞれの延伸方向に対して垂直に、エッチング速度の速いエリアとエッチング速度の遅いエリアとが互い違いに形成される。この場合においても、後段のエッチング工程(工程B)において、各改質部66,69の全領域のエッチング速度を一定にすることができる。
【0082】
さらに、前述の照射レーザー光の直線偏光の向きP,Qを、第一の改質部73の延伸方向に対して、垂直又は平行に限らない任意の方向で、常に一定に維持しつつレーザー光照射してもよい。この場合、形成された第一の改質部73の全領域において、その直線偏光P,Qの向きと垂直な方向で、エッチング速度の速いエリアとエッチング速度の遅いエリアとが互い違いに形成される。この場合においても、後段のエッチング工程(工程B)において、第一の改質部73の全領域のエッチング速度を一定にすることができる。
【0083】
同様に、前述の照射レーザー光の直線偏光の向きT,Jを、第二の改質部66及び第三の改質部69のそれぞれ延伸方向に対して、垂直又は平行に限らない任意の方向で、常に一定に維持しつつレーザー光照射してもよい。この場合、形成された第二の改質部66及び第三の改質部69の全領域において、その直線偏光J,Tの向きと垂直な方向で、エッチング速度の速いエリアとエッチング速度の遅いエリアとが互い違いに形成される。この場合においても、後段のエッチング工程(工程B)において、各改質部66,69の全領域のエッチング速度を一定にすることができる。
【0084】
以上で説明した照射レーザーの直線偏光の向きP,Q,T,Jのうち、第三のレーザー光65の直線偏光の向きT及び第四のレーザー光68の直線偏光の向きJの、各改質部66,69の延伸方向に対する方向は、後段のエッチング工程(工程B)におけるエッチング速度に、より大きく影響する。これは、第三のレーザー光65及び第四のレーザー光68によって改質される領域(第二の改質部66及び第三の改質部69)が、基板31内部における、第一の微細孔g2及び第二の微細孔g3の設けられる領域だからである。各改質部66,69の単位長さ当たりのエッチング速度を高める観点から、照射レーザー光の直線偏光の向きT,Jは、各改質部66,69のそれぞれの延伸方向に対して垂直に維持しつつレーザー走査することが好ましい。該直線偏光の向きT,Jを、前記延伸方向に対して垂直に維持して形成された改質部の単位長さ当たりのエッチング速度は、前記延伸方向に対して平行に維持して形成された改質部の単位長さ当たりのエッチング速度よりも、約2倍速い。
【0085】
照射するレーザー光71,72,65,68の光源としては、例えばフェムト秒レーザーを挙げることができる。レーザー光71,72,65,68の直線偏光を前述のように制御しつつ照射することによって、例えば径が数μm〜数十μmとした各改質部73,66,69を形成できる。また、基板31の表面近傍におけるレーザー光71,72,65,68の焦点74,75,67,70を結ぶ位置を制御することにより、所望の形状を有する改質部73を形成できる。
【0086】
[工程B]
図11に示すように、第一の改質部73、第二の改質部66、及び第三の改質部69を形成した基板31をエッチング液(薬液)77に浸漬して、ウェットエッチングすることによって、第一の改質部73を基板31から除去する。その結果、第一の改質部73、第二の改質部66、及び第三の改質部69が存在した領域に、第一の微細溝34、第一の微細孔g2(G2)、及び第二の微細孔g3(G3)が形成される(図12)。本実施形態では基板31の材料としてガラスを用い、エッチング液77としてフッ酸(HF)の10%溶液を主成分とする溶液を用いた。
【0087】
このエッチングは、基板31の改質されていない部分に比べて、第一の改質部73、第二の改質部66、及び第三の改質部69が非常に速くエッチングされる現象を利用するものであり、結果として第一の改質部73、第二の改質部66、及び第三の改質部69の形状に応じた第一の微細溝34、第一の微細孔g2(G2)、及び第二の微細孔g3(G3)を形成することができる。
