説明

液浸対物光学系、露光装置、デバイス製造方法、および境界光学素子

【課題】 例えば1.7程度の大きな像側開口数および良好な結像性能を確保することのできる液浸型の投影光学系。
【解決手段】 第1面(R)の像を第2面(W)上に形成する本発明の液浸型の投影光学系は、第1面側の面が気体に接触可能であって且つ第2面側の面が液体(Lm)に接触可能な光学素子(Lb)を備えている。光学素子の第2面側に接触可能な液体は、液浸対物光学系中の気体の使用光に対する屈折率を1とするとき、使用光に対して1.5よりも大きい屈折率を有する。光学素子の第1面側の面の曲率半径をRbとし、光学素子の第1面側の面の有効径をEbとし、光学素子を形成する光学材料の使用光に対する屈折率をNbとするとき、3.2<Nb・Eb/|Rb|<4.0の条件を満足する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、液浸対物光学系、露光装置、デバイス製造方法、および境界光学素子に関し、特に半導体素子や液晶表示素子などのデバイスをフォトリソグラフィ工程で製造する際に使用される露光装置に好適な投影光学系に関するものである。
【背景技術】
【0002】
半導体素子等を製造するためのフォトリソグラフィ工程において、マスク(またはレチクル)のパターン像を、投影光学系を介して、感光性基板(フォトレジストが塗布されたウェハ、ガラスプレート等)上に投影露光する露光装置が使用されている。露光装置では、半導体素子等の集積度が向上するにつれて、投影光学系に要求される解像力(解像度)が益々高まっている。
【0003】
投影光学系の解像力に対する要求を満足するには、照明光(露光光)の波長λを短くするとともに、投影光学系の像側開口数NAを大きくする必要がある。具体的には、投影光学系の解像度は、k・λ/NA(kはプロセス係数)で表される。また、像側開口数NAは、投影光学系と感光性基板との間の媒質(通常は空気などの気体)の屈折率をnとし、感光性基板への最大入射角をθとすると、n・sinθで表される。
【0004】
この場合、最大入射角θを大きくすることにより像側開口数の増大を図ろうとすると、感光性基板への入射角および投影光学系からの射出角が大きくなり、光学面での反射損失が増大して、大きな実効的な像側開口数を確保することはできない。そこで、投影光学系と感光性基板との間の光路中に屈折率の高い液体を満たすことにより像側開口数の増大を図る液浸技術が知られている。
【発明の開示】
【発明が解決しようとする課題】
【0005】
上述の液浸技術では、像側開口数をさらに増大させて高い解像力を得るために、感光性基板と投影光学系との間の光路を満たす浸液として水よりも高い屈折率を有する液体を用いる高屈折率リソグラフィーを提案している。次世代のリソグラフィーでは、32nmハーフピッチ以下を解像することが要求されるので、生産性を鑑みて液浸投影光学系(一般には液浸対物光学系)に要求される像側開口数は1.7程度となる。
【0006】
本発明は、前述の課題に鑑みてなされたものであり、例えば1.7程度の大きな像側開口数および良好な結像性能を確保することのできる液浸型の投影光学系を提供することを目的とする。また、本発明は、大きな像側開口数および良好な結像性能を有する高解像な投影光学系を用いて、微細なパターンを高精度に投影露光することのできる露光装置を提供することを目的とする。
【課題を解決するための手段】
【0007】
前記課題を解決するために、本発明の第1形態では、第1面と第2面とを光学的に共役にする液浸対物光学系において、
前記第1面側の面が前記気体に接触可能であって且つ前記第2面側の面が液体に接触可能な光学素子を備え、
前記光学素子の前記第2面側に接触可能な前記液体は、前記液浸対物光学系中の気体の使用光に対する屈折率を1とするとき、前記使用光に対して1.5よりも大きい屈折率を有し、
前記光学素子の前記第1面側の面の曲率半径をRbとし、前記光学素子の前記第1面側の面の有効径をEbとし、前記光学素子を形成する光学材料の前記使用光に対する屈折率をNbとするとき、
3.2<Nb・Eb/|Rb|<4.0
の条件を満足することを特徴とする液浸対物光学系を提供する。
【0008】
前記課題を解決するために、本発明の第2形態では、第1面と第2面とを光学的に共役にする液浸対物光学系において、
前記第1面側の面が前記気体に接触可能であって且つ前記第2面側の面が液体に接触可能な光学素子を備え、
前記光学素子の前記第2面側に接触可能な前記液体は、前記液浸対物光学系中の気体の使用光に対する屈折率を1とするとき、前記使用光に対して1.5よりも大きい屈折率を有し、
前記光学素子の前記第1面側の面の曲率半径をRbとし、前記光学素子の前記第1面側の面の外径をSbとし、前記光学素子を形成する光学材料の前記使用光に対する屈折率をNbとするとき、
3.3<Nb・Sb/|Rb|<4.15
の条件を満足することを特徴とする液浸対物光学系を提供する。
【0009】
本発明の第3形態では、前記第1面に設定された所定のパターンからの光に基づいて、前記パターンの像を前記第2面に設定された感光性基板上に投影するための第1形態または第2形態の液浸対物光学系を備えていることを特徴とする露光装置を提供する。
【0010】
本発明の第4形態では、第3形態の露光装置を用いて前記所定のパターンを前記感光性基板に露光する露光工程と、
前記露光工程を経た前記感光性基板を現像する現像工程とを含むことを特徴とするデバイス製造方法を提供する。
【0011】
本発明の第5形態では、第1面と第2面とを光学的に共役にする液浸対物光学系に用いられて前記第1面側の面が気体に接触可能であって且つ前記第2面側の面が液体に接触可能である光学素子であって、
前記光学素子の前記第2面側の液体は、前記気体の使用光に対する屈折率を1とするとき、前記使用光に対して1.5よりも大きい屈折率を有し、
前記光学素子の前記第1面側の面の曲率半径をRbとし、前記光学素子の前記第1面側の面の有効径をEbとし、前記光学素子を形成する光学材料の前記使用光に対する屈折率をNbとするとき、
3.2<Nb・Eb/|Rb|<4.0
の条件を満足することを特徴とする光学素子を提供する。
【0012】
本発明の第6形態では、第1面と第2面とを光学的に共役にする液浸対物光学系に用いられて前記第1面側の面が気体に接触可能であって且つ前記第2面側の面が液体に接触可能である光学素子であって、
前記光学素子の前記第2面側の液体は、前記気体の使用光に対する屈折率を1とするとき、前記使用光に対して1.5よりも大きい屈折率を有し、
前記光学素子の前記第1面側の面の曲率半径をRbとし、前記光学素子の前記第1面側の面の外径をSbとし、前記光学素子を形成する光学材料の前記使用光に対する屈折率をNbとするとき、
3.3<Nb・Sb/|Rb|<4.15
の条件を満足することを特徴とする光学素子を提供する。
【発明の効果】
【0013】
本発明の液浸対物光学系、例えば第1面の像を第2面上に形成する液浸型の投影光学系では、第2面との間の光路が1.5よりも大きい屈折率を有する液体で満たされ、第1面側の面が気体に接し且つ第2面側の面が液体に接触可能な光学素子が所要の条件式を満足する。その結果、光学系の大型化を回避し且つ像面内の収差を良好に補正しつつ、例えば1.7程度の大きな像側開口数を確保することができる。
【0014】
すなわち、本発明では、例えば1.7程度の大きな像側開口数および良好な結像性能を確保することのできる液浸型の投影光学系を実現することができる。また、本発明の露光装置では、大きな像側開口数および良好な結像性能を有する高解像な投影光学系を用いて、微細なパターンを高精度に投影露光することができ、ひいては良好なデバイスを高精度に製造することができる。
【発明を実施するための最良の形態】
【0015】
本発明の液浸対物光学系は、第1面と第2面とを光学的に共役にする光学系であって、使用時には、第2面との間の光路が使用光に対して1.5よりも大きい屈折率(光学系中の気体の使用光に対する屈折率を1とする)を有する液体で満たされている。以下、説明を簡単にするために、例えば露光装置に搭載されてマスクのパターン面(第1面)の縮小像を感光性基板(ウェハ)の被露光面(第2面)上に形成する液浸型の投影光学系について考える。
【0016】
本発明の投影光学系は、像側(第2面側;ウェハ側)の面が液体(浸液)に接し且つ物体側(第1面側;マスク側)の面が気体に接する光学素子(境界光学素子、境界レンズ)を備え、この境界光学素子は次の条件式(1)および(2)の少なくとも一方を満足する。条件式(1)において、Rbは境界光学素子の物体側(第1面側)の面の曲率半径であり、Ebは境界光学素子の物体側(第1面側)の面の有効径(直径)であり、Nbは境界光学素子を形成する光学材料の使用光(露光光)に対する屈折率である。
3.2<Nb・Eb/|Rb|<4.0 (1)
【0017】
また、条件式(2)において、Rbは境界光学素子の物体側(第1面側)の面の曲率半径であり、Sbは境界光学素子の物体側(第1面側)の面の外径(直径)であり、Nbは境界光学素子を形成する光学材料の使用光(露光光)に対する屈折率である。
3.3<Nb・Sb/|Rb|<4.15 (2)
【0018】
本発明の投影光学系において1.7程度の像側開口数に対応する光線をウェハまで伝播させるには、境界光学素子に大きな屈折力が要求される。液体の透過率が十分でない場合、像面上の有効結像領域(露光装置の静止露光領域に対応)の全体に亘って瞳強度分布(像面上の1点に達する光束が投影光学系の瞳面に形成する光強度分布)が均一になるように、境界光学素子の像側(ウェハ側)の面をほぼ平面状に形成することが好ましい。そこで、境界光学素子の物体側(マスク側)の面に、条件式(1)および(2)の少なくとも一方の条件式を満たすような屈折力が要求されることになる。
【0019】
条件式(1)の下限値を下回ると、境界光学素子の物体側の面の曲率半径の大きさ|Rb|が大きくなり過ぎて、境界光学素子の屈折力が不足する。その結果、所望の像側開口数を達成しようとすると、光学系が製造不可能な程度まで径方向に大型化するとともに、軸方向にも大型化してしまう。なお、本発明の効果をさらに良好に発揮するには、条件式(1)の下限値を3.35に設定することが好ましい。
【0020】
条件式(1)の上限値を上回ると、境界光学素子の物体側の面の曲率半径の大きさ|Rb|が小さくなり過ぎて、境界光学素子の屈折力が過大になる。その結果、像面内の収差(コマ収差、ディストーションなど)の補正が困難になるだけでなく、境界光学素子の支持(保持)が困難になってしまう。なお、本発明の効果をさらに良好に発揮するには、条件式(1)の上限値を3.85に設定することが好ましい。
【0021】
また、条件式(2)の下限値を下回ると、境界光学素子の物体側の面の曲率半径の大きさ|Rb|が大きくなり過ぎて、境界光学素子の屈折力が不足する。その結果、所望の像側開口数を達成しようとすると、光学系が製造不可能な程度まで径方向に大型化するとともに、軸方向にも大型化してしまう。なお、本発明の効果をさらに良好に発揮するには、条件式(2)の下限値を3.4に設定することが好ましい。
【0022】
条件式(2)の上限値を上回ると、境界光学素子の物体側の面の曲率半径の大きさ|Rb|が小さくなり過ぎて、境界光学素子の屈折力が過大になる。その結果、像面内の収差(コマ収差、ディストーションなど)の補正が困難になるだけでなく、境界光学素子の支持(保持)が困難になってしまう。なお、本発明の効果をさらに良好に発揮するには、条件式(2)の上限値を4.0に設定することが好ましい。
【0023】
また、本発明の投影光学系では、次の条件式(3)を満足することが好ましい。条件式(3)において、Rbは境界光学素子の物体側(第1面側)の面の曲率半径であり、Yiは像面(第2面)上における最大像高である。ただし、第1面と第2面とを光学的に共役にする液浸対物光学系に対して本発明を適用する場合には、Yiは第2面上の最大像高または第2面上の最大物体高である。なお、第1面の像を第2面に形成する液浸対物光学系では、Yiは第2面上の最大像高とすることができ、第2面の像を第1面に形成する液浸対物光学系では、Yiは第1面上の最大物体高とすることができる。
0.12<Yi/|Rb|<0.3 (3)
【0024】
露光装置に搭載される投影光学系では、スループットの向上を図るために、大きな最大像高Yiを確保することが求められる。しかしながら、光学系の大型化を回避し且つ像面内の収差を良好に補正するには、条件式(3)を満たすことが好ましい。具体的に、条件式(3)の下限値を下回ると、境界光学素子の物体側の面の曲率半径の大きさ|Rb|が大きくなり過ぎて、境界光学素子の屈折力が不足する。その結果、所望の像側開口数を達成しようとすると、光学系が製造不可能な程度まで径方向に大型化するとともに、軸方向にも大型化するので好ましくない。なお、本発明の効果をさらに良好に発揮するには、条件式(3)の下限値を0.13に設定することが好ましい。
【0025】
条件式(3)の上限値を上回ると、境界光学素子の物体側の面の曲率半径の大きさ|Rb|が小さくなり過ぎて、境界光学素子の屈折力が過大になる。その結果、像面内の収差(コマ収差、ディストーションなど)の補正が困難になるだけでなく、境界光学素子の支持(保持)が困難になるので好ましくない。なお、本発明の効果をさらに良好に発揮するには、条件式(3)の上限値を0.25に設定することが好ましい。
【0026】
また、本発明の投影光学系は、光軸から間隔を隔てた領域に視野を有する軸外視野型の光学系であって、3回結像型の反射屈折光学系であることが好ましい。具体的には、本発明の投影光学系は、第1面と光学的に共役な第1共役位置と第1面との間に配置された屈折型の第1結像光学系と、第1共役位置と光学的に共役な第2共役位置と第1共役位置との間に配置されて、少なくとも1つの凹面反射鏡を含む第2結像光学系と、第2共役位置と第2面との間に配置された屈折型の第3結像光学系とを備えていることが好ましい。
【0027】
換言すれば、本発明の投影光学系は、物体面(第1面)に配置されたパターンの第1中間像を形成する第1結像光学系と、第1中間像からの光に基づいてパターンの第2中間像(第1中間像の像であってパターンの二次像)を形成する第2結像光学系と、第2中間像からの光に基づいて像面(第2面)上にパターンの最終像を形成する第3結像光学系とを備えていることが好ましい。
【0028】
一般に、像側開口数の大きな投影光学系では、液浸系に限定されることなく乾燥系においても、ペッツバール条件を成立させて像の平坦性を得るという観点から反射屈折光学系の採用が望ましく、あらゆる微細パターンへの対応力の観点から軸外視野型の光学系の採用が望ましい。特に、軸外視野型で3回結像型の反射屈折光学系では、2つの中間像の形成位置の間に配置された凹面反射鏡への入射光線と凹面反射鏡からの射出光線との光線分離を容易に行うことができる。
【0029】
また、本発明では、上述の軸外視野型で3回結像型の反射屈折光学系において、第1結像光学系から第2結像光学系へ至る光路、および第2結像光学系から第3結像光学系へ至る光路のうちの少なくとも一方の光路中に偏向鏡が配置されていることが好ましい。この偏向鏡の配置により、簡易な構成に基づいて、凹面反射鏡への入射光線と凹面反射鏡からの射出光線との光線分離をさらに容易に行うことができる。
【0030】
また、本発明では、上述の軸外視野型で3回結像型の反射屈折光学系において、第2結像光学系は、凹面を互いに向かい合わせた2つの凹面反射面を含んでいても良い。この構成によっても、凹面反射面への入射光線と凹面反射面からの射出光線との光線分離を容易に行うことができる。これらの凹面反射面は互いに共軸に配置することができ、反射屈折光学系の1つの光軸とすることができる。
【0031】
また、本発明では、上述の偏向鏡が配置された軸外視野型で3回結像型の反射屈折光学系において、次の条件式(4)および(5)を満足することが好ましい。条件式(4)および(5)において、M1は第1結像光学系の結像倍率であり、M12は第1結像光学系と第2結像光学系との合成結像倍率である。
1.1<|M1|<1.7 (4)
1.1<|M12|<1.7 (5)
【0032】
