説明

積層セラミックコンデンサ

【課題】高い静電容量を有するとともに、優れた高温負荷寿命を有し、かつ誘電損失の低い積層セラミックコンデンサを提供する。
【解決手段】複数の誘電体層5と複数の内部電極層7とが交互に積層されたコンデンサ本体1と、該コンデンサ本体1の前記内部電極層7が露出した端面に設けられた外部電極3とを有する積層セラミックコンデンサであって、前記誘電体層5がチタン酸バリウムを主結晶粒子として含有する誘電体磁器からなり、前記誘電体層5が、隣接する前記内部電極層7間において、粒径の大きい主結晶粒子を含む領域と粒径の小さい主結晶粒子を含む領域とを有している。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、チタン酸バリウムを主成分とする結晶粒子によって構成され、小型化および高容量化が可能な積層セラミックコンデンサに関する。
【背景技術】
【0002】
現在、汎用されている積層セラミックコンデンサの大半は、誘電体層と内部電極層とが交互に積層された電子部品本体の端部に外部電極が設けられた構成となっている。このような積層セラミックコンデンサにおいて、誘電体層を構成する誘電体磁器には、従来より、主成分であるチタン酸バリウムに対し、誘電特性を制御するための成分であるマグネシウムおよび希土類元素等の酸化物粉末、ならびに、誘電体磁器の焼結性を高めるための成分であるSiOを主成分とするガラス粉末が添加されて誘電体材料が調製され、これにより静電容量の温度特性や高温負荷寿命を満足するものとなっている(例えば、特許文献1、2を参照)。
【0003】
一方、内部電極層は、積層セラミックコンデンサに占める内部電極層のコスト割合を低減させるという目的から、従来の白金やパラジウムといった高価な貴金属に代わり、主として卑金属であるニッケルが用いられている。
【0004】
そして、近年では、携帯電話などモバイル機器の普及や、パソコンなどの主要部品である半導体素子の高速、高周波化に伴う需要の増加から、このような電子機器に搭載される積層セラミックコンデンサは、小型化および高容量化の要求がますます高まってきており、積層セラミックコンデンサを構成する誘電体層および内部電極層の更なる薄層化が求められている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2008−239407号公報
【特許文献2】特開2008−109120号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
ところが、積層セラミックコンデンサを構成する誘電体層を薄層化していった場合、静電容量は向上するものの、誘電体層1層当たりに印加される直流電圧の増加に伴って高温負荷寿命が低下するとともに、誘電損失が大きくなるという問題がある。
【0007】
従って、本発明は、高い静電容量を有するとともに、優れた高温負荷寿命を有し、かつ誘電損失の低い積層セラミックコンデンサを提供することを目的とする。
【課題を解決するための手段】
【0008】
本発明の積層セラミックコンデンサは、複数の誘電体層と複数の内部電極層とが交互に積層されたコンデンサ本体と、該コンデンサ本体の前記内部電極層が露出した端面に設けられた外部電極とを有する積層セラミックコンデンサであって、前記誘電体層がチタン酸バリウムを主結晶粒子として含有する誘電体磁器からなり、前記誘電体層が、隣接する前記内部電極層間において、粒径の大きい主結晶粒子を含む領域と粒径の小さい主結晶粒子を含む領域とを有していることを特徴とする。
【0009】
上記積層セラミックコンデンサでは、前記誘電体層を平面視したとき、前記粒径の大き
い主結晶粒子を含む領域と前記粒径の小さい主結晶粒子を含む領域とが縦横に交互に配置されていることが望ましい。
【発明の効果】
【0010】
本発明によれば、高い静電容量を有するとともに、優れた高温負荷寿命を有し、かつ誘電損失の低い積層セラミックコンデンサを得ることができる。
【図面の簡単な説明】
【0011】
【図1】本実施形態の積層セラミックコンデンサの一例を示す断面模式図である。
【図2】(a)は、本実施形態の積層セラミックコンデンサを対向する外部電極間で積層方向に切断したときの断面模式図であり、(b)は、隣接する内部電極層間において、粒径の大きい主結晶粒子を含む領域と粒径の小さい主結晶粒子を含む領域とを交互に有する状態を示す部分拡大図である。
