説明

空間情報検出装置

【課題】撮像装置の受光光学系において波長選択性とフレアの抑制という2機能を満足させながらも従来よりも小型化することを可能にした空間情報検出装置を提供する。
【解決手段】発光源から特定波長の光を空間に投光する。撮像装置は、受光光学系22を通して前記空間を撮像する撮像素子21を備える。処理装置は、発光源10から投光した光と撮像装置20により受光した光の受光量との関係を用いて前記空間の情報を検出する。受光光学系22は、4枚のレンズ23〜26を備え、4枚のレンズ23〜26に形成された曲面から選択した2つの面に波長選択性を有する薄膜フィルタ27,28を備える。薄膜フィルタ27,28は選択する波長が異なっており、選択する波長の組み合わせにより特定波長を含む所定の通過帯域を持つ帯域通過フィルタが形成される。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、特定波長の光を空間に投光するとともに、受光光学系を通して当該空間を撮像し、発光源から投光した光と撮像装置により受光した光の受光量との関係を用いて当該空間の情報を検出する空間情報検出装置に関するものである。
【背景技術】
【0002】
従来から、光を空間に投光するとともに当該空間を撮像し、投光した光と受光した光の受光量との関係を用いて当該空間について、各種の情報を検出するアクティブ型の空間情報検出装置が提案されている。この種の空間情報検出装置としては、強度を変調した変調光を投光し、投光から受光までの位相差によって、空間に存在する物体までの距離を求める装置が知られている。また、空間に光を投光する期間と投光しない期間とを設け、両期間における受光量の差分を求める装置も提案されている。前者の技術では、画素値を距離値とする距離画像を生成することができ、後者の技術では、画素値を差分値とした濃淡画像を生成することができる。
【0003】
さらに、アクティブ型の空間情報検出装置では、空間に存在する物体の反射率や空間の媒質の透過率の計測も可能であり、たとえば、特定波長の光の透過率を利用することにより、空間の媒質の濃度を検出するガスセンサに利用ことも可能である。
【0004】
ところで、この種の空間情報検出装置では、CCDイメージセンサやCMOSイメージセンサのような半導体イメージセンサを撮像素子に用い、受光光学系を通して空間を撮像する撮像装置を構成している。撮像素子は、自然光や照明光のような空間の環境光が入射すると出力が飽和しやすくなる。そこで、アクティブ型の空間情報検出装置では、受光量のダイナミックレンジを確保するために、特定波長の光を空間に投光し、投光した波長成分のみを撮像する技術が採用されている。
【0005】
投光した波長成分のみを撮像する技術としては、撮像する空間と受光光学系との間に帯域通過フィルタを配置する構成を用いている。すなわち、受光光学系に入射する光の波長を帯域通過フィルタを用いて制限している。
【0006】
一方、撮像装置では、構成要素である受光光学系や撮像素子による反射が生じることによって、レンズフレアないしハレーション(以下、単に「フレア」という)と称する現象が生じることが知られている。このようなフレアが生じると、空間情報を正確に検出することができない
フレアは、入射光の強度が大きいときに生じやすく、一般的なカメラにおいては、レンズフードを用いて視野外からの光の入射を抑制することによりフレアの発生を抑制している。しかしながら、上述した空間情報検出装置では、レンズフードを用いることは大型化につながり、フレア対策として望ましい構成とは言えない。
【0007】
レンズのような光学素子において散乱やフレアのような光学性能劣化を防止する技術としては、光学素子の基材上に樹脂層と光学薄膜層とを設けることが考えられている(たとえば、特許文献1参照)。特許文献1に記載の技術では、光学薄膜層を形成して光学素子の表面粗さを低減することにより、光学性能劣化を防止している。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特開2000−241608号公報(段落[0019]−[0020]参照)