条件式(4)および(5)の下限値を下回ると、偏向鏡への光線の入射角度範囲が大きくなり過ぎて、有効反射面の全体に亘って所望の反射率を維持することが困難になるので好ましくない。なお、本発明の効果をさらに良好に発揮するには、条件式(4)および(5)の下限値を1.2に設定することが好ましい。
【0033】
条件式(4)および(5)の上限値を上回ると、偏向鏡の所要反射面が大きくなり過ぎて、投影光学系中への配置が困難になり、所望の大きさの最大像高を実現することができなくなるので好ましくない。なお、本発明の効果をさらに良好に発揮するには、条件式(4)および(5)の上限値を1.5に設定することが好ましい。
【0034】
本発明の実施形態を、添付図面に基づいて説明する。図1は、本発明の実施形態にかかる露光装置の構成を概略的に示す図である。図1では、X軸およびY軸がウェハWに対して平行な方向に設定され、Z軸がウェハWに対して直交する方向に設定されている。さらに具体的には、XY平面が水平面に平行に設定され、+Z軸が鉛直方向に沿って上向きに設定されている。
【0035】
本実施形態の露光装置は、図1に示すように、たとえば露光光源であるArFエキシマレーザ光源を含み、オプティカル・インテグレータ(ホモジナイザー)、視野絞り、コンデンサレンズ等から構成される照明光学系1を備えている。光源から射出された波長193nmの紫外パルス光からなる露光光(露光ビーム)ILは、照明光学系1を通過し、レチクル(マスク)Rを照明する。レチクルRには転写すべきパターンが形成されており、パターン領域全体のうちX方向に沿って長辺を有し且つY方向に沿って短辺を有する矩形状(スリット状)のパターン領域が照明される。
【0036】
レチクルRを通過した光は、液浸型で反射屈折型の投影光学系PLを介して、フォトレジストが塗布されたウェハ(感光性基板)W上の露光領域に所定の投影倍率でレチクルパターンを形成する。すなわち、レチクルR上での矩形状の照明領域に光学的に対応するように、ウェハW上ではX方向に沿って長辺を有し且つY方向に沿って短辺を有する矩形状の静止露光領域(実効露光領域;有効結像領域)にパターン像が形成される。
【0037】
図2は、本実施形態においてウェハ上に形成される矩形状の静止露光領域と基準光軸との位置関係を示す図である。本実施形態では、図2に示すように、基準光軸AXを中心とした半径Bを有する円形状の領域(イメージサークル)IF内において、基準光軸AXからY方向に軸外し量Aだけ離れた位置に所望の大きさを有する矩形状の静止露光領域ERが設定される。ここで、静止露光領域ERのX方向の長さはLXであり、そのY方向の長さはLYである。図示を省略したが、レチクルR上では、矩形状の静止露光領域ERに対応して、基準光軸AXからY方向に軸外し量Aに対応する距離だけ離れた位置に静止露光領域ERに対応した大きさおよび形状を有する矩形状の照明領域が形成される。
【0038】
レチクルRはレチクルステージRST上においてXY平面に平行に保持され、レチクルステージRSTにはレチクルRをX方向、Y方向および回転方向に微動させる機構が組み込まれている。レチクルステージRSTは、レチクルステージRST上に設けられた移動鏡12rを用いるレチクルレーザ干渉計13rによってX方向、Y方向および回転方向の位置がリアルタイムに計測され、且つ制御される。ウェハWは、ウェハホルダWHを介してZステージ9上においてXY平面に平行に固定されている。
【0039】
また、Zステージ9は、投影光学系PLの像面と実質的に平行なXY平面に沿って移動するXYステージ10上に固定されており、ウェハWのフォーカス位置(Z方向の位置)および傾斜角を制御する。Zステージ9は、Zステージ9上に設けられた移動鏡12wを用いるウェハレーザ干渉計13wによってX方向、Y方向および回転方向の位置がリアルタイムに計測され、且つ制御される。また、XYステージ10は、ベース11上に載置されており、ウェハWのX方向、Y方向および回転方向を制御する。
【0040】
一方、本実施形態の露光装置に設けられた主制御系14は、レチクルレーザ干渉計13rにより計測された計測値に基づいてレチクルRのX方向、Y方向および回転方向の位置の調整を行う。即ち、主制御系14は、レチクルステージRSTに組み込まれている機構に制御信号を送信し、レチクルステージRSTを微動させることによりレチクルRの位置調整を行う。また、主制御系14は、オートフォーカス方式及びオートレベリング方式によりウェハW上の表面を投影光学系PLの像面に合わせ込むため、ウェハWのフォーカス位置(Z方向の位置)および傾斜角の調整を行う。
【0041】
即ち、主制御系14は、ウェハステージ駆動系15に制御信号を送信し、ウェハステージ駆動系15によりZステージ9を駆動させることによりウェハWのフォーカス位置および傾斜角の調整を行う。更に、主制御系14は、ウェハレーザ干渉計13wにより計測された計測値に基づいてウェハWのX方向、Y方向および回転方向の位置の調整を行う。即ち、主制御系14は、ウェハステージ駆動系15に制御信号を送信し、ウェハステージ駆動系15によりXYステージ10を駆動させることによりウェハWのX方向、Y方向および回転方向の位置調整を行う。
【0042】
露光時には、主制御系14は、レチクルステージRSTに組み込まれている機構に制御信号を送信すると共に、ウェハステージ駆動系15に制御信号を送信し、投影光学系PLの投影倍率に応じた速度比でレチクルステージRSTおよびXYステージ10を駆動させつつ、レチクルRのパターン像をウェハW上の所定のショット領域内に投影露光する。その後、主制御系14は、ウェハステージ駆動系15に制御信号を送信し、ウェハステージ駆動系15によりXYステージ10を駆動させることによりウェハW上の別のショット領域を露光位置にステップ移動させる。
【0043】
このように、ステップ・アンド・スキャン方式によりレチクルRのパターン像をウェハW上に走査露光する動作を繰り返す。すなわち、本実施形態では、ウェハステージ駆動系15およびウェハレーザ干渉計13などを用いてレチクルRおよびウェハWの位置制御を行いながら、矩形状の静止露光領域および静止照明領域の短辺方向すなわちY方向に沿ってレチクルステージRSTとXYステージ10とを、ひいてはレチクルRとウェハWとを同期的に移動(走査)させることにより、ウェハW上には静止露光領域の長辺LXに等しい幅を有し且つウェハWの走査量(移動量)に応じた長さを有する領域に対してレチクルパターンが走査露光される。
【0044】
図3は、本実施形態の各実施例における境界レンズとウェハとの間の構成を模式的に示す図である。本実施形態では、図3に示すように、境界レンズLbとウェハWとの間の光路が、露光光に対して1.5よりも大きい屈折率を有する液体Lmで満たされている。境界レンズLbは、レチクルR側に凸面を向け且つウェハW側に平面を向けた正レンズである。本実施形態では、図1に示すように、給排水機構21を用いて、境界レンズLbとウェハWとの間の光路中において液体Lmを循環させている。
【0045】
投影光学系PLに対してウェハWを相対移動させつつ走査露光を行うステップ・アンド・スキャン方式の露光装置において、走査露光の開始から終了まで投影光学系PLの境界レンズLbとウェハWとの間の光路中に液体Lmを満たし続けるには、たとえば国際公開番号WO99/49504号公報に開示された技術や、特開平10−303114号公報に開示された技術などを用いることができる。国際公開番号WO99/49504号公報に開示された技術では、液体供給装置から供給管および排出ノズルを介して所定の温度に調整された液体を境界レンズLbとウェハWとの間の光路を満たすように供給し、液体供給装置により回収管および流入ノズルを介してウェハW上から液体を回収する。
【0046】
一方、特開平10−303114号公報に開示された技術では、液体を収容することができるようにウェハホルダテーブルを容器状に構成し、その内底部の中央において(液体中において)ウェハWを真空吸着により位置決め保持する。また、投影光学系PLの鏡筒先端部が液体中に達し、ひいては境界レンズLbのウェハ側の光学面が液体中に達するように構成する。このように、浸液としての液体を微小流量で循環させることにより、防腐、防カビ等の効果により液体の変質を防ぐことができる。また、露光光の熱吸収による収差変動を防ぐことができる。なお、ここでは国際公開番号WO99/49504号公報および特開平10−303114号公報を参照として援用する。
【0047】
本実施形態の各実施例において、非球面は、光軸に垂直な方向の高さをyとし、非球面の頂点における接平面から高さyにおける非球面上の位置までの光軸に沿った距離(サグ量)をzとし、頂点曲率半径をrとし、円錐係数をκとし、n次の非球面係数をCnとしたとき、以下の数式(a)で表される。後述の表(1)〜表(3)において、非球面形状に形成されたレンズ面には面番号の右側に*印を付している。
【0048】
z=(y2/r)/[1+{1−(1+κ)・y2/r21/2]+C4・y4+C6・y6
+C8・y8+C10・y10+C12・y12+C14・y14+C16・y16 (a)
【0049】
各実施例において、投影光学系PLは、物体面(第1面)に配置されたレチクルRのパターンの第1中間像を形成するための第1結像光学系G1と、第1中間像からの光に基づいてレチクルパターンの第2中間像(第1中間像の像であってレチクルパターンの二次像)を形成するための第2結像光学系G2と、第2中間像からの光に基づいて像面(第2面)に配置されたウェハW上にレチクルパターンの最終像(レチクルパターンの縮小像)を形成するための第3結像光学系G3とを備えている。ここで、第1結像光学系G1および第3結像光学系G3はともに屈折光学系であり、第2結像光学系G2は凹面反射鏡CMを含む反射屈折光学系である。
【0050】
第1結像光学系G1と第2結像光学系G2との間の光路中には第1平面反射鏡(第1偏向鏡)M1が配置され、第2結像光学系G2と第3結像光学系G3との間の光路中には第2平面反射鏡(第2偏向鏡)M2が配置されている。こうして、各実施例の投影光学系PLでは、レチクルRからの光が、第1結像光学系G1を介して、第1平面反射鏡M1と第2結像光学系G2との間の光路中において第1平面反射鏡M1の近傍にレチクルパターンの第1中間像を形成する。第1中間像からの光は、第2結像光学系G2を介して、第2平面反射鏡M2と第2結像光学系G2との間の光路中において第2平面反射鏡M2の近傍にレチクルパターンの第2中間像を形成する。第2中間像からの光は、第3結像光学系G3を介して、レチクルパターンの最終像をウェハW上に形成する。
【0051】
また、各実施例の投影光学系PLでは、第1結像光学系G1および第3結像光学系G3が鉛直方向に沿って直線状に延びる光軸AX1および光軸AX3を有し、光軸AX1および光軸AX3は基準光軸AXと一致している。一方、第2結像光学系G2は、水平方向に沿って直線状に延びる(基準光軸AXに垂直な)光軸AX2を有する。こうして、レチクルR、ウェハW、第1結像光学系G1を構成するすべての光学部材および第3結像光学系G3を構成するすべての光学部材は、重力方向と直交する面すなわち水平面に沿って互いに平行に配置されている。さらに、第1平面反射鏡M1および第2平面反射鏡M2は、レチクル面に対して45度の角度をなすように設定された反射面をそれぞれ有し、第1平面反射鏡M1と第2平面反射鏡M2とは1つの光学部材として一体的に構成されている。また、各実施例において、投影光学系PLは、物体側および像側の双方にほぼテレセントリックに構成されている。
【0052】
[第1実施例]
図4は、本実施形態の第1実施例にかかる投影光学系のレンズ構成を示す図である。第1実施例にかかる投影光学系PLにおいて第1結像光学系G1は、レチクル側から順に、平行平面板P1と、レチクル側に凸面を向けた正メニスカスレンズL11と、両凸レンズL12と、両凸レンズL13と、レチクル側に非球面を向けたレンズL14と、レチクル側に凸面を向けた正メニスカスレンズL15と、レチクル側に凹面を向けた正メニスカスレンズL16と、レチクル側に凸面を向けた負メニスカスレンズL17と、レチクル側に非球面形状の凹面を向けた負メニスカスレンズL18と、レチクル側に凹面を向けた正メニスカスレンズL19と、レチクル側に非球面を向けた正レンズL110と、両凸レンズL111と、ウェハ側に非球面形状の凹面を向けた正メニスカスレンズL112とにより構成されている。
【0053】
また、第2結像光学系G2は、光の進行往路に沿って光の入射側から順に、両凹レンズL21と、入射側に凹面を向けた負メニスカスレンズL22と、入射側に凹面を向けた凹面反射鏡CMとにより構成されている。また、第3結像光学系G3は、レチクル側(すなわち光の入射側)から順に、レチクル側に凹面を向けた正メニスカスレンズL31と、レチクル側に凹面を向けた正メニスカスレンズL32と、ウェハ側に非球面形状の凸面を向けた両凸レンズL33と、レチクル側に凸面を向けた正メニスカスレンズL34と、レチクル側に凸面を向けた負メニスカスレンズL35と、ウェハ側に非球面形状の凹面を向けた両凹レンズL36と、ウェハ側に非球面を向けた正レンズL37と、レチクル側に非球面形状の凸面を向けた両凸レンズL38と、レチクル側に非球面形状の凹面を向けた正メニスカスレンズL39と、レチクル側に非球面形状の凸面を向けた両凸レンズL310と、ウェハ側に非球面形状の凸面を向けた両凸レンズL311と、開口絞りASと、ウェハ側に非球面形状の凹面を向けた正メニスカスレンズL312と、ウェハ側に非球面形状の凹面を向けた正メニスカスレンズL313と、ウェハ側に平面を向けた平凸レンズL314(境界レンズLb)とにより構成されている。
【0054】
第1実施例では、境界レンズLbとウェハWとの間の光路に、使用光(露光光)であるArFエキシマレーザ光(中心波長λ=193.306nm)に対して1.8の屈折率を有する高屈折率液体Lm(図4では不図示)が満たされている。この高屈折率液体Lmとして、例えば炭化水素系の媒質(液体)を用いることができる。境界レンズLbは、使用光の中心波長に対して2.1435の屈折率を有するルテチウム・アルミニウム・ガーネット([Lutetium Aluminum Garnet]LuAG)結晶により形成されている。境界レンズLb以外の光透過部材(平行平面板P1、レンズL11〜L112,L21,L22,L31〜L313)は、使用光の中心波長に対して1.5603261の屈折率を有する石英(SiO2)により形成されている。
【0055】
次の表(1)に、第1実施例にかかる投影光学系PLの諸元の値を掲げる。表(1)の主要諸元の欄において、λは露光光の中心波長を、βは投影倍率(全系の結像倍率)の大きさ(絶対値)を、NAは像側(ウェハ側)開口数を、BはウェハW上でのイメージサークルIFの半径(最大像高Yi)を、Aは静止露光領域ERの軸外し量を、LXは静止露光領域ERのX方向に沿った寸法(長辺の寸法)を、LYは静止露光領域ERのY方向に沿った寸法(短辺の寸法)をそれぞれ表している。
【0056】
また、表(1)の光学部材諸元の欄において、面番号は物体面(第1面)であるレチクル面から像面(第2面)であるウェハ面への光線の進行する経路に沿ったレチクル側からの面の順序を、rは各面の曲率半径(非球面の場合には頂点曲率半径:mm)を、dは各面の軸上間隔すなわち面間隔(mm)を、nは中心波長に対する屈折率をそれぞれ示している。面間隔dの符号は、凹面反射鏡CMから第2平面反射鏡M2へ至る光路中では負とし、その他の光路中では正としている。
【0057】
第1結像光学系G1では、レチクル側(光の入射側)に向かって凸面の曲率半径を正とし、レチクル側に向かって凹面の曲率半径を負としている。第2結像光学系G2では、光の進行往路に沿って光の入射側に向かって凹面の曲率半径を負とし、光の入射側に向かって凸面の曲率半径を正としている。第3結像光学系G3では、レチクル側(光の入射側)に向かって凸面の曲率半径を正とし、レチクル側に向かって凹面の曲率半径を負としている。なお、表(1)における表記は、以降の表(2)および表(3)においても同様である。
【0058】
表(1)
(主要諸元)
λ=193.306nm
β=1/4
NA=1.7
B=12.53mm
A=3mm
LX=22mm
LY=3mm

