説明

露光装置及びデバイス製造方法

【課題】流出した液体に起因する不都合の発生を防止できる露光装置を提供する。
【解決手段】流出した液体に起因する不都合の発生を防止できる露光装置を提供する。露光装置は、周壁部(33)と周壁部(33)の内側に配置された支持部(34)とを有し、周壁部(33)に囲まれた空間(31)を負圧にすることによって基板(P)を支持部(34)で支持する基板ホルダ(PH)と、周壁部(33)の内側に設けられた回収口(61)と回収口(61)に接続する真空系(63)とを有する回収機構と備え、周壁部(33)の上面(33A)と基板(P)の裏面(Pb)とが第1距離だけ離れた状態で、基板(P)の外周から浸入した液体(LQ)を吸引回収する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、投影光学系と液体とを介して基板を露光する露光装置及びデバイス製造方法に関するものである。
本願は、2004年6月21日に出願された特願2004−182678号に基づき優先権を主張し、その内容をここに援用する。
【背景技術】
【0002】
半導体デバイスや液晶表示デバイスは、マスク上に形成されたパターンを感光性の基板上に転写する、いわゆるフォトリソグラフィの手法により製造される。このフォトリソグラフィ工程で使用される露光装置は、マスクを支持するマスクステージと基板を基板ホルダを介して支持する基板ステージとを有し、マスクステージ及び基板ステージを逐次移動しながらマスクのパターンを投影光学系を介して基板に転写するものである。近年、デバイスパターンのより一層の高集積化に対応するために投影光学系の更なる高解像度化が望まれている。投影光学系の解像度は、使用する露光波長が短いほど、また投影光学系の開口数が大きいほど高くなる。そのため、露光装置で使用される露光波長は年々短波長化しており、投影光学系の開口数も増大している。そして、現在主流の露光波長はKrFエキシマレーザの248nmであるが、更に短波長のArFエキシマレーザの193nmも実用化されつつある。また、露光を行う際には、解像度と同様に焦点深度(DOF)も重要となる。解像度R、及び焦点深度δはそれぞれ以下の式で表される。
R=k・λ/NA … (1)
δ=±k・λ/NA … (2)
ここで、λは露光波長、NAは投影光学系の開口数、k、kはプロセス係数である。(1)式、(2)式より、解像度Rを高めるために、露光波長λを短くして、開口数NAを大きくすると、焦点深度δが狭くなることが分かる。
【0003】
焦点深度δが狭くなり過ぎると、投影光学系の像面に対して基板表面を合致させることが困難となり、露光動作時のフォーカスマージンが不足するおそれがある。そこで、実質的に露光波長を短くして、且つ焦点深度を広くする方法として、例えば下記特許文献1に開示されている液浸法が提案されている。この液浸法は、投影光学系の下面と基板表面との間を水や有機溶媒等の液体で満たして液浸領域を形成し、液体中での露光光の波長が空気中の1/n(nは液体の屈折率で通常1.2〜1.6程度)になることを利用して解像度を向上するとともに、焦点深度を約n倍に拡大するというものである。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】国際公開第99/49504号パンフレット
【発明の概要】
【発明が解決しようとする課題】
【0005】
ところで、液浸法を適用した液浸露光装置において、基板上より流出した液浸領域の液体が基板の裏面側に回り込み、基板とその基板を保持する基板ホルダとの間に浸入すると、基板ホルダが基板を良好に保持できない状況が生じ、その結果、露光精度が劣化する等の不都合が生じる可能性がある。例えば、基板の裏面と基板ホルダとの間に浸入した液体が、基板の裏面あるいは基板ホルダの上面に付着して気化すると、それら基板の裏面あるいは基板ホルダの上面上に液体の付着跡(所謂ウォーターマーク)が形成される可能性がある。ウォーターマークは異物として作用するため、基板ホルダで基板を保持したときの基板の平坦度(フラットネス)が劣化する不都合が生じ、良好な露光精度を維持できなくなる。
【0006】