【発明の概要】
【発明が解決しようとする課題】
【0009】
撮像装置の受光光学系において特許文献1に記載の技術を用いると、フレアの発生を抑制することができると考えられる。また、受光光学系において光学薄膜層を形成することによりフレアを抑制しているから、レンズフードを設ける場合のような大型化も避けることができる。
【0010】
しかしながら、上述のようにアクティブ型の空間情報検出装置では、空間に投光した波長成分のみを撮像するために波長選択性を備える光学フィルタが必要である。撮像装置では、受光光学系の前端に波長選択性を備える光学フィルタとしてのレンズフィルタを追加するのが一般的であるから、結局は受光光学系の大型化を避けることができない。
【0011】
上述のようにアクティブ型の空間情報検出装置では撮像装置の受光光学系において、波長選択性とフレアの抑制という2種類の機能が要求されている。そのため、両者を満足させようとすると、受光光学系の大型化を避けることができないという問題が生じる。
【0012】
本発明は上記事由に鑑みて為されたものであり、その目的は、撮像装置の受光光学系において波長選択性とフレアの抑制という2機能を満足させながらも従来よりも小型化することを可能にした空間情報検出装置を提供することにある。
【課題を解決するための手段】
【0013】
本発明は、上記目的を達成するために、特定波長の光を空間に投光する発光源と、受光光学系を通して前記空間を撮像する撮像素子を備えた撮像装置と、発光源から投光した光と撮像装置により受光した光の受光量との関係を用いて前記空間の情報を検出する処理装置とを備え、受光光学系は、複数枚のレンズを備え、レンズに形成された曲面から選択した2つの面に波長選択性を有する薄膜フィルタを備え、薄膜フィルタが選択する波長の組み合わせにより特定波長を含む所定の通過帯域を持つ帯域通過フィルタが形成されることを特徴とする。
【0014】
この場合、選択した2枚のレンズの各一面にそれぞれ薄膜フィルタが形成されていることが望ましい。
【0015】
さらに、薄膜フィルタを形成するレンズは、レンズから選択した隣接する2枚であり、各レンズの向かい合う2つの面に薄膜フィルタがそれぞれ形成されているのが望ましい。
【0016】
本発明の他の構成として、特定波長の光を空間に投光する発光源と、受光光学系を通して前記空間を撮像する撮像素子を備えた撮像装置と、発光源から投光した光と撮像装置により受光した光の受光量との関係を用いて前記空間の情報を検出する処理装置とを備え、受光光学系は、複数枚のレンズを備え、レンズに形成された曲面から選択した1つの面に波長選択性を有する薄膜フィルタを備え、レンズのうち薄膜フィルタを有するレンズ以外のいずれかのレンズは波長選択性を有する材料により形成された波長選択レンズであり、薄膜フィルタが選択する波長と波長選択レンズが選択する波長との組み合わせにより特定波長を含む所定の通過帯域を持つ帯域通過フィルタが形成される構成を採用してもよい。
【0017】
本発明のさらに他の構成として、特定波長の光を空間に投光する発光源と、受光光学系を通して前記空間を撮像する撮像素子を備えた撮像装置と、発光源から投光した光と撮像装置により受光した光の受光量との関係を用いて前記空間の情報を検出する処理装置とを備え、受光光学系は、複数枚のレンズを備え、レンズから選択した2枚のレンズはそれぞれ波長選択性を有する波長選択レンズであり、波長選択レンズが選択する波長の組み合わせにより特定波長を含む所定の通過帯域を持つ帯域通過フィルタが形成される構成を採用してもよい。
【0018】
受光光学系において、レンズのうち撮像素子から最遠方に配置されたレンズの入射面に向かい合うカバーガラスが付加されているのが望ましい。
【発明の効果】
【0019】