(光学部材諸元)
面番号 r d n 光学部材
(レチクル面) 77.68699
1 ∞ 8.00000 1.5603261 (P1)
2 ∞ 5.99804
3 191.78217 27.80620 1.5603261 (L11)
4 357.26950 25.69450
5 338.29471 44.22623 1.5603261 (L12)
6 -447.13457 1.00000
7 205.69118 43.81913 1.5603261 (L13)
8 -1019.97296 1.00000
9* 837.31056 12.50969 1.5603261 (L14)
10 612.79058 22.84470
11 98.31575 38.50114 1.5603261 (L15)
12 107.22865 52.97229
13 -315.21213 27.98666 1.5603261 (L16)
14 -210.60474 33.31685
15 272.57977 22.77029 1.5603261 (L17)
16 225.22872 59.75622
17* -107.69711 17.60675 1.5603261 (L18)
18 -409.70711 20.87309
19 -1032.54239 68.33466 1.5603261 (L19)
20 -167.05382 2.90386
21* 2817.69513 37.22144 1.5603261 (L110)
22 -349.50628 1.00000
23 838.48801 33.36135 1.5603261 (L111)
24 -583.97502 1.71680
25 172.48233 47.23959 1.5603261 (L112)
26* 320.00000 81.00000
27 ∞ 220.00000 (M1)
28 -123.44114 15.00000 1.5603261 (L21)
29 7598.76379 80.04526
30 -113.56680 18.00000 1.5603261 (L22)
31 -223.60932 25.10674
32 -176.92683 -25.10674 (CM)
33 -223.60932 -18.00000 1.5603261 (L22)
34 -113.56680 -80.04526
35 7598.76379 -15.00000 1.5603261 (L21)
36 -123.44114 -220.00000
37 ∞ 81.00000 (M2)
38 -430.00000 27.58948 1.5603261 (L31)
39 -222.93419 1.00000
40 -713.30219 25.71244 1.5603261 (L32)
41 -299.97724 1.00000
42 301.06922 52.22707 1.5603261 (L33)
43 -1159.97536 1.00000
44 183.95565 70.00000 1.5603261 (L34)
45* 312.52930 40.49953
46 607.96857 10.97062 1.5603261 (L35)
47 113.09939 86.26125
48 -144.19322 10.00000 1.5603261 (L36)
49* 192.84172 17.45407
50 554.07136 31.69718 1.5603261 (L37)
51* -1118.81853 8.67428
52* 1003.91527 69.19649 1.5603261 (L38)
53 -281.95511 1.00000
54* -1774.62289 55.24875 1.5603261 (L39)
55 -277.22784 1.00000
56* 1834.52578 38.87499 1.5603261 (L310)
57 -547.30212 6.62312
58 250.00000 81.34467 1.5603261 (L311)
59* 12706.48030 0.00000
60 ∞ 1.00000 (AS)
61 166.15177 63.27262 1.5603261 (L312)
62* 350.56968 1.00000
63 122.54490 36.46234 1.5603261 (L313)
64* 282.95747 1.00000
65 76.52285 60.66639 2.1435 (L314:Lb)
66 ∞ 3.00000 1.8 (Lm)
(ウェハ面)