本発明はこのような事情に鑑みてなされたものであって、流出した液体に起因する不都合の発生を防止できる露光装置、及びその露光装置を用いるデバイス製造方法を提供することを目的とする。
【課題を解決するための手段】
【0007】
上記の課題を解決するため、本発明は実施の形態に示す図1〜図13に対応付け(カッコ付け)した以下の構成を採用している。なお、以下の対応付けはあくまで一例であって、本発明の構成が、下記の対応付けに限定されるものではない。
【0008】
本発明の露光装置(EX)は、投影光学系(PL)と液体(LQ)とを介して基板(P)の表面(Pa)に露光光(EL)を照射して基板(P)を露光する露光装置において、基板(P)の裏面(Pb)を保持する基板ホルダ(PH)と、基板(P)の裏面(Pb)と基板ホルダ(PH)とのそれぞれに付着した液体(LQ)を略同時に回収する回収機構(60)とを備えたことを特徴とする。
【0009】
本発明によれば、回収機構が基板の裏面と基板ホルダとのそれぞれに付着した液体を略同時に回収するので、液体を短時間のうちに素早く回収することができる。したがって、基板の裏面あるいは基板ホルダに付着した液体に起因する不都合の発生を防止し、良好な露光精度を維持することができる。また、回収機構は液体を短時間のうちに素早く回収するので、液体が気化する前にその付着した液体を回収できる。したがって、基板の裏面や基板ホルダに付着跡(ウォーターマーク)が形成されることを未然に防止することができる。また、短時間のうちに液体を回収できるため、液体回収処理に要する時間を短くでき、露光装置の稼働率を向上することもできる。
【0010】
また本発明の露光装置(EX)は、投影光学系(PL)と液体(LQ)とを介して基板(P)の表面(Pa)に露光光(EL)を照射して基板(P)を露光する露光装置において、周壁部(33)と該周壁部(33)の内側に配置された支持部(34)とを有し、周壁部(33)に囲まれた空間(31)を負圧にすることによって基板(P)を支持部(34)で支持する基板ホルダ(PH)と、周壁部(33)の内側に設けられた回収口(61)と該回収口(61)に接続する真空系(63)とを有する回収機構(60)と備え、周壁部(33)の上面(33A)と基板(P)の裏面(Pb)とが第1距離だけ離れた状態で、基板(P)の外周から浸入した液体(LQ)を吸引回収することを特徴とする。
【0011】
本発明によれば、基板ホルダの周壁部の上面と基板の裏面とが第1距離だけ離れた状態で回収機構を駆動し、周壁部に囲まれた空間をその内側に設けられた回収口を介して負圧にすることにより、空間の内側と外側との間で気体の流れを生成し、その気体の流れを使って、基板の裏面と基板ホルダとのそれぞれに付着した液体を略同時に回収することができる。したがって、液体を短時間のうちに素早く回収でき、基板の裏面あるいは基板ホルダに付着した液体に起因する不都合の発生を防止して、良好な露光精度を維持することができる。また、回収機構は液体を短時間のうちに素早く回収できるので、液体が気化する前にその付着した液体を回収できる。したがって、基板の裏面や基板ホルダに付着跡(ウォーターマーク)が形成されることを未然に防止することができる。また、短時間のうちに液体を回収できるため、液体回収処理に要する時間を短くでき、露光装置の稼働率を向上することもできる。
また本発明の露光装置(EX)は、投影光学系(PL)と液体(LQ)とを介して、基板ホルダ(PH)上に保持された基板(P)の表面に露光光を照射して前記基板を露光する露光装置において、回収口(61)と、真空系(63)と、該回収口と該真空系とを接続する流路(62)とを有し、且つ液体(LQ)を、該回収口を介して回収する回収機構(60)を有し、流路の内壁面に断熱性材料(120)を設けたことを特徴とする。本発明によれば、流路内壁に断熱性材料による断熱層を設けておけば、仮に流路内に残留した液体が気化したとしても、その気化熱が周囲(例えば基板ホルダなど)に与える影響(熱変形など)を抑えることができる。
また本発明の露光装置(EX)は、投影光学系(PL)と液体(LQ)とを介して、基板ホルダ(PH)上に保持された基板(P)の表面に露光光を照射して基板を露光する露光装置において、回収口(61)と、真空系(63)と、該回収口と該真空系とを接続する流路(62)とを有し、且つ液体(LQ)を、該回収口を介して回収する回収機構(60)を有し、流路の少なくとも一部は基板ホルダ(PH)内部に配置されており、且つ該流路の内壁面に撥液性材料(121)を設けたことを特徴とする。本発明によれば、流路内壁を撥液性にすることで、流路に液体が残留することを防止できる。