本発明の構成によれば、撮像装置の受光光学系において波長選択性とフレアの抑制という2機能を満足させながらも、受光光学系を小型化することが可能になるという利点を有する。
【図面の簡単な説明】
【0020】
【図1】実施形態を示すブロック図である。
【図2】実施形態1に用いる受光光学系の構成例を示す概略構成図である。
【図3】同上に用いる薄膜フィルタの波長選択性を示す動作説明図である。
【図4】同上に用いる受光光学系の他の構成例を示す概略構成図である。
【図5】同上に用いる受光光学系の具体的な構成例を示す構成図である。
【図6】実施形態2に用いる受光光学系の構成例を示す概略構成図である。
【図7】実施形態3に用いる受光光学系の構成例を示す概略構成図である。
【発明を実施するための形態】
【0021】
(実施形態1)
以下に説明する実施形態では、強度を変調した光(以下、「強度変調光」という)を空間に投光し、撮像装置を用いて当該空間を撮像することにより、当該空間に存在する物体までの距離を空間情報として検出する距離画像センサを、空間情報検出装置として例示する。ただし、距離画像センサは、一例であって、背景技術において説明した他の空間情報検出装置に本実施形態の技術を適用することを妨げない。また、本実施形態において説明する距離画像センサの構成は例示であり、本実施形態において説明する技術を他の構成の距離画像センサに適用することを妨げない。
【0022】
距離画像センサは、図2に示すように、強度変調光を空間に投光する発光源10と、当該空間を撮像する撮像装置20とを備える。さらに、距離画像センサは、発光源10および撮像装置20の駆動と、撮像装置20の出力を用いて空間に存在する物体までの距離を求める処理装置30を備える。
【0023】
発光源10は、発光ダイオードや半導体レーザのように変調信号の瞬時レベルに応じて出力強度を変化させる発光素子11と、発光素子11から出射した光を空間の所望領域に投光するように投光領域を制御する投光光学系12とを備える。投光光学系12は、レンズ、ミラー、プリズムなどの光学要素を適宜に用いて構成される。
【0024】
一方、撮像装置20は、CCDイメージセンサやMOSイメージセンサのように受光強度の瞬時値に応じた出力値が得られる撮像素子21と、前記空間からの光を撮像素子21に導く受光光学系22とを備える。撮像素子21は、一般的な構成のイメージセンサを用いることが可能であるが、距離画像センサに用いるための専用の構成であることが望ましい。
【0025】
また、受光光学系22は、複数のレンズを組み合わせて構成される。一般的には受光光学系22を構成するレンズの光軸は一致させるが、レンズの光軸が一致していることは必須ではない。また、受光光学系22は単焦点であり、本実施形態では2枚以上のレンズがあればよいが、通常は3枚ないし4枚のレンズを用いる。
【0026】
処理装置30は、発光素子11を駆動する発光制御部31を備える。発光制御部31は、正弦波、三角波、デューティ比が50%の矩形波などの波形を有した一定周期の変調信号を発光素子11に与えることにより、発光素子11から出力される光の強度を変調信号の波形に合わせて変化させる。したがって、一定周期で強度が変化する強度変調光が発光源10から空間に投光されることになる。変調信号の周波数は数十MHz(たとえば、20MHz)に設定される。なお、変調信号の波形についてはとくに制限はない。
【0027】
処理装置30は、撮像素子21における受光のタイミングや撮像素子21から電荷を読み出すタイミングを制御する撮像制御部32を備える。撮像素子21は、撮像制御部32からの撮像信号を受けて光電変換を行って電荷を生成する受光期間を制限する機能を備えている。すなわち、シャッタの機能を電気的に実現している。
【0028】
受光期間は、変調信号の特定の複数の位相に同期して設定される。たとえば、変調信号の0度、90度、180度、270度の各位相に同期する受光期間を撮像信号により設定し、撮像素子21では各受光期間ごとの電荷を生成する。受光期間は、変調信号の1周期内で設定されている必要はない。