(非球面データ)
9面
κ=0
4=−7.63790×10-8 6=−1.62891×10-12
8=5.55362×10-1710=−2.39683×10-21
12=−8.47266×10-2514=9.08957×10-29
16=−3.00802×10-33

17面
κ=0
4=6.00846×10-8 6=2.65139×10-13
8=2.17914×10-1710=6.54666×10-21
12=−2.34896×10-2414=3.96566×10-28
16=−2.85541×10-32

21面
κ=0
4=−4.15734×10-9 6=−1.54979×10-14
8=−1.17596×10-1810=1.16093×10-22
12=−3.79603×10-2714=4.79263×10-32
16=0

26面
κ=0
4=2.58041×10-8 6=−1.95184×10-13
8=9.77464×10-1810=−1.00591×10-22
12=6.41700×10-2714=−1.77985×10-31
16=2.73152×10-36

45面
κ=0
4=1.31589×10-8 6=2.30176×10-14
8=3.60908×10-1810=−5.34765×10-23
12=1.17371×10-2614=5.83332×10-31
16=−4.24504×10-35

49面
κ=0
4=−6.57508×10-8 6=1.70210×10-15
8=1.16705×10-1610=−1.37891×10-20
12=1.36399×10-2514=4.47204×10-29
16=−2.07916×10-33

51面
κ=0
4=6.23295×10-8 6=1.52020×10-12
8=−8.46549×10-1710=−3.01706×10-21
12=1.27914×10-2514=1.10840×10-29
16=−5.40441×10-34

52面
κ=0
4=−8.73044×10-10 6=1.67829×10-12
8=−4.16023×10-1710=−1.45165×10-21
12=6.52873×10-2614=−1.08406×10-31
16=−1.55999×10-35

54面
κ=0
4=−9.04314×10-9 6=−4.87981×10-13
8=2.45050×10-1810=3.21314×10-22
12=−3.05331×10-2614=6.40579×10-31
16=8.75272×10-37

56面
κ=0
4=−3.94105×10-9 6=−1.20866×10-14
8=−6.30108×10-1810=1.68821×10-23
12=7.03912×10-2714=−3.97182×10-32
16=−3.89542×10-36

59面
κ=0
4=−1.59760×10-8 6=1.77542×10-13
8=1.18207×10-1710=−1.87799×10-22
12=−4.71028×10-2714=5.18795×10-32
16=1.07242×10-36

62面
κ=0
4=−6.35509×10-8 6=5.79733×10-12
8=−4.17234×10-1610=6.77275×10-21
12=1.24641×10-2414=−8.13388×10-29
16=1.62686×10-33