また本発明の露光装置(EX)は、投影光学系(PL)と液体(LQ)とを介して、基板ホルダ(PH)上に保持された基板(P)の表面に露光光を照射して前記基板を露光する露光装置において、回収口(61)と、真空系(63)と、該回収口と該真空系とを接続する流路(62)とを有し、且つ液体(LQ)を、該回収口を介して回収する回収機構(60)を有し、流路の内壁面に撥液性材料(121)及び断熱性材料(120)を設けたことを特徴とする。本発明によれば、流路内壁を撥液性にすることで流路に液体が残留することを防止できるとともに、流路内壁に断熱性材料による断熱層を設けておけば、仮に流路内に残留した液体が気化したとしても、その気化熱が周囲(例えば基板ホルダなど)に与える影響(熱変形など)を抑えることができる。
また本発明の露光装置(EX)は、投影光学系(PL)と液体(LQ)とを介して、基板ホルダ(PH)上に保持された基板(P)の表面に露光光を照射して基板を露光する露光装置において、回収口(61)と、真空系(63)と、該回収口と該真空系とを接続する流路(62)とを有し、且つ液体を該回収口を介して回収する回収機構(60)を有し、流路の少なくとも一部は基板ホルダ(PH)内部に配置されており、且つ該流路の内壁面にはフッ素系樹脂材料(121)が設けられていることを特徴とする。本発明によれば、流路内壁にフッ素系樹脂材料を設けておくことで、撥液性と断熱性の双方の機能を得ることができる。
【0012】
本発明のデバイス製造方法は、上記記載の露光装置(EX)を用いることを特徴とする。本発明によれば、基板を精度良く露光して、所望の性能を有するデバイスを提供することができる。
【発明の効果】
【0013】
本発明によれば、流出した液体に起因する不都合の発生を防止して、良好な露光精度を維持することができる。
【図面の簡単な説明】
【0014】
【図1】本発明の一実施形態を示す露光装置の概略構成図である。
【図2】基板ホルダ近傍の側断面図である。
【図3】基板ホルダ近傍の平面図である。
【図4】基板を保持した状態の基板ホルダ近傍の平面図である。
【図5A】露光動作の一例を説明するための模式図である。
【図5B】露光動作の一例を説明するための模式図である。
【図5C】露光動作の一例を説明するための模式図である。
【図5D】露光動作の一例を説明するための模式図である。
【図6】周壁部の上面と基板の裏面との間に形成されたギャップ近傍の流体の流れを説明するための模式図である。
【図7】露光装置の別の実施形態を示す概略図である。
【図8】計測装置の一例を示す模式図である。
【図9】検出装置の一例を示す模式図である。
【図10】基板ホルダの別の実施形態を示す図である。
【図11】基板ホルダの別の実施形態を示す図である。
【図12】基板ホルダの内部に形成された流路の一実施形態を示す断面図である。
【図13】半導体デバイスの製造工程の一例を示すフローチャート図である。
【発明を実施するための形態】
【0015】
以下、本発明の露光装置について図面を参照しながら説明する。図1は本発明の露光装置の一実施形態を示す概略構成図である。
【0016】
図1において、露光装置EXは、マスクMを支持して移動可能なマスクステージMSTと、基板Pの裏面Pbを保持する基板ホルダPHを有し、基板ホルダPHに基板Pを保持して移動可能な基板ステージPSTと、マスクステージMSTに支持されているマスクMを露光光ELで照明する照明光学系ILと、露光光ELで照明されたマスクMのパターン像を基板ステージPSTに支持されている基板Pの表面Paに投影露光する投影光学系PLと、露光装置EX全体の動作を統括制御する制御装置CONTとを備えている。なお、ここでいう「基板」は半導体ウエハ上に感光性材料であるフォトレジストを塗布したものを含む。本実施形態においては、基板Pの表面Paにフォトレジストが設けられており、その表面Paが露光光ELを照射される被露光面となっている。また、「マスク」は基板上に縮小投影されるデバイスパターンを形成されたレチクルを含む。