【0029】
撮像素子21は、多数周期(たとえば、10000周期)における電荷を蓄積し、蓄積された電荷を撮像制御部32からの読出信号を受けて外部に取り出す。多数周期の電荷を蓄積し信号光により生成された電荷量を増加させることにより、受光量の差が大きくなるから距離を求める精度が向上し、ショットノイズなどによる電荷量のばらつきが抑制される。
【0030】
上述のようにして4つの位相に同期した電荷を生成すると、撮像素子21に蓄積される電荷量が撮像素子21の受光量と線形関係になる範囲内であれば、外光の影響を除去して投受光の位相差を求めることができる。いま、変調信号が正弦波であって三角関数で近似でき、上述の4つの位相に対応して蓄積された電荷量がそれぞれA0,A1,A2,A3であるとすると、三角関数の関係により、投受光の位相差φには次式のような関係が成り立つ。
tanφ={(A0−A2)/(A1−A3)}
変調信号は周波数が一定であるから、位相差φを距離に換算することができる。撮像素子21で得られた電荷(撮像素子21の出力信号)から位相差φを求める演算と、求めた位相差φを距離に換算する演算とは、処理装置30に設けた距離画像生成部33により行う。距離画像生成部33では、撮像素子21の受光面上での位置(距離画像の画素となる単位領域の位置)を、撮像素子21から受光光学系22を通して見込む方向に対応付け、各方向ごとの物体までの距離を求める。言い換えると、距離画像生成部33では、画素値を距離値に持つ距離画像を生成する。
【0031】
距離画像生成部33が生成した距離画像は、処理装置30に設けた出力部34において目的に応じた処理がなされ、目的とする情報が出力部34から取り出される。たとえば、出力部34は、距離画像をCRTや液晶表示器のようなモニタ装置の画面に表示可能な形式の信号に変換する処理、距離画像から所望の特徴量を抽出して視野内の移動物体を監視する処理など、適宜の処理を行うことができる。
【0032】
ところで、背景技術において説明したように、受光光学系22では環境光の影響を低減することが望ましい。本実施形態では、発光源10から空間に投光する強度変調光に赤外領域の光を用い、受光光学系22は強度変調光の波長領域の光のみを通過させる構成を採用している。
【0033】
そのため、図1に示すように、受光光学系22を構成する複数枚(図示例は4枚)のレンズ23〜26に形成された曲面から選択した2つの面に波長選択性を有する薄膜フィルタ27,28を形成している。薄膜フィルタ27,28は、通過波長の特性が異なっている。
【0034】
具体的には、図3に示すように、第1の波長λ1よりも長波長側の光を阻止するハイパスフィルタの機能(特性(1))を有する薄膜フィルタ27と、第2の波長λ2よりも短波長側の光を阻止するローパスフィルタの機能(特性(2))を有する薄膜フィルタ28とを設けている。また、第1の波長λ1と第2の波長λ2とは、λ1>λ2の関係としてある。したがって、両薄膜フィルタ27,28を併せた通過波長域は、λ1とλ2との間の波長域になる。
【0035】
発光源10から出射する光の波長が、この通過波長域の範囲内に収まるように、光の波長と薄膜フィルタ27,28の特性とを選択すれば、撮像素子21により撮像する画像に対する環境光の影響を低減することができる。とくに、環境光の影響を低減しようとすれば、通過波長域が狭くなるように、波長λ1,λ2の差を比較的小さくし、かつ減衰特性が急峻になるように薄膜フィルタ27,28を設計することが有効である。
【0036】
ところで、発光源10から投光する光は近赤外領域ないし中赤外領域であって、両薄膜フィルタ27,28は、この波長領域の光を通過させるように形成される。薄膜フィルタ27は可視光を通過させるように形成され、薄膜フィルタ28は可視光を遮断するように形成される。すなわち、2枚の薄膜フィルタ27,28により近赤外領域ないし中赤外領域(0.7〜4μm)の赤外光を通過させるバンドパスフィルタが構成される。
