説明

流体動圧軸受装置用のハブ一体軸及びその製造方法

【課題】ハブ部を薄肉化した場合でも、寸法精度を十分に高めることが可能なハブ一体軸を提供する。
【解決手段】板材の塑性加工により軸部21及びハブ部22を一体に有する素形材30成形し、この素形材30のうち、少なくとも軸部21の外周面21b及びハブ部22の回転体搭載面(鍔部22cの上側端面22c1)に研削仕上げを施す。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、流体動圧軸受装置に用いられるハブ一体軸及びその製造方法に関する。
【背景技術】
【0002】
流体動圧軸受装置は、軸受部材の内周面と軸部材の外周面との間のラジアル軸受隙間に生じる潤滑油の動圧作用により、軸部材を相対回転自在に支持するものである。流体動圧軸受装置は、優れた回転精度および静粛性を有するため、例えば、各種ディスク駆動装置(HDDの磁気ディスク駆動装置や、CD−ROM等の光ディスク駆動装置等)のスピンドルモータ用、レーザビームプリンタ(LBP)のポリゴンスキャナモータ用、あるいはプロジェクタのカラーホイールモータ用として好適に使用されている。
【0003】
例えば特許文献1には、HDDのスピンドルモータに組み組まれる流体動圧軸受装置が示されている。この流体動圧軸受装置は、軸部材2と、内周に軸部材2を挿入した軸受スリーブ8と、軸部材2の上端外周に固定されたディスクハブ3とを備え、ディスクハブ3に情報記録媒体となるディスクDが搭載される。軸部材2が回転すると、軸部材2の外周面と軸受スリーブ8の内周面との間のラジアル軸受隙間に生じる油膜の圧力が高められ、この動圧作用により、軸部材2、ディスクハブ3、及びディスクDが一体となって回転支持される。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2009−299836号公報
【特許文献2】特開平6−261489号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
近年、ノートパソコン等の情報機器の薄型化及び軽量化が進み、これに組み込まれるHDDのスピンドルモータへの薄型化及び軽量化の要求が益々強くなっている。この要求に応えるべく、HDDのスピンドルモータ用の流体動圧軸受装置では、磁気ディスクを搭載するディスクハブの薄肉化が検討されている。しかし、ディスクハブを薄肉化すると、以下のような課題が生じる。
【0006】
第一に、ディスクハブの薄肉化により、軸部材とディスクハブとの締結面積が縮小されるため、両者の締結強度が低下する恐れがある。例えば、締結部に接着剤を塗布すれば締結強度を高めることができるが、この場合、接着剤の材料コストがかかると共に、接着剤を塗布する工程を要することで製造コストがかかる。
【0007】
第二に、ディスクハブの薄肉化により、軸部材とディスクハブとの嵌合面積が縮小されるため、両者の組付精度が低下する。これにより、軸部材の外周面に対するディスク搭載面の面精度(振れ精度など)が低下し、ディスクの回転精度の低下、ひいてはHDDのディスク読み取り精度の低下を招く恐れがある。
【0008】
第三に、ディスクハブの薄肉化により、ブランク材の加工量が多くなる。例えば、ディスクハブを旋削加工で形成する場合、ブランク材からの削り量が多くなるため、多量の切り屑が発生する。このように切削量が多いと、材料コストが高くなると共に、工具の消耗が激しく工具のコストも高くなる。また、製品一個あたりの加工時間が長くなるため、所定のサイクルで製造するためには多くの旋削機を準備する必要があり、大規模な設備投資を要する。
【0009】
例えば、特許文献2には、丸棒から所定長さのブランク材(スラグ)を切断し、このブランク材に据え込み加工及び打ち抜き加工を施した後、鍛造押出によりハブ及び軸部を一体に製造する方法が示されている。このように、ディスクハブと軸部材を一体成形すれば、これらを別体に形成した後に固定する場合と比べて、両者の締結強度が高められる。また、ハブ及び軸部の一体品を鍛造により成形することで、旋削加工のように多量に切り屑が発生することがなく、材料の歩留まりを高めることができる。
【0010】