【0017】
本実施形態の露光装置EXは、露光波長を実質的に短くして解像度を向上するとともに焦点深度を実質的に広くするために液浸法を適用した液浸露光装置であって、基板P上に液体LQを供給する液体供給機構10と、基板P上の液体LQを回収する第1液体回収機構20とを備えている。露光装置EXは、少なくともマスクMのパターン像を基板Pの表面Pa上に転写している間、液体供給機構10から供給した液体LQにより投影光学系PLの投影領域AR1を含む基板P上の少なくとも一部に、投影領域AR1よりも大きく且つ基板Pよりも小さい液浸領域AR2を局所的に形成する。具体的には、露光装置EXは、投影光学系PLの像面側先端部の光学素子2と基板Pの表面Paとの間に液体LQを満たし、この投影光学系PLと基板Pとの間の液体LQ及び投影光学系PLを介してマスクMのパターン像を基板ホルダPHに保持された基板P上に投影することによって、基板Pを露光する。
【0018】
また、露光装置EXは、基板Pの外周から基板Pの裏面Pb側に浸入した液体LQを吸引回収可能な第2液体回収機構60を備えている。第2液体回収機構60は、基板Pの裏面Pbと基板ホルダPHとのそれぞれに付着した液体LQを略同時に回収可能である。更に第2液体回収機構60は、基板Pの側面Pcに付着した液体LQも略同時に回収可能である。
【0019】
ここで、本実施形態では、露光装置EXとしてマスクMと基板Pとを走査方向における互いに異なる向き(逆方向)に同期移動しつつマスクMに形成されたパターンを基板Pに露光する走査型露光装置(所謂スキャニングステッパ)を使用する場合を例にして説明する。以下の説明において、投影光学系PLの光軸AXと一致する方向をZ軸方向、Z軸方向に垂直な平面内でマスクMと基板Pとの同期移動方向(走査方向)をX軸方向、Z軸方向及びY軸方向に垂直な方向(非走査方向)をY軸方向とする。また、X軸、Y軸、及びZ軸まわりの回転(傾斜)方向をそれぞれ、θX、θY、及びθZ方向とする。
【0020】
照明光学系ILはマスクステージMSTに支持されているマスクMを露光光ELで照明するものであり、露光光ELを射出する露光用光源、露光用光源から射出された露光光ELの照度を均一化するオプティカルインテグレータ、オプティカルインテグレータからの露光光ELを集光するコンデンサレンズ、リレーレンズ系、露光光ELによるマスクM上の照明領域をスリット状に設定する可変視野絞り等を有している。マスクM上の所定の照明領域は照明光学系ILにより均一な照度分布の露光光ELで照明される。照明光学系ILから射出される露光光ELとしては、例えば水銀ランプから射出される紫外域の輝線(g線、h線、i線)及びKrFエキシマレーザ光(波長248nm)等の遠紫外光(DUV光)や、ArFエキシマレーザ光(波長193nm)及びFレーザ光(波長157nm)等の真空紫外光(VUV光)などが用いられる。本実施形態においてはArFエキシマレーザ光が用いられる。上述したように、本実施形態における液体LQは純水であって、露光光ELがArFエキシマレーザ光であっても透過可能である。また、純水は紫外域の輝線(g線、h線、i線)及びKrFエキシマレーザ光(波長248nm)等の遠紫外光(DUV光)も透過可能である。
【0021】
マスクステージMSTは、マスクMを保持して移動可能であって、例えばマスクMを真空吸着(又は静電吸着)により固定している。マスクステージMSTは、投影光学系PLの光軸AXに垂直な平面内、すなわちXY平面内で2次元移動可能及びθZ方向に微小回転可能である。マスクステージMSTはリニアモータ等のマスクステージ駆動装置MSTDにより駆動される。マスクステージ駆動装置MSTDは制御装置CONTにより制御される。
【0022】
マスクステージMST上には移動鏡91が設けられている。また、移動鏡91に対向する位置にはレーザ干渉計92が設けられている。移動鏡91は、マスクステージMSTの位置を計測するためのレーザ干渉計92用のミラーである。マスクステージMST上のマスクMの2次元方向(XY方向)の位置、及びθZ方向の回転角(場合によってはθX、θY方向の回転角も含む)はレーザ干渉計92によりリアルタイムで計測される。レーザ干渉計92の計測結果は制御装置CONTに出力される。制御装置CONTはレーザ干渉計92の計測結果に基づいてマスクステージ駆動装置MSTDを駆動することでマスクステージMSTに支持されているマスクMの位置を制御する。