【図3】(a)は、本実施形態の積層セラミックコンデンサを構成する誘電体層を面に平行に切断したときの断面模式図であり、(b)は、粒径の大きい主結晶粒子を含む領域と粒径の小さい主結晶粒子を含む領域とを有する状態を示す部分拡大図である。
【図4】(a)は、本実施形態の積層セラミックコンデンサを構成する誘電体層を面に平行に切断したときの断面模式図であり、(b)は、粒径の大きい主結晶粒子を含む領域と粒径の小さい主結晶粒子を含む領域とを縦横に交互に有する状態を示す部分拡大図である。
【図5】(a)は、内部電極パターンを形成する際に用いる印刷用スクリーンのメッシュパターンの一部を示すもので、開口面積の大きい第1の領域と開口面積の小さい第2の領域とが面内で交互に配置されているメッシュパターンの模式図であり、(b)は、メッシュパターンの他の態様の一部を示すもので、開口面積の大きい第1の領域と開口面積の小さい第2の領域とが面内で縦横に交互に配置されているメッシュパターンの模式図である。
【発明を実施するための形態】
【0012】
本発明の積層セラミックコンデンサについて、図を用いて詳細に説明する。図1は、本実施形態の積層セラミックコンデンサの一例を示す概略断面図である。
【0013】
この実施形態の積層セラミックコンデンサは、コンデンサ本体1の両端部に外部電極3が形成されている。外部電極3は、例えば、CuもしくはCuとNiの合金ペーストを焼き付けて形成されている。
【0014】
コンデンサ本体1は、誘電体磁器からなる誘電体層5と内部電極層7とが交互に積層されて構成されている。図1では誘電体層5と内部電極層7との積層状態を単純化して示しているが、この実施形態の積層セラミックコンデンサは誘電体層5と内部電極層7とが数百層にも及ぶ積層体となっている。
【0015】
図2(a)は、本実施形態の積層セラミックコンデンサを対向する外部電極間で切断したときの断面模式図であり、(b)は、隣接する内部電極層間において、粒径の大きい主結晶粒子を含む領域と粒径の小さい主結晶粒子を含む領域とを交互に有する状態を示す部分拡大図である。
【0016】
図3は、(a)は、本実施形態の積層セラミックコンデンサを構成する誘電体層を面に平行に切断したときの断面模式図であり、(b)は、粒径の大きい主結晶粒子を含む領域と粒径の小さい主結晶粒子を含む領域とを有する状態を示す部分拡大図である。
【0017】
本実施形態の積層セラミックコンデンサは、誘電体層5が、チタン酸バリウムを主成分
とする主結晶粒子により構成され、隣接する前記内部電極層間において、粒径の大きい主結晶粒子を含む領域9Aと粒径の小さい主結晶粒子を含む領域9Bとを交互に有している。
【0018】
即ち、本実施形態の積層セラミックコンデンサを構成する誘電体層5は、例えば、図3(a)(b)に示すように、誘電体層5の面内で、粒径の大きい主結晶粒子を含む領域9Aと粒径の小さい主結晶粒子を含む領域9Bとを有する構造となっている。
【0019】
一般に、積層セラミックコンデンサは、これを構成する誘電体層5がチタン酸バリウムを主成分とする主結晶粒子9からなる場合、主結晶粒子9の粒径が大きいときには、結晶粒子1個当たりの誘電分極が大きくなることから比誘電率を高めることができるものの、比誘電率の増加に応じて誘電損失が大きくなるという問題がある。
【0020】
一方、誘電体層5を、粒径の小さい結晶粒子9により形成した場合には、誘電体層5の厚み方向に結晶粒子9の粒界の数が増えることから、誘電体層5の絶縁性が向上するものの、比誘電率を大きくできないという問題がある。
【0021】
このため積層セラミックコンデンサの小型化を図る場合、静電容量の向上に対して、絶縁性および高温負荷寿命の向上という相反する特性を同時に高めることになるが、誘電体層5および内部電極層7のそれぞれの厚みが1μm以下の領域において高い静電容量と優れた高温負荷寿命を有する小型かつ高容量の積層セラミックコンデンサを量産化することは非常に困難となっている。
【0022】
これに対し、本実施形態の積層セラミックコンデンサでは、誘電体層5を上記の構造とすることにより、高い静電容量を有するとともに、優れた高温負荷寿命を有し、かつ低い誘電損失を有するものにできる。
【0023】