また、エッチングの時間を適宜調整することによって、第一の微細溝34、第一の微細孔g2(G2)、及び第二の微細孔g3(G3)の内壁面に形成された縞状の凹凸プロファイルを残す程度を、所望に調整することができる。すなわち、エッチング時間を短くすれば該縞状の凹凸プロファイルを多く残すことができ、エッチング時間を長くすれば該縞状の凹凸プロファイルを少し残すか又は完全に除くことができる。
【0088】
前記エッチング液77は特に限定されず、例えばフッ酸(HF)を主成分とする溶液、フッ酸に硝酸等を適量添加したフッ硝酸系の混酸等を用いることができる。また、基板31の材料に応じて、他の薬液を用いることもできる。
【0089】
[工程C]
第一の微細溝34、第一の微細孔g2(G2)、及び第二の微細孔g3(G3)が形成された基板31において、第一の微細溝34に導電性物質36を充填または成膜して、第一の表面配線37を形成する。該導電性物質36としては、例えば金錫(Au−Sn)、銅(Cu)等が挙げられる。
導電性物質36の充填または成膜方法としては、まずスパッタ法によって基板31の上面全体に導電性物質36からなる膜を形成して、当該微細溝34内に導電性物質36を充填または成膜し、次に当該微細溝34の上にレジスト膜を形成してマスキングを行った後、基板31の上面をドライエッチングして導電性物質36からなる膜を除き、最後に前記マスキングのレジストを除去する方法が例示できる。
【0090】
第一の微細溝34に導電性物質36を充填または成膜する間、基板31の側面に開口した第一の微細孔g2(G2)、及び第二の微細孔g3(G3)の合計四つの開口部は、レジスト等で一時的に適宜蓋をしておけば、各微細孔g2,g3内に導電性物質36が充填または成膜されないようにすることができる。その結果、各微細孔g2,g3は流体が流通できる貫通した孔として保たれるので、流路G2,G3として用いられる。
【0091】
以上の工程A〜Cにより、図2に示した表面配線基板30が得られる。
さらに所望に応じて、表面配線34の所定位置(例えば一端部38、他端部40)上にランド部を形成してもよい。ランド部の形成方法は、めっき法、スパッタ法など、適宜用いることができる。
【0092】
<レーザー照射装置>
次に、本発明の配線基板における微細構造の形成方法に使用することのできるレーザー照射装置の一例として、レーザー照射装置80を説明する(図13)。
レーザー照射装置80は、レーザー光源81、シャッター82、移相子83、ハーフミラー84、対物レンズ85、基板ステージ86、CCDカメラ87、制御用コンピュータ88、及び基板ステージ制御軸93を少なくとも備えている。
【0093】
レーザー照射装置80は、基板91において孔状又は溝状をなす微細構造を設ける領域に、パルス時間幅がピコ秒オーダー以下のパルス幅を有する直線偏光レーザー光89を照射し、該レーザー光89を集光した焦点を走査して改質部92を形成する際、該直線偏光の向きRを、前記焦点を走査する方向に対して一定の方向に維持しつつレーザー照射する手段を備えている。
【0094】
図13では、基板ステージ86上に置かれた基板91へレーザー光89が照射されて、改質部92が形成されている。改質部92に沿った矢印の方向がレーザー光89の焦点の走査方向である。丸印Rは、レーザー光89の直線偏光の向きが紙面奥行き及び手前方向であることを表す。レーザー光89の直線偏光の向きは、レーザー89の走査方向に対して垂直である。
【0095】
レーザー照射装置80は、パルス時間幅がピコ秒オーダー以下のパルス幅を有する直線偏光レーザー光89を照射できる公知のものを使用できる。
【0096】
前記手段の一つである移相子83は、制御用コンピュータ88によって制御され、照射するレーザー光89の直線偏光の向きRを所望の方向に調整できる。したがって該移相子83は、前記焦点の走査方向の変更に応じて、該変更後の走査方向に対するレーザー光89の直線偏光の向きRを、一定の方向に合わせるように機能する。
【0097】
前記手段の他の一つである基板ステージ86は、該基板ステージ86の下部に接続された基板ステージ制御軸93によって、該基板ステージ86上に固定された基板91の向き、角度、及び移動を任意に調整できる。したがって、該基板ステージ86は、前記焦点の走査方向の変更に応じて、該変更後の走査方向に対するレーザー光89の直線偏光の向きRを、一定の方向に合わせるように機能する。