しかし、上記特許文献2では、円柱状のブランク材を塑性加工してハブ一体軸を成形しているため、スラグから製品に至るまでの変形量が大きく、所望の寸法精度を得ることが難しい。特に、上記のようにハブを薄肉化すると、ブランク材からの変形量がさらに大きくなる上、ハブの剛性が小さくなるため、ハブ一体軸の寸法精度を高めることがさらに困難となる。このため、HDDのスピンドルモータに要求される寸法精度、特に軸部材の外周面に対するディスク搭載面の面精度が得られず、ディスクの回転精度の低下を招く恐れがある。
【0011】
以上のような課題、すなわち、ハブを薄肉化したときの寸法精度の課題は、HDDのスピンドルモータに限らず、例えば、ポリゴンスキャナモータやカラーホイールモータに組み込まれる流体動圧軸受装置においても、同様に生じる。ただし、HDDのスピンドルモータ用の流体動圧軸受装置は、上記のように軽量化及び薄肉化の要求が強く、且つ、要求されるディスクの回転精度が高いため、上記の課題が特に顕著に発生する。
【0012】
本発明の解決すべき課題は、ハブを薄肉化した場合でも、寸法精度を十分に高めることが可能なハブ一体軸であって、特にHDDのスピンドルモータ用に適したハブ一体軸を得ることにある。
【課題を解決するための手段】
【0013】
前記課題を解決するために、本発明は、外周面が、潤滑流体で満たされたラジアル軸受隙間に面する軸部と、軸部から外径に突出し、軸方向と直交する回転体搭載面を有するハブ部とを一体に備えた流体動圧軸受装置用のハブ一体軸であって、板材の塑性加工により軸部及びハブ部を一体成形した素形材のうち、軸部の外周面及びハブ部の回転体搭載面に研削仕上げが施されたハブ一体軸を提供する。
【0014】
このように、本発明のハブ一体軸は、板材の塑性加工により軸部及びハブ部を一体成形した素形材を用いて形成される。このようにハブ部及び軸部を一体成形することで、上述のように両者の締結強度が高められるため、ハブ部を薄肉化した場合でもハブ部と軸部とを強固に固定(一体化)することができる。また、素形材を板材から形成することで、ハブ部を薄肉化した場合でも塑性加工による変形量を抑えることができるため、素形材の寸法精度を高めることができる。
【0015】
こうして得られた素形材のうち、特に精度が要求される箇所に研削仕上げを施される。具体的には、ラジアル軸受隙間に面する軸部の外周面と、回転体が搭載される回転体搭載面に研削仕上げが施される。これにより、回転体の回転精度が高められるため、例えばHDDのスピンドルモータ用の流体動圧軸受装置に要求される回転体(ディスク)の回転精度を満たすことができる。
【0016】
軸部の外周面はラジアル軸受隙間に面するため、特に優れた面精度で加工する必要がある。そこで、先にハブ部に研削仕上げを施した後、この高精度な研削仕上げ面を基準として軸部の外周面に研削仕上げを施せば、軸部の外周面の面精度がさらに高められる。
【0017】
また、軸部の外周面及びハブ部の回転体搭載面を、それぞれ優れた寸法精度で加工したとしても、これらの相対的な位置精度(例えば振れ精度)が十分でないと、回転体の回転精度を十分に高めることができない恐れがある。そこで上記のように、研削仕上げが施されたハブ部の回転体搭載面を基準として軸部の外周面に研削仕上げを施せば、軸部の外周面に対する回転体搭載面の振れ精度を高めることができる。また、ハブ部の外周面にも研削仕上げを施す場合、回転体搭載面に加えて、研削仕上げが施されたハブ部の外周面を基準とすれば、軸部の外周面とハブ部との同軸度を高めることができる。尚、振れ精度、及び同軸度の定義は、JIS B 0021:1998による。
【0018】
軸部の外周面に対する回転体搭載面の振れ精度は、例えば5μm以下とすることが好ましい。また、回転体搭載面の平面度は、例えば1μm以下とすることが好ましい。
【0019】
軸部の外周面は、ラジアル軸受隙間を介して対向する軸受部材の内周面と接触摺動することがあるため、高い耐摩耗性が要求される。従って、軸部の外周面に表面硬化処理やコーティング処理を施して、耐摩耗性を高めることが好ましい。この場合、軸部の外周面に表面硬化処理やコーティング処理を施して耐摩耗性を高めてから、この面に研削仕上げを施せば、研削による疵を抑えることができる。また、軸部の外周面に研削仕上げを施してから、この面にコーティング処理を施せば、研削による疵をコーティングで覆うことができる。