【0037】
薄膜フィルタ27,28は4枚のレンズ23〜26のいずれにも設けることが可能であるが、受光光学系22の中間付近から撮像素子21までの間に配置されていることが望ましい。また、1枚のレンズ23〜26の2面が曲面であれば(平凸レンズあるいは平凹レンズでなければ)、1枚のレンズ23〜26の両面に薄膜フィルタ27,28を設けることが可能である。
【0038】
ただし、1枚のレンズ23〜26の両面に特性の異なる2種類の薄膜フィルタ27,28を設ける場合、いずれか一方の薄膜フィルタ27,28が不良品になると、他方の薄膜フィルタ27,28が良品でも、当該レンズ23〜26が不良品として扱われる。すなわち、不良率が高くなる可能性がある。これに対して、本実施形態では、異なる2枚のレンズ23〜26の各一面にそれぞれ1種類ずつの薄膜フィルタ27,28を設けていることにより不良率の増加が抑制される。
【0039】
図1に示す構成では、レンズ24の凸曲面である一面に薄膜フィルタ27を設け、レンズ25の凸曲面である一面に薄膜フィルタ28を設けている。また、薄膜フィルタ27,28両はレンズ24,25の互いに対向する面に設けてある。
【0040】
上記構成を採用することにより、受光光学系22に入射した光のうち可視光を含む波長域の光は薄膜フィルタ28により遮断され、赤外領域の光のみが薄膜フィルタ27に到達する。また、薄膜フィルタ27では遠赤外領域の光が遮断されるから、結果的に近赤外領域ないし中赤外領域の光のみが撮像素子21に到達することになる。
【0041】
ところで、上述のように受光光学系22において、薄膜フィルタ27を用いることにより、まず可視光を除去しているから、空間内において人が視覚により認識している情報は撮像装置21では除去されることになる。また、撮像素子21がSi(シリコン)などを用いて構成されている場合に、遠赤外領域にも感度を有するが、薄膜フィルタ28により遠赤外領域の光を遮断しているから、撮像素子21には遠赤外領域の光は入射しない。
【0042】
さらに、薄膜フィルタ27,28を通過し、撮像素子21に入射した光の一部が、撮像素子21の表面で反射されることがあるが、この光は、薄膜フィルタ27を通過して薄膜フィルタ28に到達し、薄膜フィルタ28の表面で反射されることにより拡散する。つまり、撮像素子21の表面で反射した光が撮像素子21に戻ることは少なく、結果的にフレアの生じにくい構成になる。
【0043】
上述の構成により、1枚のレンズ23〜26の一面に2種類の特性を有する薄膜フィルタ27,28を重ねて形成する場合に比較すると、薄膜フィルタ27,28の材料の違いによる熱応力の発生が抑制される。また、1枚のレンズ23〜26の両面に2種類の特性を有する薄膜フィルタを形成する場合に比較すると、製造が容易であり、歩留まりの向上が期待できる。しかも、2枚のレンズ24,25の対向面に薄膜フィルタ27,28をそれぞれ形成しているから、両フィルタ27,28の間には他の部材が介在せず、余分な多重反射が生じない。その結果、撮像素子21により撮像される画像ないし処理装置30で生成される画像におけるフレアの発生を抑制することができる。
【0044】
すなわち、2枚の薄膜フィルタ27,28が、発光源10から空間に投光された光の波長成分を通過させる帯域通過フィルタとして機能し、しかも、薄膜フィルタ27,28を設けていることによってフレアの発生も抑制される。このように、薄膜フィルタ27,28により、波長選択性とフレアの抑制という2機能が満足されるから、レンズフィルタを別途に設けたり、レンズフードを設けたりする必要がなく、結果的に受光光学系22の小型化につながる。
【0045】