つまり、本実施形態の積層セラミックコンデンサでは、隣接する内部電極層7間の誘電体層5中に、誘電体層5の比誘電率を向上させるための粒径の大きい主結晶粒子を含む領域9Aと高温負荷寿命を高めることができる粒径の小さい主結晶粒子を含む領域9Bとを形成することにより、静電容量の割に低い誘電損失を示す積層セラミックコンデンサを得ることができる。
【0024】
図4(a)は、(a)は、本実施形態の積層セラミックコンデンサを構成する誘電体層を面に平行に切断したときの断面模式図であり、(b)は、粒径の大きい主結晶粒子を含む領域と粒径の小さい主結晶粒子を含む領域とを縦横に交互に有する状態を示す部分拡大図である。
【0025】
本実施形態の積層セラミックコンデンサでは、前記粒径の大きい主結晶粒子を含む領域9Aと粒径の小さい主結晶粒子を含む領域9Bとが、誘電体層5の面内で縦横に交互に配置されていることが望ましい。積層セラミックコンデンサをこのような構成にすると、さらに高容量かつ高温負荷寿命に優れるとともに、さらに低い誘電損失を示す積層セラミックコンデンサを得ることができる。
【0026】
また、本実施形態の積層セラミックコンデンサは、粒径の大きい主結晶粒子を含む領域9Aにおける主結晶粒子の粒径は0.30〜0.50μmであり、粒径の小さい主結晶粒子を含む領域9Bにおける主結晶粒子9の粒径は0.20〜0.27μmであることが望ましく、この場合、粒径の大きい主結晶粒子9を含む領域9Aにおける主結晶粒子9の粒径と粒径の小さい主結晶粒子9を含む領域9Bにおける主結晶粒子9の粒径との差が0.05μm以上であることが望ましい。
【0027】
ここで、粒径の大きい主結晶粒子を含む領域9Aおよび粒径の小さい主結晶粒子を含む領域9Bの判定は、例えば、図2に示すような断面で切断した積層セラミックコンデンサの断面を走査型電子顕微鏡などにより観察して、粒径の大きい主結晶粒子9を含む領域9Aと粒径の小さい主結晶粒子を含む領域9Bとを選定して分ける。なお、粒径の大きい主結晶粒子を含む領域9Aおよび粒径の小さい主結晶粒子を含む領域9Bの判定については、図2に示す積層セラミックコンデンサの断面方向の観察のみならず、図3に(a)(b)示すように誘電体層5の面を平面視した切断面の観察からも同様に行うことができる。
【0028】
なお、本実施形態の積層セラミックコンデンサについて、粒径の大きい主結晶粒子9を含む領域9Aにおける主結晶粒子の粒径および粒径の小さい主結晶粒子を含む領域9Bにおける主結晶粒子の粒径は、具体的には、領域9A、9Bにおけるそれぞれの主結晶粒子の平均粒径を求めて判定する。
【0029】
ここで、主結晶粒子9の平均粒径は、以下の手順で測定する。まず、作製した積層セラミックコンデンサを図2(a)に示すような断面が露出するように研磨する。この後、研磨した試料を走査型電子顕微鏡を用いて観察した画像上または写した写真上において粒径の大きい主結晶粒子を含む領域9Aと粒径の小さい主結晶粒子を含む領域9Bとに分ける。この場合、主結晶粒子の粒径差が0.05μm以上であるところを大まかに境界として選定する。次に、粒径の大きい主結晶粒子を含む領域9Aおよび粒径の小さい主結晶粒子を含む領域9Bの各組織の写真を撮り、その写真上で結晶粒子が20〜100個入る円を描き、円内および円周にかかった結晶粒子を選択する。次いで、各結晶粒子の輪郭を画像処理して、各結晶粒子の面積を求め、同じ面積をもつ円に置き換えたときの直径を算出し、その平均値より求める。なお、粒径の大きい主結晶粒子を含む領域9Aと粒径の小さい主結晶粒子を含む領域9Bにおける各主結晶粒子のそれぞれの平均粒径は、図3に(a)(b)示すような誘電体層5の面を平面視した切断面の観察からも同様に行うことができる。
【0030】
また、本実施形態の積層セラミックコンデンサは、図2(b)に示すように、内部電極層7を断面視したときに、金属膜の密な部分7Aと疎な部分7Bとが交互に配置されたものとなっており、金属膜の密な部分7Aは誘電体層5を構成する粒径の大きい主結晶粒子を含む領域9Aに対応するように接しており、一方、金属膜の疎な部分7Bは、粒径の小さい主結晶粒子を含む領域9Bに接するように配置されている。このため、本実施形態の積層セラミックコンデンサでは、積層セラミックコンデンサを誘電体層5と内部電極層7との積層面で剥がしたときに内部電極層7の金属膜の密な部分7Aおよび疎な部分7Bの観察からも粒径の大きい主結晶粒子を含む領域9Aおよび粒径の小さい主結晶粒子を含む領域9Bを導くことが可能となる。