【0020】
上記のように、軸部の外周面には高い耐摩耗性が要求される。また、ハブ部は、回転体を搭載した状態で長期にわたり形状を維持する必要があるため、高い強度が要求される。これらの点から、上記のハブ一体軸はステンレス鋼で形成することが好ましい。ただし、ステンレス鋼は一般に成形性に乏しいため、上記のように板材からハブ部及び軸部を一体に有する素形材を成形するためには、ステンレス鋼の中でも比較的成形性に優れたフェライト系ステンレス鋼を用いることが好ましい。さらに、フェライト系ステンレス鋼にTiを0.05%以上配合すれば、延性を高めることができるため好ましい。
【0021】
ハブ部は、例えば、軸部から外径に延びる円盤部と、円盤部から軸方向に延びる円筒部と、円筒部から外径に延びる鍔部とを有する形状とすることができる。上記のハブ一体軸によれば、ハブ部の肉厚を薄肉化した場合でも、具体的にはハブ部の円盤部の軸方向の肉厚を軸部の軸方向寸法の20%以下とした場合でも、優れた寸法精度で形成することができる。
【0022】
上記のようなハブ一体軸は、ハブ部を薄肉化した場合でも、寸法精度を十分に高くすることができるため、特に、HDDのスピンドルモータ用として好適に使用することができる。
【0023】
上記のハブ一体軸と、ハブ一体軸の軸部が内周に挿入された軸受部材と、軸部の外周面と軸受部材の内周面との間のラジアル軸受隙間に生じる流体膜でハブ一体軸を回転自在に支持するラジアル軸受部とを備えた流体動圧軸受装置は、軸方向寸法の小型化を図ることができ、且つ、優れた回転精度を有することができる。
【発明の効果】
【0024】
以上のように、本発明のハブ一体軸は、板材を塑性加工することで、薄型且つ軽量で寸法精度の高い素形材が得られる。さらに、成形材の軸部の外周面及びハブ部の回転体搭載面に研削仕上げを施すことで、これらの面の精度を特に高めることができる。
【図面の簡単な説明】
【0025】
【図1】HDDのスピンドルモータを示す断面図である。
【図2】上記スピンドルモータに組み込まれ、本発明の実施形態に係るハブ一体軸を備えた流体動圧軸受装置の断面図である。
【図3】上記流体動圧軸受装置の軸受スリーブの断面図である。
【図4】上記流体動圧軸受装置のハウジングの上面図である。
【図5】(a)〜(e)は、板材を塑性加工して、軸部及びハブ部を一体に有する素形材を成形する工程を示す断面図である。
【図6】素形材のハブ部に研削仕上げを施す様子を示す断面図である。
【図7】素形材の軸部に研削仕上げを施す様子を示す断面図である。
【図8】他の実施形態に係るハブ一体軸を備えた流体動圧軸受装置の断面図である。
【発明を実施するための形態】
【0026】
以下、本発明の実施形態を図面に基づいて説明する。
【0027】
図1に、例えば2.5インチHDDのディスク駆動装置に用いられるスピンドルモータを示す。このスピンドルモータは、本発明の一実施形態に係るハブ一体軸9を回転自在に支持する流体動圧軸受装置1と、流体動圧軸受装置1が取り付けられたブラケット6と、半径方向のギャップを介して対向させたステータコイル4およびロータマグネット5とを備えている。ステータコイル4はブラケット6に取り付けられ、ロータマグネット5はハブ一体軸9にヨーク10を介して取り付けられる。ハブ一体軸9には、回転体としてのディスクDが所定の枚数(図示例では1枚)保持される。ステータコイル4に通電すると、ステータコイル4とロータマグネット5との間の電磁力でロータマグネット5が回転し、これによりハブ一体軸9及びディスクDが一体となって回転する。
【0028】
流体動圧軸受装置1は、図2に示すように、軸部2及びハブ部3を有するハブ一体軸9と、ハブ一体軸9を回転自在に支持する軸受部材とで構成される。本実施形態では、軸受部材が、内周にハブ一体軸9の軸部2を挿入した軸受スリーブ8と、内周に軸受スリーブ8を保持する有底筒状のハウジング7とで構成される。軸部2の下端には、抜け止め部材11が設けられる。尚、以下では、説明の便宜上、軸方向でハウジング7の開口側を上側、閉塞側を下側とする。
【0029】