64面
κ=0
4=5.22825×10-8 6=4.10375×10-12
8=7.80501×10-1610=−9.71606×10-21
12=−1.52600×10-2414=5.37297×10-28
16=1.38623×10-32

(条件対応値)
Nb=2.1435
Eb=121.90mm
Sb=132mm
|Rb|=76.52285mm
Yi=12.53mm
(1)Nb・Eb/|Rb|=3.415
(2)Nb・Sb/|Rb|=3.697
(3)Yi/|Rb|=0.164
(4)|M1|=1.34
(5)|M12|=1.32
【0059】
図5は、第1実施例の投影光学系における横収差を示す図である。収差図において、Yは像高を示している。図5の収差図から明らかなように、第1実施例では、非常に大きな像側開口数(NA=1.7)および比較的大きい矩形状の静止露光領域ER(22mm×3mm)を確保しているにもかかわらず、波長が193.306nmのArFエキシマレーザ光に対して収差が良好に補正されていることがわかる。
【0060】
[第2実施例]
図6は、本実施形態の第2実施例にかかる投影光学系のレンズ構成を示す図である。第2実施例にかかる投影光学系PLにおいて第1結像光学系G1は、レチクル側から順に、平行平面板P1と、ウェハ側に非球面を向けた正レンズL11と、両凸レンズL12と、両凸レンズL13と、レチクル側に凸面を向けた正メニスカスレンズL14と、レチクル側に凸面を向けた負メニスカスレンズL15と、レチクル側に凹面を向けた正メニスカスレンズL16と、レチクル側に非球面形状の凹面を向けた負メニスカスレンズL17と、レチクル側に凹面を向けた正メニスカスレンズL18と、レチクル側に非球面形状の凸面を向けた両凸レンズL19と、ウェハ側に非球面形状の凹面を向けた正メニスカスレンズL110とにより構成されている。
【0061】
また、第2結像光学系G2は、光の進行往路に沿って光の入射側から順に、両凹レンズL21と、入射側に凹面を向けた負メニスカスレンズL22と、入射側に凹面を向けた凹面反射鏡CMとにより構成されている。また、第3結像光学系G3は、レチクル側(すなわち光の入射側)から順に、レチクル側に凹面を向けた正メニスカスレンズL31と、レチクル側に凹面を向けた正メニスカスレンズL32と、両凸レンズL33と、ウェハ側に非球面形状の凹面を向けた正メニスカスレンズL34と、レチクル側に凸面を向けた負メニスカスレンズL35と、ウェハ側に非球面形状の凹面を向けた両凹レンズL36と、ウェハ側に非球面形状の凹面を向けたメニスカスレンズL37と、レチクル側に非球面形状の凸面を向けた両凸レンズL38と、ウェハ側に非球面形状の凹面を向けたメニスカスレンズL39と、レチクル側に非球面形状の凸面を向けた両凸レンズL310と、ウェハ側に非球面形状の凸面を向けた両凸レンズL311と、開口絞りASと、ウェハ側に非球面形状の凹面を向けた正メニスカスレンズL312と、ウェハ側に非球面形状の凹面を向けた正メニスカスレンズL313と、ウェハ側に平面を向けた平凸レンズL314(境界レンズLb)とにより構成されている。
【0062】
第2実施例では、境界レンズLbとウェハWとの間の光路に、使用光であるArFエキシマレーザ光(中心波長λ=193.306nm)に対して1.85の屈折率を有する高屈折率液体Lm(図6では不図示)が満たされている。この高屈折率液体Lmとして、例えば炭化水素系の媒質(液体)を用いることができる。境界レンズLbは、使用光の中心波長に対して2.1435の屈折率を有するルテチウム・アルミニウム・ガーネット結晶により形成されている。境界レンズLb以外の光透過部材(平行平面板P1、レンズL11〜L110,L21,L22,L31〜L313)は、使用光の中心波長に対して1.5603261の屈折率を有する石英により形成されている。次の表(2)に、第2実施例にかかる投影光学系PLの諸元の値を掲げる。
【0063】
表(2)
(主要諸元)
λ=193.306nm
β=1/4
NA=1.65
B=14.77mm
A=4mm
LX=26mm
LY=3mm

(光学部材諸元)
面番号 r d n 光学部材
(レチクル面) 95.79241
1 ∞ 8.00000 1.5603261 (P1)
2 ∞ 4.94193
3 290.55007 24.20361 1.5603261 (L11)
4* 10000.00000 9.07389
5 371.78850 72.04392 1.5603261 (L12)
6 -232.84509 2.31444
7 1044.13988 27.92358 1.5603261 (L13)
8 -676.06981 25.95898
9 102.96385 43.22321 1.5603261 (L14)
10 136.09207 53.76787
11 481.08238 34.00801 1.5603261 (L15)
12 199.11455 18.61258
13 -392.25357 19.96633 1.5603261 (L16)
14 -171.74967 42.30600
15* -94.90547 54.84856 1.5603261 (L17)
16 -244.24835 29.31466
17 -565.24415 65.97920 1.5603261 (L18)
18 -174.35572 1.00000
19* 310.58794 60.37659 1.5603261 (L19)
20 -557.17879 4.00000
21 213.99732 36.34032 1.5603261 (L110)
22* 581.36155 89.00000
23 ∞ 217.11733 (M1)
24 -143.19064 15.00000 1.5603261 (L21)
25 1310.08704 92.14202
26 -113.63092 18.00000 1.5603261 (L22)
27 -246.37907 24.14746
28 -178.32790 -24.14746 (CM)
29 -246.37907 -18.00000 1.5603261 (L22)
30 -113.63092 -92.14202
31 1310.08704 -15.00000 1.5603261 (L21)
32 -143.19064 -217.11733
33 ∞ 89.00000 (M2)
34 -500.00000 31.55290 1.5603261 (L31)
35 -231.66306 1.00000
36 -1196.32597 30.18971 1.5603261 (L32)
37 -349.91221 1.00000
38 330.38995 62.32681 1.5603261 (L33)
39 -1986.88620 1.00000
40 183.22446 70.00000 1.5603261 (L34)
41* 240.29220 14.22675
42 247.15019 34.96799 1.5603261 (L35)
43 113.96650 87.21052
44 -214.05604 37.83220 1.5603261 (L36)
45* 161.84896 23.93163
46 456.55365 52.80809 1.5603261 (L37)
47* 974.56388 8.67428
48* 512.42634 65.94644 1.5603261 (L38)
49 -251.06433 3.80666
50 400.91135 36.47217 1.5603261 (L39)
51* 340.57626 25.63765
52* 454.89697 62.59357 1.5603261 (L310)
53 -451.78211 1.00000
54 250.00000 83.00371 1.5603261 (L311)
55* -1048.65772 0.00000
56 ∞ 1.00000 (AS)
57 162.32518 47.07232 1.5603261 (L312)
58* 307.13474 1.00000
59 114.68314 36.91436 1.5603261 (L313)
60* 236.60239 1.00000
61 81.37948 62.83630 2.1435 (L314:Lb)
62 ∞ 3.00000 1.85 (Lm)
(ウェハ面)

(非球面データ)
4面
κ=0
4=6.71925×10-8 6=2.86856×10-14
8=−8.82744×10-1810=4.89166×10-22
12=−5.97756×10-2614=1.34238×10-30
16=0

15面
κ=0
4=9.45180×10-8 6=2.44998×10-12
8=2.92994×10-1610=1.10431×10-20
12=1.13651×10-2414=1.09976×10-28
16=1.86004×10-32

19面
κ=0
4=−8.28989×10-9 6=9.03916×10-14
8=−5.93851×10-1810=1.18472×10-22
12=−1.35414×10-2714=7.33191×10-33
16=0

22面
κ=0
4=1.91838×10-8 6=−1.52896×10-13
8=1.59594×10-1810=−1.60899×10-22
12=8.09048×10-2714=−2.51040×10-31
16=3.59781×10-36

41面
κ=0
4=1.20458×10-8 6=1.81922×10-13
8=6.72758×10-1810=2.98254×10-23
12=1.89454×10-2614=−8.60137×10-31
16=3.68712×10-35

45面
κ=0
4=−6.28424×10-8 6=−5.01366×10-14
8=−2.46211×10-1710=−2.03486×10-21
12=−2.89192×10-2714=−2.09348×10-30
16=−1.37193×10-35

47面
κ=0
4=2.88475×10-8 6=−2.93712×10-14
8=−1.70266×10-1710=−9.07403×10-22
12=1.08624×10-2514=−8.84102×10-31
16=−2.61000×10-35

48面
κ=0
4=−1.49171×10-8 6=−3.63470×10-14
8=5.31328×10-1810=−8.86009×10-22
12=6.63958×10-2614=−2.11767×10-30
16=4.99164×10-35

51面
κ=0
4=−2.90283×10-10 6=−8.37597×10-14
8=1.39712×10-1910=1.39880×10-23
12=3.40888×10-2714=−3.78634×10-32
16=0

52面
κ=0
4=−1.17805×10-8 6=−4.18409×10-14
8=−3.11911×10-1810=1.64739×10-22
12=4.49090×10-2714=−1.61599×10-31
16=2.11555×10-36

55面
κ=0
4=−1.08737×10-8 6=2.68918×10-13
8=5.14824×10-1810=−3.68087×10-22
12=8.07432×10-2714=−7.81523×10-32
16=2.33828×10-37

58面
κ=0
4=−3.62401×10-8 6=3.46327×10-12
8=−3.40831×10-1610=1.70996×10-20
12=1.91165×10-2514=−4.44785×10-29
16=1.26068×10-33