【0098】
基板ステージ制御軸93を備えた基板ステージ86は、前記焦点の走査方向の変更に同期して、基板91の向き、角度、及び移動を任意に調整できる。例えば、レーザー光89の焦点の走査方向を基板91のX方向(横方向)からX+90°方向(縦方向)へ変更する際、レーザー光89の直線偏光の向きRは変更せず、基板ステージ86をX−90°の方向へ回転させることによって、前記焦点の走査方向を基板91のX+90°方向へ変更できる。この方法によって、該変更後においても、レーザー光89の直線偏光の向きRを、前記焦点の走査方向に対して一定に維持できる。
【0099】
レーザー照射装置80を用いた本発明にかかる配線基板の製造方法の一例を、図14のフローチャート図を参照して、以下に説明する。
まず、基板ステージ86に基板91を固定し、レーザー光89の直線偏光の向きR、走査方向、走査領域等の情報を、一連のプロセスを規定するプログラムとして作成する。プロセスを開始すると、前記直線偏光の向きRがレーザー光89の走査方向に対して一定の方向に維持されるように、移相子83が調整される。その後、シャッター82がOPENし、基板91に対して透明な波長のレーザー光89が基板91の所定位置に所定量だけ照射される。
【0100】
通常は、バンドギャップによって基板91の材料の電子は励起されないため、レーザー光89は基板91を透過する。しかし、レーザー光89の光子数が非常に多くなると、多光子吸収が起こって電子が励起され、図4(D)等で示したような縞状の改質部が形成される。
【0101】
予めプログラムされた所定のレーザー照射が終了するとシャッター82が閉められる。引き続いてレーザー光89の焦点の走査方向を変えてレーザー描画を継続する場合は、再び移相子83が調整されて、プロセスが繰り返される。描画を終了する場合は、レーザー照射を終了して、プロセスが完了する。
【0102】
上記の方法では、移相子83を調整することによって、レーザー光89の直線偏光の向きRを変更し、レーザー光89の焦点の走査方向に対する該直線偏光の相対的な向きRを制御した。
別の方法として、前述のように、移相子83の調整は行わずにレーザー光89の直線偏光の向きRを固定し、基板ステージ制御軸93を調整して、ステージ86を回転させ、或いは傾けることによって、レーザー光89の焦点の走査方向に対する該直線偏光の向きRを所望に制御することができる。また、移相子83の調整及び基板ステージ制御軸93の調整の両方を併用して、レーザー光89の焦点の走査方向に対する該直線偏光の向きを所望に制御してもよい。
【0103】
<レーザー走査方向に対する直線偏光の向きとエッチング速度との関係>
本発明者らは、改質部形成工程(工程A)におけるレーザー光の焦点の走査方向に対するレーザー光の直線偏向の向き(偏波の方向)が、後段のエッチング工程(工程B)におけるウェットエッチング速度に大きく影響することを見出して鋭意研究した結果、本発明を完成するに至った。以下に、図面を参照して説明する。
【0104】
図15,16は、基板111の平面図および断面図である。当該図中、(A)は基板111の平面図であり、(B)、(C)、及び(D)はそれぞれ該平面図のx−x線、y1−y1線、及びy2−y2線に沿う基板111の断面図である。
【0105】
前記改質部形成工程(工程A)において、2本の微細孔となる改質部を、照射レーザーの直線偏光の向きを相違させて形成した(図15)。
なお、基板111はガラス製のものを用い、レーザー光源としてフェムト秒レーザーを使用した。
【0106】
まず、基板111において、第一の改質部114を設ける領域に、第一のレーザー光181の焦点185を結びながら走査した。焦点185の走査方向は基板111の縦方向(Y方向)であり、第一の改質部114に沿った矢印で示すように一筆書きで行った。このとき、第一のレーザー光181の直線偏光の向きPをY方向とし、焦点185の走査方向に対して平行に維持して第一の改質部114を形成した。
【0107】