ハブ一体軸9は、金属で形成され、例えば鉄系金属、特にステンレス鋼で形成される。ステンレス鋼は一般に延性が乏しいため、ステンレス鋼の中でも比較的延性に富んだフェライト系(例えば、SUS430)を使用することが好ましい。また、延性を高めるために、ステンレス鋼のCの含有量を0.2%以下とすることが好ましく、同じ目的でステンレス鋼にTiを重量比で0.05%以上配合することが好ましい。この他、例えば一般構造用鋼、アルミ合金、あるいはチタン合金等でハブ一体軸9を形成することもできる。
【0030】
軸部2は、ハブ一体軸9の軸心に設けられ、外径が2〜4mm程度に設定される。軸部2は、凹凸の無いストレートな円筒面状の外周面2aと、軸心に設けられた軸方向穴2bとを有する。本実施形態では、軸方向穴2bが軸部2を軸方向に貫通し、その内周面にネジ溝が形成されている。軸部2の下端部には、抜け止め部材11が設けられる。抜け止め部材11は、軸部2の下端部から外径に突出した円盤部11aと、円盤部11aの軸心から上方に延びた雄ネジ部11bとを有する。雄ネジ部11bは、軸部2の軸方向穴2bの下端にネジ固定される。円盤部11aは、軸受スリーブ8の下側端面8bとハウジング7の底部7bの上側端面7b1との軸方向間に配される。抜け止め部材11の円盤部11aと軸受スリーブ8の下側端面8bとが軸方向で係合することにより、軸部2の軸受スリーブ8からの抜け止めが行われる。
【0031】
軸部2の外周面2aには、表面硬化処理又はコーティング処理、あるいはこれらの双方が施される。表面硬化処理としては、例えば真空焼入れ、真空浸炭処理、真空窒化処理、ガス軟窒化処理、あるいはイオン窒化処理等による表面硬化処理が挙げられる。コーティング処理としては、例えば無電解Niめっき、DLC、TiN、TiAlN、あるいはTiCによるコーティング処理が挙げられる。尚、ハブ一体軸9をステンレス鋼で形成する場合、上記のようにCの含有量を0.2%以下とすると、焼入れによる硬化処理が困難となるため、真空焼入れ以外の表面効果処理、あるいはコーティング処理を施すことが好ましい。尚、表面処理やコーティング処理は、軸部2の外周面2aだけでなく、他の領域、例えばスラスト軸受隙間に面するハブ部3の円盤部3aの下側端面3a1に施しても良い。あるいは、軸部2の外周面2aの耐摩耗性が十分であれば、表面効果処理やコーティング処理を省略してもよい。
【0032】
ハブ部3は、軸部2の上端部から外径に延び、軸方向と直交する回転体搭載面(本実施形態ではディスク搭載面3d)を備えている。本実施形態のハブ部3は、ハウジング7の開口部を覆う円盤部3aと、円盤部3aの外周部から軸方向下方に延びた円筒部3bと、円筒部3bの下端部からさらに外径に延びた鍔部3cとで構成され、鍔部3cの上側端面にディスク搭載面3dが形成される。円筒部3bの外周面には、ディスク嵌合面3eが形成される。ディスクDをディスク嵌合面3eの外周に嵌合すると共に、ディスク搭載面3dの上に載置し、この状態で図示しないクランパによってディスクDの上面を押さえてディスク搭載面3d上に押し付けることにより、ディスクDがハブ部3に保持される。尚、軸部2の軸方向穴2bの上部は、クランパを固定するためのネジ穴として機能する。
【0033】
ハブ一体軸9は、詳細は後述するが、金属の板材の塑性加工で軸部2及びハブ部3を一体に有する素形材を形成し、この素形材の所定箇所に研削仕上げを施すことにより形成される。本実施形態では、潤滑油で満たされたラジアル軸受隙間に面する軸部2の外周面2aと、潤滑油で満たされたスラスト軸受隙間に面するハブ部3の円盤部3aの下側端面3a1と、ハブ部3のディスク搭載面3d及びディスク嵌合面3eとに研削仕上げが施される。軸部2の外周面2a及び円盤部3aの下側端面3a1は、ハブ部3の研削仕上げ面(ディスク搭載面3d及びディスク嵌合面3e)を基準として、研削仕上げが施されている。その結果、軸部2の外周面2aに対するディスク搭載面3dの振れ精度は5μm以下に設定され、軸部2の外周面2aに対するディスク嵌合面3eの同軸度は5μm以下に設定される。換言すれば、軸部2の外周面2aに対するディスク搭載面3d及びディスク嵌合面3eの寸法精度が上記の範囲内であれば、軸部2の外周面2aが、ディスク搭載面3d及びディスク嵌合面3eを基準として研削仕上げされていると推定することができる。
【0034】