60面
κ=0
4=3.42495×10-8 6=7.87959×10-12
8=2.25683×10-1610=−3.92150×10-20
12=2.37827×10-2414=2.96227×10-28
16=−3.61232×10-32

(条件対応値)
Nb=2.1435
Eb=123.91mm
Sb=126mm
|Rb|=81.37948mm
Yi=14.77mm
(1)Nb・Eb/|Rb|=3.264
(2)Nb・Sb/|Rb|=3.319
(3)Yi/|Rb|=0.181
(4)|M1|=1.42
(5)|M12|=1.43
【0064】
図7は、第2実施例の投影光学系における横収差を示す図である。収差図において、Yは像高を示している。図7の収差図から明らかなように、第2実施例においても第1実施例と同様に、非常に大きな像側開口数(NA=1.65)および比較的大きい矩形状の静止露光領域ER(26mm×3mm)を確保しているにもかかわらず、波長が193.306nmのArFエキシマレーザ光に対して収差が良好に補正されていることがわかる。
【0065】
[第3実施例]
図8は、本実施形態の第3実施例にかかる投影光学系のレンズ構成を示す図である。第3実施例にかかる投影光学系PLにおいて第1結像光学系G1は、レチクル側から順に、平行平面板P1と、ウェハ側に非球面形状の凹面を向けたレンズL11と、両凸レンズL12と、レチクル側に凸面を向けた正メニスカスレンズL13と、レチクル側に凸面を向けた正メニスカスレンズL14と、レチクル側に凸面を向けた負メニスカスレンズL15と、レチクル側に凹面を向けた正メニスカスレンズL16と、レチクル側に非球面形状の凹面を向けた負メニスカスレンズL17と、レチクル側に凹面を向けた正メニスカスレンズL18と、レチクル側に非球面形状の凸面を向けた両凸レンズL19と、ウェハ側に非球面形状の凹面を向けた正メニスカスレンズL110とにより構成されている。
【0066】
また、第2結像光学系G2は、光の進行往路に沿って光の入射側から順に、両凹レンズL21と、入射側に凹面を向けた負メニスカスレンズL22と、入射側に凹面を向けた凹面反射鏡CMとにより構成されている。また、第3結像光学系G3は、レチクル側(すなわち光の入射側)から順に、レチクル側に凹面を向けた正メニスカスレンズL31と、レチクル側に凹面を向けた正メニスカスレンズL32と、レチクル側に凸面を向けた正メニスカスレンズL33と、ウェハ側に非球面形状の凹面を向けたメニスカスレンズL34と、レチクル側に凸面を向けた負メニスカスレンズL35と、ウェハ側に非球面形状の凹面を向けた両凹レンズL36と、ウェハ側に非球面形状の凹面を向けたメニスカスレンズL37と、レチクル側に非球面形状の凸面を向けた両凸レンズL38と、ウェハ側に非球面形状の凹面を向けたメニスカスレンズL39と、レチクル側に非球面形状の凸面を向けた両凸レンズL310と、ウェハ側に非球面形状の凸面を向けた両凸レンズL311と、開口絞りASと、ウェハ側に非球面形状の凹面を向けた正メニスカスレンズL312と、ウェハ側に非球面形状の凹面を向けた正メニスカスレンズL313と、ウェハ側に平面を向けた平凸レンズL314(境界レンズLb)とにより構成されている。
【0067】
第3実施例では、境界レンズLbとウェハWとの間の光路に、使用光であるArFエキシマレーザ光(中心波長λ=193.306nm)に対して1.90の屈折率を有する高屈折率液体Lm(図8では不図示)が満たされている。この高屈折率液体Lmとして、例えば炭化水素系の媒質(液体)を用いることができる。境界レンズLbは、使用光の中心波長に対して2.1435の屈折率を有するルテチウム・アルミニウム・ガーネット結晶により形成されている。境界レンズLb以外の光透過部材(平行平面板P1、レンズL11〜L110,L21,L22,L31〜L313)は、使用光の中心波長に対して1.5603261の屈折率を有する石英により形成されている。次の表(3)に、第3実施例にかかる投影光学系PLの諸元の値を掲げる。
【0068】
表(3)
(主要諸元)
λ=193.306nm
β=1/4
NA=1.75
B=12.62mm
A=4mm
LX=21mm
LY=3mm

(光学部材諸元)
面番号 r d n 光学部材
(レチクル面) 70.36075
1 ∞ 8.00000 1.5603261 (P1)
2 ∞ 2.51640
3 1108.40074 23.90795 1.5603261 (L11)
4* 10000.00000 1.32841
5 517.85614 66.83341 1.5603261 (L12)
6 -162.97645 24.96049
7 277.54372 28.92381 1.5603261 (L13)
8 3582.96906 57.84392
9 101.18648 35.52040 1.5603261 (L14)
10 228.17069 53.32576
11 271.69879 10.84850 1.5603261 (L15)
12 163.76221 17.69223
13 -410.79344 16.68405 1.5603261 (L16)
14 -191.87487 24.97191
15* -80.68030 58.66268 1.5603261 (L17)
16 -413.44354 55.93521
17 -432.13330 63.62216 1.5603261 (L18)
18 -172.35310 1.74388
19* 477.03096 58.85047 1.5603261 (L19)
20 -322.33899 20.96321
21 204.08323 69.95373 1.5603261 (L110)
22* 524.71403 82.50000
23 ∞ 221.13365 (M1)
24 -140.51909 15.00000 1.5603261 (L21)
25 75205.55639 49.97395
26 -125.74019 18.00000 1.5603261 (L22)
27 -262.38105 26.57861
28 -167.04155 -26.57861 (CM)
29 -262.38105 -18.00000 1.5603261 (L22)
30 -125.74019 -49.97395
31 75205.55639 -15.00000 1.5603261 (L21)
32 -140.51909 -221.13365
33 ∞ 82.50000 (M2)
34 -550.00000 27.54534 1.5603261 (L31)
35 -220.48078 1.00000
36 -1825.56596 25.38945 1.5603261 (L32)
37 -362.87141 1.00000
38 257.47073 69.41067 1.5603261 (L33)
39 6265.27755 1.00000
40 214.44567 70.00000 1.5603261 (L34)
41* 199.92803 1.78681
42 193.32269 35.09037 1.5603261 (L35)
43 121.46742 46.70531
44 -245.99815 56.40107 1.5603261 (L36)
45* 150.30813 37.86019
46 399.54165 55.17998 1.5603261 (L37)
47* 560.60096 8.67428
48* 472.29963 65.00000 1.5603261 (L38)
49 -292.49135 1.02162
50 272.62149 35.00000 1.5603261 (L39)
51* 291.62171 27.75671
52* 404.10571 58.98600 1.5603261 (L310)
53 -723.18420 1.07854
54 250.00000 75.56909 1.5603261 (L311)
55* -5000.00000 0.00000
56 ∞ 1.00000 (AS)
57 161.82814 57.16338 1.5603261 (L312)
58* 332.19280 1.00000
59 188.68664 27.26352 1.5603261 (L313)
60* 540.59898 1.00000
61 72.70966 69.63109 2.1435 (L314:Lb)
62 ∞ 3.00000 1.9 (Lm)
(ウェハ面)

(非球面データ)
4面
κ=0
4=6.39886×10-8 6=−7.48102×10-14
8=−6.46877×10-1710=5.58034×10-22
12=2.78133×10-2614=1.26658×10-31
16=0

15面
κ=0
4=4.56011×10-8 6=−3.77075×10-12
8=−1.07997×10-1510=1.01525×10-19
12=−1.62556×10-2214=3.61730×10-26
16=−6.07734×10-30

19面
κ=0
4=−7.36665×10-9 6=4.90016×10-14
8=−1.67948×10-1810=2.34580×10-23
12=−1.43231×10-2914=−1.90420×10-33
16=0

22面
κ=0
4=1.45370×10-8 6=−2.17268×10-15
8=4.81467×10-1910=−9.54273×10-23
12=8.35107×10-2714=−4.41816×10-31
16=1.01022×10-35

41面
κ=0
4=1.59074×10-8 6=5.09704×10-13
8=2.26963×10-1710=1.08135×10-21
12=2.37868×10-2614=−6.57600×10-32
16=2.65292×10-34

45面
κ=0
4=−5.74469×10-8 6=−6.16058×10-14
8=−5.83165×10-1710=9.93868×10-22
12=−1.32152×10-2514=−1.34164×10-30
16=1.11879×10-34

47面
κ=0
4=2.95716×10-8 6=−3.97202×10-13
8=−1.94973×10-1710=−7.81949×10-22
12=1.19455×10-2514=−4.22525×10-30
16=5.21723×10-35

48面
κ=0
4=−7.21200×10-9 6=1.58717×10-13
8=−1.45230×10-1710=−3.55639×10-22
12=5.06184×10-2614=−1.68510×10-30
16=2.44919×10-35

51面
κ=0
4=−4.46098×10-10 6=2.06519×10-13
8=−5.79631×10-1810=3.94661×10-23
12=−2.16218×10-2714=9.27980×10-32
16=0

52面
κ=0
4=−6.58007×10-9 6=−1.41046×10-13
8=−2.12956×10-1810=2.14211×10-22
12=−4.68468×10-2714=−9.47271×10-33
16=1.81282×10-36

55面
κ=0
4=−6.08085×10-9 6=1.99279×10-13
8=−2.50504×10-1910=−2.45747×10-22
12=1.31708×10-2614=−2.75841×10-31
16=1.54966×10-36