【0031】
本実施形態の積層セラミックコンデンサでは、誘電体層5の厚みが0.5〜1.0μmであるのがよく、また、内部電極層7の厚みは誘電体層5の厚みと同等かそれ以下であるのが好ましい。誘電体層5および内部電極層7のそれぞれの厚みが上記範囲であると、同一規格の寸法の積層セラミックコンデンサにおいて、誘電体層5および内部電極層7のより多く積層できることから、単位体積当たりの静電容量がより高い積層セラミックコンデンサを得ることができる。
【0032】
なお、誘電体層5の平均厚みは、以下のようにして測定する。まず、積層セラミックコンデンサを内部電極層7が複数積層されている方向を見ることができるように研磨し、断面を露出させる。次に、走査型電子顕微鏡観察により、その積層方向の中央部の誘電体層5を5層選択する。次に、選択した誘電体層5のうち、内部電極層7に接している誘電体層5の幅を両端として、その両端間を誘電体層5の面方向におおよその間隔で10等分し
、その等分した箇所(両端を含め11箇所)のうち両端を除いた9箇所について誘電体層5の厚みを測定する。この測定を他の4層の誘電体層5についても同様に適用し、測定した厚みの値から平均値を求めることにより、誘電体層5の平均厚みを求める。
【0033】
次に、内部電極層7の平均厚みについては、上記誘電体層5の平均厚みを測定した誘電体層5が接している内部電極層7の5層について、誘電体層5の厚みを測定した箇所と同じ位置で内部電極層7の厚みを測定し、測定した厚みの値から平均値を求めることにより、内部電極層7の平均厚みを求める。
【0034】
本実施形態の積層セラミックコンデンサは、上述のように、チタン酸バリウムを主成分とする結晶粒子9により構成される誘電体磁器を誘電体層5としたものであるが、高誘電率かつ高絶縁抵抗という点で、その組成は、チタン酸バリウムを構成するチタン100モルに対して、バナジウムをV換算で0.03〜0.08モル、マグネシウムをMgO換算で0.9〜1.1モル、イットリウム、ジスプロシウム、ホルミウムおよびイッテルビウムから選ばれる少なくとも1種の希土類元素(RE)をRE換算で0.4〜0.6モル、マンガンをMnO換算で0.2〜0.3モルおよびケイ素をSiO換算で0.50〜0.65モルであるものが望ましい。
【0035】
なお、誘電体磁器の組成は、積層セラミックコンデンサを酸に溶解させた溶液をICP(Inductively Coupled Plasma)分析および原子吸光分析を用いて求める。この場合、各元素の価数を周期表に示される価数として酸素量を求める。
【0036】
次に、本発明の積層セラミックコンデンサを製造する方法について説明する。
【0037】
まず、誘電体粉末をポリビニルブチラール樹脂などの有機樹脂やトルエンおよびアルコールなどの溶媒とともにボールミルなどを用いてセラミックスラリを調製し、次いで、セラミックスラリをドクターブレード法やダイコータ法などのシート成形法を用いて基材上にセラミックグリーンシートを形成する。セラミックグリーンシートの厚みは誘電体層5の高容量化のための薄層化、高絶縁性を維持するという点で0.8〜1.5μmが好ましい。
【0038】
ところで、積層セラミックコンデンサの製造に用いる誘電体粉末としては、所望とする誘電特性に応じて、チタン酸バリウム(BaTiO、以下、BT粉末という)、バリウムサイトにカルシウムまたはストロンチウムなどのアルカリ土類元素を固溶させたBa1−xCaTiO(x=0.01〜0.1、以下、BCT粉末という)粉末またはBa1−xSrTiO(x=0.01〜0.1、以下、BST粉末という)粉末、あるいは、チタン酸バリウムのバリウムサイトにカルシウムを固溶させるとともに、チタンサイトにジルコニウムを固溶させたBa1−xCaTi1−yZr(x=0.01〜0.1、y=0.05〜0.5、以下、BCTZ粉末という)粉末を用いることができる。
【0039】
上述した粉末の中で、室温を中心とする広い温度範囲で静電容量の温度変化率が比較的小さい積層セラミックコンデンサを得ることができるという理由から、BT粉末が好適である。BT粉末は、Ba/Tiのモル比が1.001〜1.009であり、また、その平均粒径が0.1〜0.2μmであるものがよい。これにより誘電体層5の薄層化を容易にし、BT粉末として、後述する焼成条件により、高誘電率であり、かつ優れた高温負荷寿命を示す積層セラミックコンデンサを得ることができる。