上述の例では、受光光学系22をレンズ23〜26のみにより構成しているが、図4に示すように、撮像素子21から最遠方に配置したレンズ26を覆うカバーガラス29を配置することが望ましい。すなわち、カバーガラス29は、レンズ26の入射面に向かい合うように配置される。カバーガラス29の各一面には、それぞれシリカなどからなるλ/4整合膜を兼ねたARコート(反射防止膜)29A,29Bが形成される。
【0046】
上記構成ではレンズ26の入射面側にカバーガラス29を設けているから、レンズ26が保護される。しかも、カバーガラス29の入射面側(レンズ26に対向していない面)にARコート29Aを形成していることにより、入射光が損失なくレンズ26に導入される。さらに、カバーガラス29にはレンズ26と向かい合う面にもARコート29Bを形成しているから、レンズ26の表面で反射された光がカバーガラス29で再反射されるのを防止することができる。なお、カバーガラス29は、ガラスに限らず合成樹脂により形成することも可能である。
【0047】
薄膜フィルタ28をレンズ25の凸曲面に設けた場合について光線追跡を行った結果を図5(A)に示し、薄膜フィルタ27をレンズ24の凸曲面に設けた場合について光線追跡を行った結果を図5(B)に示す。また、比較例として、図5(C)にはカバーガラス29の一方の平面(図の左面)に波長選択性を与えた場合について光線追跡を行った結果を示す。
【0048】
図5(A)(B)の例では撮像素子21の表面で反射が生じてもレンズ23〜26での再反射による影響がほとんどなくフレアが抑制されている。これに対して、図5(C)の例では撮像素子21の表面で生じた反射がレンズ23〜26で再反射され、フレアが発生している。すなわち、光線追跡によっても、薄膜フィルタ27,28をレンズ23〜26に設けることによりフレアが抑制されることが確認された。
【0049】
(実施形態2)
本実施形態は、図6に示すように、図4に示した構成におけるレンズ25および薄膜フィルタ28に代えて波長選択性を備えた材料により形成された波長選択レンズ25Aを設けている。すなわち、波長選択レンズ25Aは、図4に示した構成のレンズ25と同機能を有し、さらに、薄膜フィルタ28と同様の波長選択性を有している。波長選択レンズ25Aは、合成樹脂製であって表面にはARコート(図示せず)を設けてあり、薄膜フィルタ28と同様に可視光を遮断する。すなわち、波長選択レンズ25Aは可視光を遮断するために黒色であって、赤外線を通過させるようにポリエチレンなどが用いられる。
【0050】
本実施形態の他の構成および動作は、実施形態1と同様であり、カバーガラス29についてもとくに問題がなければ省略することが可能である。また、レンズ25と薄膜フィルタ28とに代えて波長選択レンズ25Aを用いる代わりに、レンズ24と薄膜フィルタ27とに代わるレンズ(図示せず)を設けてもよい。この場合は、レンズ24に代えて用いるレンズに、薄膜フィルタ27と同様の波長選択性を持たせる。
【0051】
なお、上述した構成のように、薄膜フィルタ27,28に対向しているレンズ24,25のいずれかに波長選択性を持たせる構成が望ましいが、薄膜フィルタ27,28に対向していないレンズ23,26に波長選択性を持たせることも可能である。
【0052】
(実施形態3)
本実施形態は、図7に示すように、図4に示した構成について、レンズ24および薄膜フィルタ27に代えて波長選択性を有する波長選択レンズ24Aを設け、レンズ25および薄膜フィルタ28に代えて波長選択性を有する波長選択レンズ25Aを設けている。波長選択レンズ24Aは、図4に示したレンズ24と同機能を有するとともに、薄膜フィルタ27と同様の波長選択性を有している。また、波長選択レンズ25Aは、図4に示したレンズ25と同機能を有するとともに、薄膜フィルタ28と同様の波長選択性を有している。
【0053】