58面
κ=0
4=−5.04064×10-8 6=4.34528×10-12
8=−3.73648×10-1610=1.52439×10-20
12=2.29150×10-2514=−3.89266×10-29
16=9.84214×10-34

60面
κ=0
4=5.72458×10-8 6=−5.18053×10-14
8=5.43071×10-1610=−5.22385×10-20
12=4.13911×10-2414=−2.04994×10-28
16=7.36502×10-33

(条件対応値)
Nb=2.1435
Eb=128.10mm
Sb=138mm
|Rb|=72.70966mm
Yi=12.62mm
(1)Nb・Eb/|Rb|=3.776
(2)Nb・Sb/|Rb|=4.068
(3)Yi/|Rb|=0.174
(4)|M1|=1.41
(5)|M12|=1.40
【0069】
図9は、第3実施例の投影光学系における横収差を示す図である。収差図において、Yは像高を示している。図9の収差図から明らかなように、第3実施例においても第1実施例および第2実施例と同様に、非常に大きな像側開口数(NA=1.75)および比較的大きい矩形状の静止露光領域ER(21mm×3mm)を確保しているにもかかわらず、波長が193.306nmのArFエキシマレーザ光に対して収差が良好に補正されていることがわかる。
【0070】
以上のように、各実施例の投影光学系PLでは、像面との間の光路が屈折率1.8〜1.9の高屈折率液体Lmで満たされ、境界レンズLbが条件式(1)および(2)を満足しているので、光学系の大型化を回避し且つ像面内の収差を良好に補正しつつ、1.65〜1.75という大きな像側開口数が確保されている。具体的に、上述の各実施例では、中心波長が193.306nmのArFエキシマレーザ光に対して、1.65〜1.75という高い像側開口数を確保するとともに、21〜26mm×3mmの矩形状の静止露光領域ERを確保することができ、たとえば21〜26mm×33mmの矩形状の露光領域内に回路パターンを高解像度で走査露光することができる。
【0071】
なお、上述の各実施例では、液体Lmとして使用光の中心波長に対して1.8〜1.9の屈折率を有する高屈折率液体を用いている。一般に、1.5よりも大きい屈折率を有する高屈折率液体として、例えばJSR株式会社によるHIF−001(ArFエキシマレーザ光に対する屈折率が1.64)、イー・アイ・デュポン・ドゥ・ヌムール・アンド・カンパニーによるIF131(ArFエキシマレーザ光に対する屈折率が1.642)やIF132(ArFエキシマレーザ光に対する屈折率が1.644)などを用いることができる。また、例えば三井化学株式会社によるデルファイ(環状炭化水素骨格を基本とする化合物でArFエキシマレーザ光に対する屈折率が1.63)、イー・アイ・デュポン・ドゥ・ヌムール・アンド・カンパニーによるIF175(ArFエキシマレーザ光に対する屈折率が1.664)なども用いることができる。
【0072】
また、上述の各実施例では、境界光学素子として使用光の中心波長に対して2.0よりも大きい屈折率を持つ高屈折率材料を用いている。このような高屈折率材料を境界光学素子に適用することにより、境界光学素子の第1面側の曲率半径を極端に小さくすることなく、境界光学素子を形成することができる。
【0073】
また、上述の各実施例では、3回結像型の反射屈折結像光学系において第1結像光学系G1から第2結像光学系G2へ至る光路中および第2結像光学系G2から第3結像光学系G3へ至る光路中に偏向鏡(M1,M2)を配置している。しかしながら、これに限定されることなく、たとえば図10の変形例に示すように、第1結像光学系G1と第2結像光学系G2との間の光路中にのみ偏向鏡M1が配置された反射屈折結像光学系に対しても同様に本発明を適用することができる。この場合、第1結像光学系G1または第3結像光学系G3中に別の偏向鏡を配置して、レチクルRとウェハWとが互いに平行になるように構成することができる。また、たとえば図11の変形例に示すように、第2結像光学系G2と第3結像光学系G3との間の光路中にのみ偏向鏡M2が配置された反射屈折結像光学系に対しても同様に本発明を適用することができる。この場合にも、第1結像光学系G1または第3結像光学系G3中に別の偏向鏡を配置して、レチクルRとウェハWとが互いに平行になるように構成することができる。
【0074】
また、上述の各実施例および各変形例では、3回結像型の反射屈折結像光学系において少なくとも1以上の偏向鏡を結像光学系間に配置している。しかしながら、これに限定されることなく、たとえば図12の変形例に示すように、屈折型の第1結像光学系G1と、反射型または反射屈折型の第2結像光学系G2と、屈折型の第3結像光学系G3とを備える共軸型の反射屈折結像光学系に対しても同様に本発明を適用することができる。また、たとえば図13の変形例に示すように、反射屈折型の第1結像光学系G1と、反射型または反射屈折型の第2結像光学系G2と、屈折型の第3結像光学系G3とを備える共軸型の反射屈折結像光学系に対しても同様に本発明を適用することができる。また、1回結像型の屈折結像光学系に対しても同様に本発明を適用することができる。
【0075】
ところで、上述の実施形態では、マスク(レチクル)の代わりに、所定の電子データに基づいて所定パターンを形成する可変パターン形成装置を用いることができる。このような可変パターン形成装置を用いれば、パターン面が縦置きでも同期精度に及ぼす影響を最低限にできる。なお、可変パターン形成装置としては、たとえば所定の電子データに基づいて駆動される複数の反射素子を含むDMD(デジタル・マイクロミラー・デバイス)を用いることができる。DMDを用いた露光装置は、例えば特開2004−304135号公報に開示されている。また、DMDのような非発光型の反射型空間光変調器以外に、透過型空間光変調器を用いても良く、自発光型の画像表示素子を用いても良い。なお、パターン面が横置きの場合であっても可変パターン形成装置を用いても良い。
【0076】
上述の実施形態にかかる照明光学装置および露光装置は、本願特許請求の範囲に挙げられた各構成要素を含む各種サブシステムを、所定の機械的精度、電気的精度、光学的精度を保つように組み立てることにより製造される。これら各種精度を確保するために、この組み立ての前後には、各種光学系については光学的精度を達成するための調整、各種機械系については機械的精度を達成するための調整、各種電気系については電気的精度を達成するための調整が行われる。各種サブシステムから露光装置への組み立て工程は、各種サブシステム相互の、機械的接続、電気回路の配線接続、気圧回路の配管接続などが含まれる。この各種サブシステムから露光装置への組み立て工程の前に、各サブシステム個々の組み立て工程があることはいうまでもない。各種サブシステムの露光装置への組み立て工程が終了したら、総合調整が行われ、露光装置全体としての各種精度が確保される。なお、露光装置の製造は、温度およびクリーン度等が管理されたクリーンルームで行うことが望ましい。
【0077】
上述の実施形態の露光装置では、照明装置によってレチクル(マスク)を照明し(照明工程)、投影光学系を用いてマスクに形成された転写用のパターンを感光性基板に露光する(露光工程)ことにより、マイクロデバイス(半導体素子、撮像素子、液晶表示素子、薄膜磁気ヘッド等)を製造することができる。以下、本実施形態の露光装置を用いて感光性基板としてのウェハ等に所定の回路パターンを形成することによって、マイクロデバイスとしての半導体デバイスを得る際の手法の一例につき図14のフローチャートを参照して説明する。
【0078】
先ず、図14のステップ301において、1ロットのウェハ上に金属膜が蒸着される。次のステップ302において、その1ロットのウェハ上の金属膜上にフォトレジストが塗布される。その後、ステップ303において、本実施形態の露光装置を用いて、マスク上のパターンの像がその投影光学系を介して、その1ロットのウェハ上の各ショット領域に順次露光転写される。その後、ステップ304において、その1ロットのウェハ上のフォトレジストの現像が行われた後、ステップ305において、その1ロットのウェハ上でレジストパターンをマスクとしてエッチングを行うことによって、マスク上のパターンに対応する回路パターンが、各ウェハ上の各ショット領域に形成される。
【0079】
その後、更に上のレイヤの回路パターンの形成等を行うことによって、半導体素子等のデバイスが製造される。上述の半導体デバイス製造方法によれば、極めて微細な回路パターンを有する半導体デバイスをスループット良く得ることができる。なお、ステップ301〜ステップ305では、ウェハ上に金属を蒸着し、その金属膜上にレジストを塗布、そして露光、現像、エッチングの各工程を行っているが、これらの工程に先立って、ウェハ上にシリコンの酸化膜を形成後、そのシリコンの酸化膜上にレジストを塗布、そして露光、現像、エッチング等の各工程を行っても良いことはいうまでもない。
【0080】
また、本実施形態の露光装置では、プレート(ガラス基板)上に所定のパターン(回路パターン、電極パターン等)を形成することによって、マイクロデバイスとしての液晶表示素子を得ることもできる。以下、図15のフローチャートを参照して、このときの手法の一例につき説明する。図15において、パターン形成工程401では、本実施形態の露光装置を用いてマスクのパターンを感光性基板(レジストが塗布されたガラス基板等)に転写露光する、所謂光リソグラフィー工程が実行される。この光リソグラフィー工程によって、感光性基板上には多数の電極等を含む所定パターンが形成される。その後、露光された基板は、現像工程、エッチング工程、レジスト剥離工程等の各工程を経ることによって、基板上に所定のパターンが形成され、次のカラーフィルター形成工程402へ移行する。
【0081】
次に、カラーフィルター形成工程402では、R(Red)、G(Green)、B(Blue)に対応した3つのドットの組がマトリックス状に多数配列されたり、またはR、G、Bの3本のストライプのフィルターの組を複数水平走査線方向に配列されたりしたカラーフィルターを形成する。そして、カラーフィルター形成工程402の後に、セル組み立て工程403が実行される。セル組み立て工程403では、パターン形成工程401にて得られた所定パターンを有する基板、およびカラーフィルター形成工程402にて得られたカラーフィルター等を用いて液晶パネル(液晶セル)を組み立てる。
【0082】
セル組み立て工程403では、例えば、パターン形成工程401にて得られた所定パターンを有する基板とカラーフィルター形成工程402にて得られたカラーフィルターとの間に液晶を注入して、液晶パネル(液晶セル)を製造する。その後、モジュール組み立て工程404にて、組み立てられた液晶パネル(液晶セル)の表示動作を行わせる電気回路、バックライト等の各部品を取り付けて液晶表示素子として完成させる。上述の液晶表示素子の製造方法によれば、極めて微細な回路パターンを有する液晶表示素子をスループット良く得ることができる。
【0083】
なお、上述の実施形態では、ArFエキシマレーザ光源を用いているが、これに限定されることなく、たとえばF2 レーザ光源のような他の適当な光源を用いることもできる。また、上述の実施形態では、走査型の露光装置に対して本発明を適用しているが、これに限定されることなく、投影光学系に対してレチクル(マスク)およびウェハ(感光性基板)を静止させた状態で投影露光を行う一括露光型の露光装置に対しても本発明を適用することができる。
【0084】
また、上述の実施形態では、露光装置に搭載される液浸型の投影光学系に対して本発明を適用しているが、これに限定されることなく、第1面と第2面とを光学的に共役にする液浸対物光学系に対して本発明を適用することができる。この場合、条件式(3)におけるYiは、第2面上の最大像高または第2面上の最大物体高である。
【図面の簡単な説明】
【0085】
【図1】本発明の実施形態にかかる露光装置の構成を概略的に示す図である。
【図2】本実施形態においてウェハ上に形成される矩形状の静止露光領域と基準光軸との位置関係を示す図である。
【図3】本実施形態の各実施例における境界レンズとウェハとの間の構成を模式的に示す図である。
【図4】本実施形態の第1実施例にかかる投影光学系のレンズ構成を示す図である。
【図5】第1実施例の投影光学系における横収差を示す図である。
【図6】本実施形態の第2実施例にかかる投影光学系のレンズ構成を示す図である。
【図7】第2実施例の投影光学系における横収差を示す図である。
【図8】本実施形態の第3実施例にかかる投影光学系のレンズ構成を示す図である。
【図9】第3実施例の投影光学系における横収差を示す図である。
【図10】第1変形例にかかる投影光学系の構成を概略的に示す図である。
【図11】第2変形例にかかる投影光学系の構成を概略的に示す図である。
【図12】第3変形例にかかる投影光学系の構成を概略的に示す図である。
【図13】第4変形例にかかる投影光学系の構成を概略的に示す図である。
【図14】マイクロデバイスとしての半導体デバイスを得る際の手法のフローチャートである。
【図15】マイクロデバイスとしての液晶表示素子を得る際の手法のフローチャートである。
【符号の説明】
【0086】
R レチクル
RST レチクルステージ
PL 投影光学系
Lb 境界レンズ
Lm 液体
W ウェハ
1 照明光学系
9 Zステージ
10 XYステージ
14 主制御系
21 給排水機構