【0040】
また、上述のBT粉末、BCT粉末、BST粉末およびBCTZ粉末のいずれか1種の粉末に対し、各種添加剤を添加してセラミックスラリを調製し、次いで、このセラミック
スラリを所定の成形方法によりセラミックグリーンシートを作製する。この場合、添加剤として、V粉末と、MgO粉末と、Y粉末、Dy粉末、Ho粉末およびYb粉末から選ばれる少なくとも1種の希土類元素(RE)の酸化物粉末と、マンガンを含む粉末(ここでは、MnCO粉末を用いる)と、SiOを主成分とするガラス粉末とを用いると、例えば、EIA規格のX5R特性(−55〜85℃において静電容量の変化率が±15%以内)に代表されるような静電容量の温度特性の安定な誘電体磁器を形成することができる。
【0041】
なお、これらの原料試薬の純度は、得られる誘電体層5となる焼結体への不純物の混入を抑制し、高い誘電特性を得るという理由からいずれも99.5%以上であるのがよい。
【0042】
次に、得られたセラミックグリーンシートの主面上に矩形状の内部電極パターンを印刷して形成する。この場合、内部電極パターンとなる導体ペーストは、Niもしくはこれらの合金粉末を主成分金属とし、これに共材としてのセラミック粉末(この場合、BT粉末またはセラミックグリーンシートに用いた誘電体粉末を用いる)を混合し、有機バインダ、溶剤および分散剤を添加して調製する。
【0043】
図5(a)は、内部電極パターンを形成する際に用いる印刷用スクリーンのメッシュパターンの一部を示すもので、開口面積の大きい第1の領域10Aと開口面積の小さい第2の領域10Bとが面内で交互に配置されているメッシュパターンの模式図であり、(b)は、メッシュパターンの他の態様の一部を示すもので、開口面積の大きい第1の領域10Aと開口面積の小さい第2の領域10Bとが面内で縦横に交互に配置されているメッシュパターンの模式図である。
【0044】
本実施形態の積層セラミックコンデンサを製造する場合には、図5(a)(b)に示すメッシュパターンを有する印刷用スクリーンを用いる。例えば、印刷用スクリーンとして、図5(a)に示すようなメッシュパターンを有するものを用いると、開口面積の大きいメッシュパターンの領域10Aと開口面積の小さいメッシュパターンの領域10Bでは、導体ペーストの塗布量が異なるため、開口面積の大きいメッシュパターンの領域10Aは金属粉末の塗布量が多くなり、一方、開口面積の小さいメッシュパターンの領域10Bは、開口面積の大きいメッシュパターンの領域10Aに比較して導体ペーストが少なく塗布されるため、この領域は金属粉末の塗布量が少なくなる。
【0045】
こうしてセラミックグリーンシートの表面上に、用いる印刷用スクリーンのメッシュパターンに対応させて金属粉末の塗布量の多い領域と金属粉末の塗布量の少ない領域とが交互に形成された内部電極パターンを形成することができる。
【0046】
なお、図5の(b)のメッシュパターンを有する印刷用スクリーンを用いた場合には、金属粉末の塗布量の多い領域と金属粉末の塗布量の少ない領域とが縦横に交互に形成された内部電極パターンが形成される。
【0047】
次に、内部電極パターンが形成されたセラミックグリーンシートを所望枚数重ねて、その上下に内部電極パターンを形成していないセラミックグリーンシートを複数枚、上下層が同じ枚数になるように重ねて仮積層体を形成する。仮積層体中における内部電極パターンは長寸方向に半パターンずつずらしてある。このような積層工法により切断後の積層体の端面に内部電極パターンが交互に露出されるように形成できる。
【0048】
なお、本実施形態の積層セラミックコンデンサは、セラミックグリーンシートの主面に内部電極パターンを予め形成した後に積層する工法の他に、セラミックグリーンシートを一旦下層側の機材に密着させた後に、内部電極パターンを印刷し、乾燥させ、印刷、乾燥
された内部電極パターン上に、内部電極パターンを印刷していないセラミックグリーンシートを重ねて仮密着させ、セラミックグリーンシートの密着と内部電極パターンの印刷を逐次行う工法によっても形成できる。
【0049】
次に、仮積層体を上記仮積層時の温度圧力よりも高温、高圧の条件にてプレスを行い、セラミックグリーンシートと内部電極パターンとが強固に密着された積層体を形成する。
【0050】
次に、積層体を格子状に切断することにより内部電極パターンの端部が露出するコンデンサ本体成形体を形成する。