さらに、第二の改質部115を設ける領域に、第二のレーザー光182の焦点186を結びながら走査した。焦点186の走査方向は基板111の縦方向(Y方向)であり、第二の改質部115に沿った矢印で示すように一筆書きで行った。このとき、第二のレーザー光182の直線偏光の向きQを基板111の横方向(X方向)とし、焦点186の走査方向に対して垂直に維持して第二の改質部115を形成した。
【0108】
つぎに、HF溶液(10質量%)に基板111を浸漬して、所定時間のウェットエッチングを行って、第一の改質部114及び第二の改質部115を基板111から除き、非貫通孔(ビア)である第一の微細孔116及び第二の微細孔117を形成した(図16)。
形成した各微細孔の深さを測定したところ、第一の微細孔116の深さは、第二の微細孔117の深さの約1/2であった。すなわち、第一の微細孔116エッチング速度/第二の微細孔117のエッチング速度は約1/2であった。
【0109】
図16の(C)及び(D)に示した、第一の微細孔116のエッチングされた領域F1、及び第二の微細孔117のエッチングされた領域F2の内壁面を、レーザー光の照射方向である基板111の上面から(矢印V1及び矢印V2の方向から)観察したところ、各々異なる方向の縞状の凹凸プロファイル(筋痕)が形成されていた。
なお、図15の(D)に示した第二のレーザー光182の近傍に描いた丸印は、直線偏光の向きQが紙面手前及び奥行き方向であることを表す。
【0110】
第一の微細孔116の縞状の凹凸プロファイルH01が伸びる向きは、第一の微細孔116の延伸方向に対して垂直であり、第一のレーザー光181の直線偏光の向きPに対して垂直であった(図17(A))。
第二の微細孔117の縞状の凹凸プロファイルH02が伸びる向きは、第二の微細孔117の延伸方向に対して平行であり、第二のレーザー光182の直線偏光の向きQに対して垂直であった(図17(B))。
なお、図17で示す凹凸プロファイルの本数は特定の本数に限定されるものではない。該本数は使用するレーザー光の使用条件や直線偏光の程度を制御することによって変更されうる。
【0111】
これらの結果から、エッチング前の基板111に形成された第一の改質部114を、基板111の上面から第一のレーザー光181の照射方向へ見ると、エッチングされやすい(エッチング速度が速い)エリアS1とエッチングされにくい(エッチング速度が遅い)エリアH1とが交互に、第一のレーザー光181の走査方向(Y方向)に対して垂直に、且つ第一のレーザー光181の直線偏光の向きP(Y方向)に対して垂直に、形成されていることがわかった(図18)。
【0112】
また、第二の改質部115を基板111の上面から第二のレーザー光182の照射方向へ見ると、エッチングされやすい(エッチング速度が速い)エリアS2とエッチングされにくい(エッチング速度が遅い)エリアH2とが交互に、第二のレーザー光182の走査方向(Y方向)に対して平行に、且つ第二のレーザー光182の直線偏光の向きQ(X方向)に対して垂直に、形成されていることがわかった(図18)。
なお、図18で示す各エリアの本数は特定の本数に限定されるものではない。該本数は使用するレーザー光の使用条件や直線偏光の程度を制御することによって変更されうる。
【0113】
以上から、次のように理解された。
第一の改質部114において、基板111内部へエッチング液が進行していくとき、複数のエッチングされにくいエリアH1に阻まれる。一方、第二の改質部115においては、基板111内部へエッチング液が進行していくとき、先にエッチングされやすいエリアS2が除かれて、第二の改質部115の奥深くまでエッチング液が到達し、その後エッチングされにくい複数のエリアH2が、既に除かれたエリアS2のあった領域に置き換わったエッチング液によって、同時並行でエッチングされる。
このため、第一の改質部114のエッチング速度は、第二の改質部115のエッチング速度よりも遅くなり、第二の改質部115のエッチング速度は、第一の改質部114のエッチング速度よりも速くなる。
【0114】
次に、図19に示す別の基板101に配された、より複雑な形状の第一の改質部104および第二の改質部105においても、前述の理解が当てはまることを以下に説明する。