【特許請求の範囲】
【請求項1】
第1面と第2面とを光学的に共役にする液浸対物光学系において、
前記第1面側の面が前記気体に接触可能であって且つ前記第2面側の面が液体に接触可能な光学素子を備え、
前記光学素子の前記第2面側に接触可能な前記液体は、前記液浸対物光学系中の気体の使用光に対する屈折率を1とするとき、前記使用光に対して1.5よりも大きい屈折率を有し、
前記光学素子の前記第1面側の面の曲率半径をRbとし、前記光学素子の前記第1面側の面の有効径をEbとし、前記光学素子を形成する光学材料の前記使用光に対する屈折率をNbとするとき、
3.2<Nb・Eb/|Rb|<4.0
の条件を満足することを特徴とする液浸対物光学系。
【請求項2】
第1面と第2面とを光学的に共役にする液浸対物光学系において、
前記第1面側の面が前記気体に接触可能であって且つ前記第2面側の面が液体に接触可能な光学素子を備え、
前記光学素子の前記第2面側に接触可能な前記液体は、前記液浸対物光学系中の気体の使用光に対する屈折率を1とするとき、前記使用光に対して1.5よりも大きい屈折率を有し、
前記光学素子の前記第1面側の面の曲率半径をRbとし、前記光学素子の前記第1面側の面の外径をSbとし、前記光学素子を形成する光学材料の前記使用光に対する屈折率をNbとするとき、
3.3<Nb・Sb/|Rb|<4.15
の条件を満足することを特徴とする液浸対物光学系。
【請求項3】
前記光学素子の前記第1面側の面の曲率半径をRbとし、前記第2面上の最大像高または前記第2面上の最大物体高をYiとするとき、
0.12<Yi/|Rb|<0.3
の条件を満足することを特徴とする請求項1または2に記載の液浸対物光学系。
【請求項4】
前記液浸対物光学系は、光軸から間隔を隔てた領域に視野を有し、
前記第1面と光学的に共役な第1共役位置と前記第1面との間に配置された屈折型の第1結像光学系と、
前記第1共役位置と光学的に共役な第2共役位置と前記第1共役位置との間に配置されて、少なくとも1つの凹面反射鏡を含む第2結像光学系と、
前記第2共役位置と前記第2面との間に配置された屈折型の第3結像光学系とを備えていることを特徴とする請求項1乃至3のいずれか1項に記載の液浸対物光学系。
【請求項5】
前記第1結像光学系から前記第2結像光学系へ至る光路、および前記第2結像光学系から前記第3結像光学系へ至る光路のうちの少なくとも一方の光路中には偏向鏡が配置されていることを特徴とする請求項4に記載の液浸対物光学系。
【請求項6】
前記液浸対物光学系は、前記第1面の縮小像を前記第2面に形成する投影光学系であって、
前記第1結像光学系の結像倍率をM1とし、前記第1結像光学系と前記第2結像光学系との合成結像倍率をM12とするとき、
1.1<|M1|<1.7
1.1<|M12|<1.7
の条件を満足することを特徴とする請求項5に記載の液浸対物光学系。
【請求項7】
前記光学素子は、前記液浸対物光学系中の前記気体の前記使用光に対する屈折率を1とするとき前記使用光に対して2.0よりも大きい屈折率を有することを特徴とする請求項1乃至6のいずれか1項に記載の液浸対物光学系。
【請求項8】
前記光学素子は、結晶材料から形成されていることを特徴とする請求項1乃至7のいずれか1項に記載の液浸対物光学系。
【請求項9】
前記第1面に設定された所定のパターンからの光に基づいて、前記パターンの像を前記第2面に設定された感光性基板上に投影するための請求項1乃至8のいずれか1項に記載の液浸対物光学系を備えていることを特徴とする露光装置。
【請求項10】
請求項9に記載の露光装置を用いて前記所定のパターンを前記感光性基板に露光する露光工程と、
前記露光工程を経た前記感光性基板を現像する現像工程とを含むことを特徴とするデバイス製造方法。
【請求項11】
第1面と第2面とを光学的に共役にする液浸対物光学系に用いられて前記第1面側の面が気体に接触可能であって且つ前記第2面側の面が液体に接触可能である光学素子であって、
前記光学素子の前記第2面側の液体は、前記気体の使用光に対する屈折率を1とするとき、前記使用光に対して1.5よりも大きい屈折率を有し、
前記光学素子の前記第1面側の面の曲率半径をRbとし、前記光学素子の前記第1面側の面の有効径をEbとし、前記光学素子を形成する光学材料の前記使用光に対する屈折率をNbとするとき、
3.2<Nb・Eb/|Rb|<4.0
の条件を満足することを特徴とする光学素子。
【請求項12】
第1面と第2面とを光学的に共役にする液浸対物光学系に用いられて前記第1面側の面が気体に接触可能であって且つ前記第2面側の面が液体に接触可能である光学素子であって、
前記光学素子の前記第2面側の液体は、前記気体の使用光に対する屈折率を1とするとき、前記使用光に対して1.5よりも大きい屈折率を有し、
前記光学素子の前記第1面側の面の曲率半径をRbとし、前記光学素子の前記第1面側の面の外径をSbとし、前記光学素子を形成する光学材料の前記使用光に対する屈折率をNbとするとき、
3.3<Nb・Sb/|Rb|<4.15
の条件を満足することを特徴とする光学素子。
【請求項13】
前記光学素子の前記第1面側の面の曲率半径をRbとし、前記液浸対物光学系の前記第2面上の最大像高または前記第2面上の最大物体高をYiとするとき、
0.12<Yi/|Rb|<0.3
の条件を満足することを特徴とする請求項11または12に記載の光学素子。
【請求項14】
前記光学素子は、前記液浸対物光学系中の前記気体の前記使用光に対する屈折率を1とするとき前記使用光に対して2.0よりも大きい屈折率を有することを特徴とする請求項11乃至13のいずれか1項に記載の光学素子。
【請求項15】
前記光学素子は、結晶材料から形成されていることを特徴とする請求項11乃至14のいずれか1項に記載の光学素子。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate


【公開番号】特開2008−85328(P2008−85328A)
【公開日】平成20年4月10日(2008.4.10)
【国際特許分類】
【出願番号】特願2007−237614(P2007−237614)
【出願日】平成19年9月13日(2007.9.13)
【出願人】(000004112)株式会社ニコン (12,601)
【Fターム(参考)】