軸受スリーブ8は、金属材料で円筒状に形成され、本実施形態では、例えば銅を主成分とする焼結金属で形成される。軸受スリーブ8の内周面8aには、例えば図3に示すように、軸方向に離隔した2つの領域にヘリングボーン形状の動圧溝8a1,8a2がそれぞれ形成される。図中に網掛けで示す領域は、動圧溝8a1,8a2の間に形成された丘部であり、動圧溝8a1,8a2よりも一段高くなっている(すなわち内径向きに突出している)。図示例では、上側の動圧溝8a1は軸方向非対称に形成されており、具体的には、軸方向中央部mより上側の領域の軸方向寸法X1が、下側の領域の軸方向寸法X2よりも大きくなっている(X1>X2)。下側の動圧溝8a2は軸方向対称に形成されている。軸受スリーブ8の外周面8dには、軸方向溝8d1が軸方向全長にわたって形成され、例えば3本の軸方向溝8d1が円周方向に等配される。
【0035】
ハウジング7は、例えば樹脂の射出成形で形成され、図2に示すように、側部7a及び底部7bを一体に有する有底円筒状に形成される。側部7aの円筒状内周面7a1には、軸受スリーブ8の外周面8dが隙間接着、圧入、接着剤介在下の圧入等により固定される。ハウジング7の側部7aの上端面7a2は、例えば図4に示すように複数の動圧溝7a20をスパイラル形状に配列した領域が形成される。ハウジング7の側部7aの外周の上端には、図2に示すように、上方に向かって漸次拡径するテーパ状のシール面7a3が形成される。このテーパ状のシール面7a3は、ハブ部3の円筒部3bの内周面3b1との間に、上方に向けて半径方向寸法が漸次縮小した環状のシール空間Sを形成する。シール空間Sは、ハブ一体軸9の回転時、スラスト軸受部Tのスラスト軸受隙間の外径側と連通している。このシール空間Sの毛細管力により、ハウジング7の内部に充満された潤滑油の漏れ出しを防止する。
【0036】
上記構成のハブ一体軸9、軸受スリーブ8、ハウジング7、及び抜け止め部材11を組み付けた状態で、軸受スリーブ8の内部気孔を含めたハウジング7の内部の空間に潤滑油を充満させることにより、図2に示す流体動圧軸受装置1が完成する。このとき、潤滑油の油面はシール空間Sの内部に保持される。
【0037】
ハブ一体軸9が回転すると、軸受スリーブ8の内周面8aと軸部2の外周面2aとの間にラジアル軸受隙間が形成される。そして、動圧溝8a1,8a2により上記ラジアル軸受隙間に満たされた潤滑油の圧力が高められ、この圧力(動圧作用)によりハブ一体軸9をラジアル方向に回転自在に非接触支持するラジアル軸受部R1,R2が構成される。
【0038】
これと同時に、ハブ部3の円盤部3aの下側端面3a1とハウジング7の側部7aの上端面7a2との間にスラスト軸受隙間が形成される。そして、動圧溝7a20により上記スラスト軸受隙間に満たされた潤滑油の圧力が高められ、この圧力(動圧作用)によりハブ一体軸9をスラスト方向に回転自在に非接触支持するスラスト軸受部Tが構成される。
【0039】
このとき、軸受スリーブ8の外周面8dに形成された軸方向溝8d1により、潤滑油が流通可能な連通路が形成される。この連通路により、ハウジング7の内部に満たされた潤滑油に局部的な負圧が発生する事態を防止できる。特に本実施形態では、図3に示すように、軸受スリーブ8の内周面8aに形成された上側の動圧溝8a1が軸方向非対称な形状に形成されているため、ハブ一体軸9の回転に伴ってラジアル軸受隙間の潤滑油が下方に押し込まれ、上記の連通路を介して潤滑油が循環し、これにより局部的な負圧の発生を確実に防止できる。
【0040】
以下、ハブ一体軸9の製造方法について説明する。
【0041】
ハブ一体軸9は、板材を塑性加工して軸部2及びハブ部3を一体に有する素形材を形成する素形材成形工程と、この素形材の所定箇所に研削仕上げを施す研削仕上げ工程とを経て形成される。
【0042】
(1)素形材成形工程
素形材形成工程では、まず、図5(a)に示すように、金属(例えば、Tiを0.5%以上含んだフェライト系ステンレス鋼)の板材20を準備する。例えば、本実施形態のような2.5インチHDDのスピンドルモータ用のハブ一体軸9の場合、板材の厚さは1mm程度とされる。
【0043】
そして、図5(b)に示すように、冷間の塑性加工(深絞り加工)により板材20の軸心を下方に突出させ、軸部21を成形する。このとき、図示しない金型で軸部21を押し込んで突出させるため、軸部21の軸心には軸方向穴21aが成形される。