【0051】
次に、コンデンサ本体成形体を、所定の雰囲気下、温度条件で焼成してコンデンサ本体1を形成する。焼成は、例えば、昇温速度を1000〜2400℃/hとし、最高温度を1030〜1230℃、保持時間を0.1〜4時間とし、水素−窒素の雰囲気中にて行い、この後、900〜1100℃の温度範囲で再酸化処理を行う。
【0052】
本実施形態の積層セラミックコンデンサは、導体ペーストの塗布量の多い領域と導体ペーストの塗布量の少ない領域とが交互に形成された内部電極パターンが表面に形成されたセラミックグリーンシートを用いて形成されるものである。このような内部電極パターンおよびセラミックグリーンシートが積層されたコンデンサ本体成形体を焼成して得られるコンデンサ本体1を構成する誘電体層5は、焼成前の内部電極パターンにおいて導体ペーストの塗布量の違いに応じて誘電体層5を構成する結晶粒子9の粒成長が異なってくる。
【0053】
金属粉末の塗布量の多い領域は、金属粉末が密に詰まっていることから金属粉末同士の焼結が進みやすい。一方、金属粉末の塗布量の少ない領域は、金属粉末の充填性が低く疎になっていることから金属粉末同士が焼結しにくくなる。
【0054】
金属粉末の塗布量の多い領域に接しているチタン酸バリウムを主成分とする粉末(チタン酸バリウム系粉末とする)は、金属粉末同士の焼結性に引っ張られて粒成長し易くなる。一方、金属粉末の塗布量の少ない領域に接しているチタン酸バリウム系粉末は、金属粉末同士の焼結が進みにくいことから粒成長が抑制される。
【0055】
こうして金属粉末の塗布量の多い領域および金属粉末の塗布量の少ない領域のそれぞれの焼結性に対応するようにチタン酸バリウム系粉末の粒成長が起こることにより、粒径の大きい主結晶粒子を含む領域9Aと粒径の小さい主結晶粒子を含む領域とが交互配列した構造または粒径の大きい主結晶粒子を含む領域9Aと粒径の小さい主結晶粒子を含む領域9Bとが縦横に交互に配列した構造を有する誘電体層5を形成することができる。
【0056】
次に、必要に応じて得られたコンデンサ本体1の稜線部分の面取りを行うとともに、コンデンサ本体1の対向する端面から露出する内部電極層7を露出させるためにバレル研磨を行う。
【0057】
次に、このコンデンサ本体1の対向する端部に、外部電極ペーストを塗布して焼付けを行い外部電極3を形成する。また、場合によっては、この外部電極3の表面に実装性を高めるためにメッキ膜を形成する。こうして本実施形態の積層セラミックコンデンサが得られる。
【実施例】
【0058】
まず、原料粉末として、純度が99.9%、平均粒径が0.2μm、Ba/Tiのモル比が1.005のBT粉末を準備した。
【0059】
次に、ボールミル中において、BT粉末100モルに対して、V粉末を0.05モル、MgO粉末を1.0モル、Y粉末を0.5モル、MnCO粉末を0.2モル添加し、また、Si、Ba、CaおよびLiを含むガラス粉末をBT粉末100質量部に対して0.5質量部添加し混合した。次いで、これにポリビニルブチラール樹脂と、トルエンおよびアルコールの混合溶媒中に投入し、直径1mmのジルコニアボールを用いて湿式混合してセラミックスラリを調製し、ドクターブレード法により厚み0.6〜2.5μmのセラミックグリーンシートを作製した。
【0060】
次に、このセラミックグリーンシートの上面にNiを主成分とする導体ペーストを矩形状の内部電極パターンとなるように複数形成した。内部電極パターンを形成するための導体ペーストは、平均粒径が0.2μmのNi粉末100質量部に対してBT粉末を添加したものを用いた。このとき内部電極パターンの印刷は、図5(a)(b)に示したメッシュパターンの印刷用スクリーンおよび比較として一様な開口率を有する印刷用スクリーンを用いた。なお、開口面積の異なるメッシュパターンについては、図5(a)のメッシュパターンの場合は、開口面積が幅方向に約100μm毎に異なるようにしたものを用いた。図5(b)のメッシュパターンの場合は、開口面積が幅方向および長さ方向の2方向で約100μm毎に異なるようにしたものを用いた。メッシュパターンとしては開口率が65%および48%のものを用いた。
【0061】
次に、内部電極パターンを印刷したセラミックグリーンシートを200枚積層し、その上下面に内部電極パターンを印刷していないセラミックグリーンシートをそれぞれ20枚積層し、プレス機を用いて温度60℃、圧力10Pa、時間10分の条件で密着させて積層体を作製し、しかる後、この積層体を、所定の寸法に切断してコンデンサ本体成形体を形成した。
【0062】
次に、コンデンサ本体成形体を大気中で脱バインダ処理した後、水素−窒素中、1150で焼成してコンデンサ本体を作製した。この焼成では、ローラーハースキルンを用いて、2000℃/hrの昇温速度の条件で焼成を行った。
【0063】
作製したコンデンサ本体は、続いて、窒素雰囲気中1000℃で4時間再酸化処理を行った。このコンデンサ本体の大きさは0.6mm×0.3mm×0.3mm、内部電極層の1層の有効面積は設計値で0.125mmになるようにした。
【0064】
次に、コンデンサ本体をバレル研磨した後、コンデンサ本体の両端部にCu粉末とガラスとを含んだ外部電極ペーストを塗布し、850℃で焼き付けを行って外部電極を形成した。その後、電解バレル機を用いて、この外部電極の表面に、順にNiメッキ及びSnメッキを行い、積層セラミックコンデンサを作製した。
【0065】
次に、これらの積層セラミックコンデンサについて以下の評価を行った。高温負荷試験は、温度170℃、直流電圧10Vとし、試料である積層セラミックコンデンサの抵抗が10Ωを下回ったときの時間を測定した。この場合、温度170℃、直流電圧10Vで4時間以上であれば、X5R特性の上限温度である85℃で、定格電圧の1.5倍の電圧の条件で1000時間以上を満足するものとなる。試料数は20個とした。
【0066】
単位体積当たりの静電容量は、室温(25℃)における静電容量をLCRメータ(ヒューレットパッカード社製)を用いて、温度25℃、周波数1.0kHz、AC電圧を1.0Vrmsとして測定し、測定した静電容量の値をコンデンサ本体の静電容量Cを発現する部分の体積Vで除して、単位体積当たりの静電容量(C/V)を求めた。なお、コンデンサ本体の静電容量を発現する部分の体積Vは、コンデンサ本体において、誘電体層を挟んで内部電極層が重なっている領域を面積Aとし、また、積層方向の最上層の内部電極層
から最下層の内部電極層までの厚みを長さLとしたときに、A×Lで表される値である。ここで比誘電率、静電容量の温度特性および単位体積当たりの静電容量(C/V)を求めるときの試料数は各50個とした。また、静電容量の測定時に同条件にて誘電損失も評価した。このときの試料数も50個とした。
【0067】
また、静電容量の温度特性は静電容量を温度−55〜85℃の範囲で測定し、25℃での静電容量を基準にしたときの85℃における静電容量の変化率を求めた。
【0068】
主結晶粒子の平均粒径は、以下の手順で測定した。まず、作製した積層セラミックコンデンサを図2(a)に示すような断面が露出するように研磨した。この後、研磨した試料を走査型電子顕微鏡を用いて観察した画像上または写した写真上において粒径の大きい主結晶粒子を含む領域と粒径の小さい主結晶粒子を含む領域とに分けた。この場合、主結晶粒子の粒径差が0.05μm以上であるところを大まかに境界として選定した。次に、粒径の大きい主結晶粒子を含む領域および粒径の小さい主結晶粒子を含む領域の各組織の写真を撮り、その写真上で結晶粒子が20〜100個入る円を描き、円内および円周にかかった結晶粒子を選択した。次いで、各結晶粒子の輪郭を画像処理して、各結晶粒子の面積を求め、同じ面積をもつ円に置き換えたときの直径を算出し、その平均値より求めた。なお、作製した積層セラミックコンデンサでは、図5(a)(b)のメッシュパターンの各領域に対応して粒径の大きい主結晶粒子を含む領域と粒径の小さい主結晶粒子を含む領域とが形成されており、それらの領域の主結晶粒子の粒径差は0.05μm以上であることが認められた。
【0069】
また、誘電体層の平均厚みは、以下のようにして測定した。まず、積層セラミックコンデンサを内部電極層が複数積層されている方向を見ることができるように研磨し、断面を露出させた。次に、走査型電子顕微鏡観察により、その積層方向の中央部の誘電体層を5層選択した。次に、選択した誘電体層のうち、内部電極層に接している誘電体層の幅を両端として、その両端間を誘電体層の面方向におおよその間隔で10等分し、その等分した箇所(両端を含め11箇所)のうち両端を除いた9箇所について誘電体層の厚みを測定した。この測定を他の4層の誘電体層についても同様に適用し、測定した厚みの値から平均値を求めることにより、誘電体層の平均厚みを求めた。この場合、作製した試料の誘電体層の平均厚みは1.0μmであった。