すなわち、波長選択レンズ24Aは可視光を通過させるために透明であって、しかも赤外線を通過させるように透明な合成樹脂が用いられる。一方、波長選択レンズ25Aは可視光を遮断するために黒色であって、しかも赤外線を通過させる合成樹脂が用いられる。この種の合成樹脂には着色したポリエチレンなどを用いることができる。また、各波長選択レンズ24A,25Aの表面にはそれぞれARコート(図示せず)を設けてある。
【0054】
本実施形態の他の構成および動作は、実施形態1と同様であり、カバーガラス29についてもとくに問題がなければ省略することが可能である。なお、上述した構成のように、レンズ24,25に波長選択性を持たせる構成が望ましいが、レンズ23,26に波長選択性を持たせることも可能である。
【符号の説明】
【0055】
10 発光源
20 撮像装置
21 撮像素子
22 受光光学系
23〜26 レンズ
24A,25A 波長選択レンズ
27,28 薄膜フィルタ
29 カバーガラス
30 処理装置

【特許請求の範囲】
【請求項1】
特定波長の光を空間に投光する発光源と、受光光学系を通して前記空間を撮像する撮像素子を備えた撮像装置と、前記発光源から投光した光と前記撮像装置により受光した光の受光量との関係を用いて前記空間の情報を検出する処理装置とを備え、前記受光光学系は、複数枚のレンズを備え、前記レンズに形成された曲面から選択した2つの面に波長選択性を有する薄膜フィルタを備え、前記薄膜フィルタが選択する波長の組み合わせにより前記特定波長を含む所定の通過帯域を持つ帯域通過フィルタが形成されることを特徴とする空間情報検出装置。
【請求項2】
前記レンズから選択した2枚の前記レンズの各一面にそれぞれ前記薄膜フィルタが形成されていることを特徴とする請求項1記載の空間情報検出装置。
【請求項3】
前記薄膜フィルタを形成する前記レンズは、前記レンズから選択した隣接する2枚であり、前記各レンズの向かい合う2つの面に前記薄膜フィルタがそれぞれ形成されていることを特徴とする請求項2記載の空間情報検出装置。
【請求項4】
特定波長の光を空間に投光する発光源と、受光光学系を通して前記空間を撮像する撮像素子を備えた撮像装置と、前記発光源から投光した光と前記撮像装置により受光した光の受光量との関係を用いて前記空間の情報を検出する処理装置とを備え、前記受光光学系は、複数枚のレンズを備え、前記レンズに形成された曲面から選択した1つの面に波長選択性を有する薄膜フィルタを備え、前記レンズのうち前記薄膜フィルタを有するレンズ以外のいずれかのレンズは波長選択性を有する材料により形成された波長選択レンズであり、前記薄膜フィルタが選択する波長と前記波長選択レンズが選択する波長との組み合わせにより前記特定波長を含む所定の通過帯域を持つ帯域通過フィルタが形成されることを特徴とする空間情報検出装置。
【請求項5】
特定波長の光を空間に投光する発光源と、受光光学系を通して前記空間を撮像する撮像素子を備えた撮像装置と、前記発光源から投光した光と前記撮像装置により受光した光の受光量との関係を用いて前記空間の情報を検出する処理装置とを備え、前記受光光学系は、複数枚のレンズを備え、前記レンズから選択した2枚のレンズはそれぞれ波長選択性を有する波長選択レンズであり、前記波長選択レンズが選択する波長の組み合わせにより前記特定波長を含む所定の通過帯域を持つ帯域通過フィルタが形成されることを特徴とする空間情報検出装置。
【請求項6】
前記受光光学系において、前記レンズのうち前記撮像素子から最遠方に配置された前記レンズの入射面に向かい合うカバーガラスが付加されていることを特徴とする請求項1〜5のいずれか1項に記載の空間情報検出装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2012−2735(P2012−2735A)
【公開日】平成24年1月5日(2012.1.5)
【国際特許分類】
【出願番号】特願2010−139289(P2010−139289)
【出願日】平成22年6月18日(2010.6.18)
【出願人】(000005832)パナソニック電工株式会社 (17,916)
【Fターム(参考)】