【0044】
次に、図5(c)に示すように、冷間の塑性加工(プレス加工)により軸部21の周囲にハブ部22を成形する。具体的には、軸部21から外径に延びる円盤部22aと、円盤部22aの外径端から下方に延びる円筒部22bと、円筒部22bの下端から外径に延びる鍔部22cとが成形される。このとき、鍔部22cの上側端面22c1の内径端には、環状の凹部(逃げ部)22c10が同時に成形される。
【0045】
その後、図5(d)に示すように、軸部21の先端部(下端部)を切断除去し、軸方向穴21aを軸部21の下端に開口させる。これと共に、軸部21の軸方向穴21aの内周面にネジ溝を形成する。
【0046】
最後に、図5(e)に示すように、ハブ部22の鍔部22cと板材20とを切り離し、軸部21及びハブ部22を有する素形材30を板材20から分離する。
【0047】
このように素形材30を板材20から形成することで、素形材30の肉厚はおおよそ均一になっている。具体的には、軸部21の径方向の肉厚、ハブ部22の円盤部22aの軸方向の肉厚、円筒部22bの径方向の肉厚、及び、鍔部22cの軸方向の肉厚が、おおよそ均一になっている。詳しくは、上記の塑性加工により絞られて軸方向に延びる箇所(軸部21及び円筒部22b)の肉厚は、軸方向と直交する方向の面(円盤部22a及び鍔部22c)の肉厚よりも若干薄くなっている。例えば、1mm程度の板材20を用いて素形材30を形成する場合、円盤部22a及び鍔部22cの肉厚が約0.8mmであるのに対し、軸部21及び円筒部22bの肉厚は約0.5mmとなる。すなわち、本実施形態では、板材20から素形材30を得るときの肉厚の変化量が50%以下となっている。このように、板材20からの変形量が比較的小さいことで、素形材30を精度良く塑性加工することができる。
【0048】
(2)研削仕上げ工程
上記のようにして成形した素形材30の所定箇所に、研削仕上げが施される。尚、図6及び図7に示す研削仕上げ工程では、素形材30の軸方向を水平にして加工を行っているが、素形材30の各部位には上記と同様の名称を付している。
【0049】
まず、素形材30のハブ部22の所定箇所に研削仕上げが施される。具体的には、図6に示すように、素形材30の軸部21の軸方向穴21aに回転センタ41、42を装着して素形材30を回転自在に支持すると共に、ハブ部22の鍔部22cの下側端面22c2をバッキングプレート43で支持する。そして、バッキングプレート43を回転駆動して素形材30を軸部21を中心に回転させ、この状態でアンギュラ砥石44を素形材30に接触させる。詳しくは、アンギュラ砥石44を、鍔部22cの上側端面22c1(ディスク搭載面に相当)、円筒部22bの外周面22b1(ディスク嵌合面に相当)、及び、円盤部22aの上側端面22a1の外周部に同時に当接させ、これらの面を同時研削する。このとき、鍔部22cの上側端面22c1の内径端に逃げ部22c10が設けられているため、アンギュラ砥石44を、鍔部22cの上側端面22c1及び円筒部22bの外周面22b1に密着させることができる。
【0050】
次に、図7に示すように、ハブ部22の研削仕上げ面(図中に点線で示す)を基準として、軸部21の外周面21bと、ハブ部22の円盤部22aの下側端面22a2の外周部(スラスト軸受隙間に面する領域)とに研削仕上げを施す。例えば、ハブ部22の円盤部22aの上側端面22a1の外周部をマグネットチャック51で吸着支持すると共に、円筒部22bの外周面22b1をシュー52で摺動支持する。この状態で、マグネットチャック51を回転駆動して素形材30を軸部21を中心に回転させ、軸部21の外周面21bに砥石53を当接させると共に、円盤部22aの下側端面22a2の外周部に砥石54を当接させ、これらの面を研削する。
【0051】