【0070】
次に、内部電極層の平均厚みについては、上記誘電体層の平均厚みを測定した誘電体層が接している内部電極層7の5層について、誘電体層の厚みを測定した箇所と同じ位置で内部電極層の厚みを測定し、測定した厚みの値から平均値を求めることにより、内部電極層の平均厚みを求めた。この場合、作製した試料の誘電体層の平均厚みは0.5μmであった。
【0071】
また、得られた試料の組成分析はICP分析および原子吸光分析により行った。この場合、得られた積層セラミックコンデンサから外部電極を取り除きコンデンサ本体の状態にしたものを硼酸と炭酸ナトリウムと混合し、溶融させ、これを塩酸に溶解させて、まず、原子吸光分析により誘電体層に含まれる元素の定性分析を行った。次に、特定した各元素について標準液を希釈したものを標準試料として、ICP発光分光分析にかけて定量化した。また、各元素の価数を周期表に示される価数として酸素量を求めた。なお、得られた積層セラミックコンデンサを構成する誘電体層に含まれる各成分(V、希土類元素の酸化物(RE)、MgO、MnO(MnCOは焼結体中ではCOが除かれたものとなる))組成は調合時の組成と一致した。
【0072】
なお、結晶粒子の平均粒径、誘電体層の平均厚みおよび内部電極層の平均厚みは、各1個の試料を用いて求めた。
【0073】
得られた積層セラミックコンデンサの誘電体層中の主結晶粒子の平均粒径および誘電特性(高温負荷寿命、静電容量の温度特性、誘電損失および単位体積当たりの静電容量)の結果を表1にそれぞれ示す。
【0074】
【表1】

【0075】
表1の結果から明らかなように、本発明の試料No.3、4では、静電容量の温度特性がEIA規格のX5R特性を満足するとともに、積層セラミックコンデンサの単位体積当たりの静電容量が17μF/mm以上であり、170℃、10Vの条件での高温負荷寿命を20時間以上を満足し、量産可能な信頼性を有するものであるとともに、誘電損失が3.5%以下であった。
【0076】
特に、誘電体層を図4の組織とした試料No.4では、静電容量の温度特性がEIA規格のX5R特性を満足し、積層セラミックコンデンサの単位体積当たりの静電容量が18μF/mmであり、170℃、10Vの条件での高温負荷寿命が21時間であり、誘電損失が3.3%であった。
【0077】
これに対し、メッシュパターンの開口面積が一様なメッシュパターンを用いて作製した試料では、静電容量の温度特性がEIA規格のX5R特性を満足するものの、誘電損失が6%以上あり、また、積層セラミックコンデンサの単位体積当たりの静電容量が16μF/mm以上であるものの、170℃、10Vの条件での高温負荷寿命が5.0時間以下であった。
【符号の説明】
【0078】
1 コンデンサ本体
3 外部電極
5 誘電体層
7 内部電極層
9 結晶粒子
9A 粒径の大きい主結晶粒子を含む領域
9B 粒径の小さい主結晶粒子を含む領域
10A 開口面積の大きいメッシュパターンの領域
10B 開口面積の小さいメッシュパターンの領域

【特許請求の範囲】
【請求項1】
複数の誘電体層と複数の内部電極層とが交互に積層されたコンデンサ本体と、該コンデンサ本体の前記内部電極層が露出した端面に設けられた外部電極とを有する積層セラミックコンデンサであって、前記誘電体層がチタン酸バリウムを主結晶粒子として含有する誘電体磁器からなり、前記誘電体層が、隣接する前記内部電極層間において、粒径の大きい主結晶粒子を含む領域と粒径の小さい主結晶粒子を含む領域とを有していることを特徴とする積層セラミックコンデンサ。
【請求項2】
前記誘電体層を平面視したとき、前記粒径の大きい主結晶粒子を含む領域と前記粒径の小さい主結晶粒子を含む領域とが縦横に交互に配置されていることを特徴とする請求項1に記載の積層セラミックコンデンサ。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2012−49449(P2012−49449A)
【公開日】平成24年3月8日(2012.3.8)
【国際特許分類】
【出願番号】特願2010−192314(P2010−192314)
【出願日】平成22年8月30日(2010.8.30)
【出願人】(000006633)京セラ株式会社 (13,660)
【Fターム(参考)】