図19,22は、基板101の平面図および断面図である。当該図中、(A)は基板101の平面図であり、(B)及び(C)はそれぞれ該平面図のy1−y1線及びy2−y2線に沿う基板101の断面図である。
図20は、基板101の平面図である。当該図中、(A)は基板101の平面図であり、(B)及び(C)はそれぞれ第一の改質部104及び第二の改質部105の拡大図である。
図21は、図20の平面図(A)におけるy1−y1線及びy2−y2線に沿う断面図である。当該図中、(A)は基板101の平面図におけるy1−y1線に沿う断面図であり、(C)は該断面図の拡大図であり、(B)は基板101の平面図におけるy2−y2線に沿う断面図であり、(D)は該断面図の拡大図である。
【0115】
まず、基板101において、第一の改質部104となる領域に、第一のレーザー光181の焦点185を結びつつ基板101の上面から照射した。焦点185の走査の向きは基板101の縦方向(Y方向)及び基板厚み方向であり、第一の改質部104に沿った矢印で示すように、領域γ、領域β、領域αの順に一筆書きで行った。このとき、領域γ及び領域αでは、第一のレーザー光181の直線偏光の向きPを、焦点185の走査方向(基板101の厚み方向)に対して垂直に維持して改質部104を形成した。一方、領域βでは、第一のレーザー光181の直線偏光の向きPを、焦点185の走査方向(Y方向)に対して平行に維持して第一の改質部104を形成した(図19)。
【0116】
この結果、第一の改質部104の領域α及び領域γでは、エッチングされやすいエリアS1とエッチングされにくいエリアH1とが並走して、第一の改質部104の延伸方向(基板厚み方向)に沿って平行に形成された。一方、第一の改質部104の領域βでは、エッチングされやすいエリアS1とエッチングされにくいエリアH1とが、互い違いに、第一の改質部104の延伸方向(Y方向)に対して垂直に形成された(図20,21)。
なお、図20,21で示す各エリアの本数は特定の本数に限定されるものではない。該本数は使用するレーザー光の使用条件や直線偏光の程度を制御することによって変更されうる。
【0117】
さらに、基板101において、第二の改質部105となる領域に、第二のレーザー光182の焦点186を結びつつ基板101の上面から照射した。焦点186の走査方向は基板101の縦方向(Y方向)及び基板厚み方向であり、第二の改質部105に沿った矢印で示すように、領域γ、領域β、領域αの順に一筆書きでいった。このとき、領域α〜γでは一貫して、第二のレーザー光182の直線偏光の向きQを、焦点186の走査方向(Y方向又は基板厚み方向)に対して垂直に維持して第二の改質部105を形成した(図19)。
なお、図19(C)に示した第二のレーザー光182の近傍に描いた丸印は、直線偏光の向きQが紙面手前及び奥行き方向であることを表す。
【0118】
この結果、第二の改質部105の領域α、領域β、及び領域γでは一貫して、エッチングされやすいエリアS2とエッチングされにくいエリアH2とが並走し、第二の改質部105の延伸方向(Y方向又は基板厚み方向)に沿って平行に形成された(図20,21)。
【0119】
なお、第一の改質部104及び第二の改質部105の形状は同一であり、領域αの長さは50μm、領域βの長さは200μm、領域γの長さは50μm、とした。
また、基板101はガラス製のものを用い、レーザー光源としてフェムト秒レーザーを使用した。
【0120】
つぎに、HF溶液(10質量%)に基板101を浸漬してウェットエッチングを行い、第一の改質部104及び第二の改質部105を基板101から除いて貫通させ、第一の微細孔106及び第二の微細孔107を形成した(図22)。このとき、第一の改質部104及び第二の改質部105がウェットエッチングにより除かれて貫通する時間(エッチング速度)をそれぞれ測定したところ、第一の改質部104のエッチング速度/第二の改質部105のエッチング速度は約3/5であった。これは、領域α及び領域γのエッチング速度は、どちらの改質部において同じであるが、領域βのエッチング速度は、第一の改質部104の方が第二の改質部105よりも約2倍速いためである。