このように、高精度に加工されたハブ部22の研削仕上げ面を基準として、軸部21の外周面21bに研削仕上げを施すことで、この面を高精度に加工することができる。特に、ディスク搭載面3dに相当する鍔部22cの上側端面22c1を基準として、軸部21の外周面21bを研削することで、これらの面の相対的な面精度(例えば振れ精度)を高精度に設定することができる。本実施形態では、軸部21の外周面21bを研削する際に、鍔部22cの上側端面22c1を直接支持するのではなく、円盤部22aの上側端面22a1の外周部をマグネットチャック51で支持している(図7参照)。円盤部22aの上側端面22a1の外周部と、鍔部22cの上側端面22c1とは同時研削されているため、これらの面の平行度は極めて高精度に設定される。従って、図7に示すように円盤部22aの上側端面22a1の外周部をマグネットチャック51で支持することで、鍔部22cの上側端面22c1を間接的に基準とすることができる。もちろん、可能であれば、鍔部22cの上側端面22c1をマグネットチャック51で吸着支持し、この面を直接的に基準としてもよい。
【0052】
また、ディスク嵌合面3eに相当する円筒部22bの外周面22b1をシュー52で支持することで、この面を基準として軸部21の外周面21bを研削することができるため、これらの面の相対的な面精度(例えば同軸度)を高精度に設定することができる。
【0053】
以上のように、素形材30の所定箇所に研削仕上げを施すことにより、軸部2及びハブ部3を有するハブ一体軸9(図2参照)が形成される。このハブ一体軸9の軸部2の外周面2aに、必要に応じて表面硬化処理あるいはコーティング処理が施される。尚、表面硬化処理あるいはコーティング処理を、上記の研削仕上げ工程に先立って行えば、研削による疵を抑えることができる。また、上記の研削仕上げ工程の後にコーティング処理を施せば、研削による疵をコーティングで覆うことができる。また、表面硬化処理及びコーティング処理の双方を施してもよく、例えば軸部2の外周面2aに表面硬化処理を施した後、上記の研削仕上げ工程を行い、さらにこの面にコーティング処理を施してもよい。
【0054】
本発明は、上記の実施形態に限られない。以下、本発明の他の実施形態を説明するが、上記の実施形態と同様の機能を有する箇所には同一の符号を付して重複説明を省略する。
【0055】
上記の実施形態では、図6及び図7に示すように、素形材30のハブ部22のディスク搭載面(鍔部22cの上側端面22c1)及びディスク嵌合面(円筒部22bの外周面22b1)に研削仕上げを施し、これらの面を基準として軸部21の外周面21bに研削仕上げを施しているが、これに限られない。例えば、研削仕上げを施したディスク搭載面のみを基準として、軸部21の外周面21bに研削仕上げを施してもよい。
【0056】
また、流体動圧軸受装置1の構成は上記に限られない。例えば、図8に示す流体動圧軸受装置1は、軸部2に設けられた軸方向穴2bの下端を閉じ、軸部2の下端の抜け止め部を省略した点で、上記の実施形態と異なる。このように、軸部2の下端の抜け止め部を省略することで、流体動圧軸受装置1の軸方向寸法が縮小され、スピンドルモータのさらなる薄型化が可能となる。この実施形態では、抜け止め部材11はハウジング7の外部に設けられる。具体的には、ハブ部3の円筒部3bの下端に環状の抜け止め部材11を固定している。この抜け止め部材11が、ハウジング7のテーパ状シール面7a3の下方に設けられた肩面7a4と軸方向で係合することにより、軸部2の軸受スリーブ8からの抜け止めが行われる。
【0057】
また、上記の実施形態では、ハブ部3の円盤部3aの下側端面3a1がスラスト軸受隙間に面しているが、この面がスラスト軸受隙間に面さない構成としてもよい。この場合、ハブ部3の下側端面3a1の研削仕上げを省略してもよい。
【0058】
また、上記の実施形態では、ハウジング7の外周面とハブ部3の内周面3b1との間にシール空間Sを形成しているが、シール空間Sの場所はこれに限られない。例えば、図示は省略するが、ハウジングの内周面の上端部にシール部材を固定し、このシール部材の内周面と軸部の外周面との間にシール空間を形成することもできる。
【0059】
また、上記の実施形態では、潤滑流体が潤滑油である場合を示しているが、これに限らず、例えば磁性流体や空気等の流体を使用することも可能である。
【0060】
また、上記の実施形態では、本発明に係るハブ一体軸9をHDDのスピンドルモータ用の流体動圧軸受装置に組み込んだ例を示しているが、これに限られない。例えば、ポリゴンスキャナモータ用の流体動圧軸受装置や、カラーホイールモータ用の流体動圧軸受装置に本発明のハブ一体軸を適用することもできる。
【符号の説明】
【0061】
1 流体動圧軸受装置