【0121】
また、第一の微細孔106の内壁面には、該微細孔の延伸方向に対して垂直な方向にリング様の凹凸が連なるように、縞状の凹凸プロファイルが形成された(図23)。一方、第二の微細孔107の内壁面には、該微細孔の延伸方向に沿って、線状の凹凸が複数並進するように、縞状の凹凸プロファイルが形成された(図23)。
なお、図23の斜視図(A)は、図22の平面図(A)のx−x線に沿った断面を示す斜視図であり、図23の断面図(B)は、図22の平面図(A)のx−x線に沿った断面図である。図23中、W1及びW2は、断面図(B)における第一の微細孔106の断面及び第二の微細孔107の断面を示す。
なお、図23で示す凹凸プロファイルの本数は特定の本数に限定されるものではない。該本数は使用するレーザー光の使用条件や直線偏光の程度を制御することによって変更されうる。
【0122】
以上から、微細孔及び微細溝等の微細構造が設けられる領域に改質部を形成する場合、当該微細構造の延伸する方向に対して、照射するレーザー光の直線偏光の向きを一定に(例えば、平行に又は垂直に)維持しつつ、該レーザー光の焦点を走査することによって、当該微細構造の全領域におけるエッチング速度を一定に揃えられることがわかった。このため、基板において、所定形状の微細構造を複数形成する場合においても、各微細構造のエッチング速度を揃えることができ、形成される微細構造のエッチングを過不足無く行うことができる。特に、前記直線偏光の向きを、当該微細構造の延伸する方向に対して垂直に維持しつつレーザー光照射した場合、当該微細構造のエッチング速度を最大にすることができるので好ましい。
【0123】
<微細孔を有する基板>
本発明の微細孔を有する基板は、該微細孔の内壁面の少なくとも一部には、該微細孔の延伸方向に沿った縞状の凹凸プロファイルが形成されている。
当該基板の材料としては、ガラス、サファイア、シリコンが挙げられる。
当該縞状の凹凸プロファイルは、当該微細孔の内壁面の全面に形成されていてもよいし、一部のみに形成されていてもよい。当該縞状の凹凸プロファイル(筋痕)は、当該微細孔の延伸方向に沿って、又は当該微細孔の延伸方向と略平行に形成されている。
本発明の微細孔を有する基板の具体例としては、前述の貫通配線基板10および表面配線基板30とが挙げられる。
【0124】
前述の貫通配線基板10および表面配線基板30の製造方法と同様の方法で得られた基板に限らず、その他の製造方法で得られた基板であっても、該基板が前記微細孔(貫通孔)を有するものであって、該微細孔の内壁面の少なくとも一部には、該微細孔の延伸方向に沿った縞状の凹凸プロファイル(該微細孔の延伸方向と略平行の凹凸プロファイル)が形成されているものであれば、前記微細構造の形成方法を用いて製造された基板と同様の効果が得られる。つまり、前述の製造方法とは異なる方法で製造された基板であっても、得られた基板が同じであれば、同様の効果が得られる。
【産業上の利用可能性】
【0125】
本発明の微細構造の形成方法及び該方法で使用されるレーザー照射装置は、ICや電子部品に用いられる配線基板の製造に好適に利用することができる。
【符号の説明】
【0126】
1…基板、2…一方の主面、3…他方の主面、4…第一の微細孔、5…第二の微細孔、6…導電性物質、7…第一の貫通配線、8…第二の貫通配線、9…開口部、10…貫通配線基板、11…屈曲部、12…屈曲部、13…開口部、14…開口部、15…屈曲部、16…屈曲部、17…開口部、30…貫通配線基板、31…基板、32…一方の主面、33…他方の主面、34…第一の微細溝、36…導電性物質、37…第一の表面配線、38…一端部、39…屈曲部、40…他端部、51…第一のレーザー光、52…第二のレーザー光、53…第一の改質部、53s…エッチングされやすいエリア、53h…エッチングされにくいエリア、54…第二の改質部、56…第一の焦点、57…第二の焦点、59…エッチング液、61…第三のレーザー光、62…第三の改質部、62s…エッチングされやすいエリア、62h…エッチングされにくいエリア、63…第三の焦点、65…第三のレーザー光、66…第二の改質部、66s…エッチングされやすいエリア、66h…エッチングされにくいエリア、67…第三の焦点、68…第四のレーザー光、69…第三の改質部、69s…エッチングされやすいエリア、69h…エッチングされにくいエリア、70…第四の焦点、71…第一のレーザー光、72…第二のレーザー光、73…第一の改質部、73s…エッチングされやすいエリア、73h…エッチングされにくいエリア、74…焦点、75…焦点、77…エッチング液、80…レーザー照射装置、81…レーザー光源、82…シャッター、83…移相子、84…ハーフミラー、85…対物レンズ、86…基板ステージ、87…CCDカメラ、88…コンピュータ、89…レーザー光、91…基板、92…改質部、93…基板ステージ制御軸、P…第一のレーザー光の直線偏光の向き、Q…第二のレーザー光の直線偏光の向き、R…レーザー光の直線偏光の向き、101…基板、102…第一の改質部、103…第二の改質部、105…第二の改質部、106…第一の微細孔、107…第二の微細孔、111…基板、114…第一の改質部、115…第二の改質部、116…第一の微細孔、117…第二の微細孔、181…第一のレーザー光、182…第二のレーザ光、185…焦点、186…焦点、S1…エッチングされやすいエリア、H1…エッチングされにくいエリア、g1…第三の微細孔、g2…第一の微細孔、g3…第二の微細孔、G1…流路、G2…第一流路、G3…第二流路、H01…縞状の凹凸プロファイル、H02…縞状の凹凸プロファイル。

【特許請求の範囲】
【請求項1】
基板において孔状をなす微細構造を設ける領域に、パルス時間幅がピコ秒オーダー以下のパルス幅を有するレーザー光を照射し、該レーザー光が集光した焦点を走査して改質部を形成する工程Aと、
前記改質部が形成された前記基板に対してエッチング処理を行い、該改質部を除去して微細構造を形成する工程Bと、を含む微細構造の形成方法であって、
前記工程Aにおいて、前記レーザー光として直線偏光レーザー光を用い、該直線偏光の向きを、前記焦点を走査する方向に対して一定の方向に維持しつつレーザー照射することを特徴とする微細構造の形成方法。
【請求項2】
前記一定の方向を垂直とすることを特徴とする請求項1に記載の微細構造の形成方法。
【請求項3】
基板において孔状をなす微細構造を設ける領域に、パルス時間幅がピコ秒オーダー以下のパルス幅を有する直線偏光レーザー光を照射し、該レーザー光を集光した焦点を走査して改質部を形成する際、該直線偏光の向きを、前記焦点を走査する方向に対して一定の方向に維持しつつレーザー照射する手段を備えたことを特徴とするレーザー照射装置。
【請求項4】
前記手段は移相子であり、該移相子は、前記焦点の走査方向の変更に応じて、該変更後の走査方向に対する前記レーザー光の直線偏光の向きを、一定の方向に合わせるように機能することを特徴とする請求項3に記載のレーザー照射装置。
【請求項5】
前記手段は基板ステージであり、該基板ステージは、前記焦点の走査方向の変更に応じて、該変更後の走査方向に対する前記レーザー光の直線偏光の向きを、一定の方向に合わせるように機能することを特徴とする請求項3又は4に記載のレーザー照射装置。
【請求項6】
請求項1又は2に記載の微細構造の形成方法を用いて製造された基板であって、前記微細構造の内壁面に縞状の凹凸プロファイルが形成された部位を含むことを特徴とする基板。
【請求項7】
前記基板は、その内部に流体が流通するための流路を有していることを特徴とする請求項6に記載の基板。
【請求項8】
微細孔を有する基板であって、該微細孔の内壁面の少なくとも一部には、該微細孔の延伸方向に沿った縞状の凹凸プロファイルが形成されていることを特徴とする基板。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate


【公開番号】特開2011−218398(P2011−218398A)
【公開日】平成23年11月4日(2011.11.4)
【国際特許分類】
【出願番号】特願2010−89509(P2010−89509)
【出願日】平成22年4月8日(2010.4.8)
【出願人】(000005186)株式会社フジクラ (4,463)
【Fターム(参考)】