2 軸部
2a 外周面
2b 軸方向穴
3 ハブ部
3a 円盤部
3b 円筒部
3c 鍔部
3d ディスク搭載面
3e ディスク嵌合面
4 ステータコイル
5 ロータマグネット
6 ブラケット
7 ハウジング
8 軸受スリーブ
9 ハブ一体軸
10 ヨーク
11 抜け止め部材
20 板材
21 軸部
22 ハブ部
22a 円盤部
22b 円筒部
22c 鍔部
30 素形材
31 軸部
32 ハブ部
41 回転センタ
43 バッキングプレート
44 アンギュラ砥石
51 マグネットチャック
52 シュー
53 砥石
54 砥石
D ディスク
R1,R2 ラジアル軸受部
S シール空間
T スラスト軸受部

【特許請求の範囲】
【請求項1】
外周面が、潤滑流体で満たされたラジアル軸受隙間に面する軸部と、軸部から外径に突出し、軸方向と直交する回転体搭載面を有するハブ部とを一体に備えた流体動圧軸受装置用のハブ一体軸であって、
板材の塑性加工により軸部及びハブ部を一体成形した素形材のうち、少なくとも軸部の外周面及びハブ部の回転体搭載面に研削仕上げが施されたハブ一体軸。
【請求項2】
研削仕上げが施されたハブ部の回転体搭載面を基準として、軸部の外周面に研削仕上げが施された請求項1記載のハブ一体軸。
【請求項3】
ハブ部の外周面にも研削仕上げが施され、研削仕上げが施されたハブ部の外周面及び回転体搭載面を基準として、軸部の外周面に研削仕上げが施された請求項1記載のハブ一体軸。
【請求項4】
軸部の外周面に対する回転体搭載面の振れ精度が5μm以下である請求項1〜3の何れかに記載のハブ一体軸。
【請求項5】
回転体搭載面の平面度が1μm以下である請求項1〜4の何れかに記載のハブ一体軸。
【請求項6】
軸部の外周面に表面硬化処理又はコーティング処理が施された請求項1〜5の何れかに記載のハブ一体軸。
【請求項7】
表面硬化処理又はコーティング処理が施された軸部の外周面に、研削仕上げが施された請求項6記載のハブ一体軸。
【請求項8】
研削仕上げが施された軸部の外周面にコーティング処理が施された請求項6記載のハブ一体軸。
【請求項9】
Tiを0.05%以上含むフェライト系ステンレス鋼で形成された請求項1〜8の何れかに記載のハブ一体軸。
【請求項10】
ハブ部が、軸部から外径に延びる円盤部と、円盤部から軸方向に延びる円筒部と、円筒部から外径に延びる鍔部とを有する請求項1〜9の何れかに記載のハブ一体軸。
【請求項11】
ハブ部の円盤部の軸方向の肉厚が、軸部の軸方向寸法の20%以下である請求項10記載のハブ一体軸。
【請求項12】
HDDのスピンドルモータ用として用いられる請求項1〜11の何れかに記載のハブ一体軸。
【請求項13】
請求項1〜12の何れかに記載のハブ一体軸と、ハブ一体軸の軸部が内周に挿入された軸受部材と、軸部の外周面と軸受部材の内周面との間のラジアル軸受隙間に生じる流体膜でハブ一体軸を回転自在に支持するラジアル軸受部とを備えた流体動圧軸受装置。
【請求項14】
外周面が、潤滑流体で満たされたラジアル軸受隙間に面する軸部と、軸部から外径に突出し、軸方向と直交する回転体搭載面を有するハブ部とを一体に備えた流体動圧軸受装置用のハブ一体軸を製造するための方法であって、
板材を塑性加工することにより、軸部及びハブ部を一体に有する素形材を成形する工程と、素形材の軸部の外周面及びハブ部の回転体搭載面に研削仕上げを施す工程とを有するハブ一体軸の製造方法。
【請求項15】
ハブ部の回転体搭載面に研削仕上げを施した後、この回転体搭載面を基準として軸部の外周面に研削仕上げを施す請求項14記載のハブ一体軸の製造方法。
【請求項16】
ハブ部の回転体搭載面及び外周面に研削仕上げを施した後、この回転体搭載前及び外周面を基準として軸部の外周面に研削仕上げを施す請求項14記載のハブ一体軸の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2012−31969(P2012−31969A)
【公開日】平成24年2月16日(2012.2.16)
【国際特許分類】
【出願番号】特願2010−173652(P2010−173652)
【出願日】平成22年8月2日(2010.8.2)
【出願人】(000102692)NTN株式会社 (9,006)
【Fターム(参考)】