【0023】
投影光学系PLはマスクMのパターンを所定の投影倍率βで基板Pに投影露光するものである。投影光学系PLは、基板P側の先端部に設けられた光学素子2を含む複数の光学素子で構成されており、これら光学素子は鏡筒PKで支持されている。本実施形態において、投影光学系PLは、投影倍率βが例えば1/4、1/5、あるいは1/8の縮小系である。なお、投影光学系PLは等倍系及び拡大系のいずれでもよい。また、本実施形態の投影光学系PLの先端部の光学素子2は鏡筒PKに対して着脱(交換)可能に設けられており、光学素子2には液浸領域AR2の液体LQが接触する。
【0024】
基板ステージPSTは、基板Pを保持する基板ホルダPHを支持して移動可能であって、XY平面内で2次元移動可能及びθZ方向に微小回転可能である。更に基板ステージPSTは、Z軸方向、θX方向、及びθY方向にも移動可能である。基板ホルダPHは基板Pを保持するものであって、基板ステージPST(Zチルトステージ52)上に設けられている。基板ホルダPHは、真空吸着により基板Pを保持する。基板ステージPSTは、基板ホルダPHを支持するZチルトステージ52と、Zチルトステージ52を支持するXYステージ53とを備えており、XYステージ53はベースBP上に支持されている。Zチルトステージ52は基板ホルダPHに保持されている基板PをZ軸方向、及びθX、θY方向(傾斜方向)に移動可能である。XYステージ53は基板ホルダPHに保持されている基板PをZチルトステージ52を介して2次元方向(XY方向)、及びθZ方向に移動可能である。なお、ZチルトステージとXYステージとを一体的に設けてよいことは言うまでもない。
【0025】
Zチルトステージ52(基板ステージPST)上には凹部50が設けられており、基板ホルダPHは凹部50に配置されている。そして、Zチルトステージ52のうち凹部50以外の上面51は、基板ホルダPHに保持された基板Pの表面Paとほぼ同じ高さ(面一)になるような平坦面となっている。基板Pの周囲に基板P表面とほぼ面一の上面51を設けたので、基板Pのエッジ領域Eを液浸露光するときにおいても、投影光学系PLの像面側に液体LQを保持して液浸領域AR2を良好に形成することができる。
【0026】
Zチルトステージ52及びXYステージ53を含む基板ステージPSTは、リニアモータ等を含む基板ステージ駆動装置PSTDにより駆動される。基板ステージ駆動装置PSTDは制御装置CONTにより制御される。Zチルトステージ52が駆動されることにより、基板ホルダPHが移動し、基板ホルダPHに保持されている基板PのZ軸方向における位置(フォーカス位置)、及び傾斜方向における位置が制御される。また、XYステージ53が駆動されることにより、基板ホルダPHが移動し、基板PのXY方向における位置、及びθZ方向における位置が制御される。
【0027】
Zチルトステージ52(基板ステージPST)には移動鏡93が設けられている。また、移動鏡93に対向する位置にはレーザ干渉計94が設けられている。移動鏡93は、Zチルトステージ52(基板ホルダPH)の位置を計測するためのレーザ干渉計94用のミラーである。本実施形態においては、移動鏡93の上面も、基板ホルダPHに保持された基板Pの表面Paと面一になるように形成されている。基板ホルダPHを介して基板Pを保持したとき、保持した基板Pの表面Pa及び移動鏡93の上面を含めて、基板ステージPSTの上面のほぼ全域が平坦面(フルフラット面)となるように形成されている。基板ホルダPHの2次元方向の位置、及びθZ方向の回転角はレーザ干渉計94によりリアルタイムで計測される。レーザ干渉計94によってZチルトステージ52の位置が計測されることで、そのZチルトステージ52に基板ホルダPHを介して保持されている基板Pの2次元方向の位置、及びθZ方向の回転角が計測される。また、不図示ではあるが、露光装置EXは、例えば特開平8−37149号公報に開示されているような、基板ホルダPHに保持されている基板Pの表面Paの位置情報を検出するフォーカス・レベリング検出系を備えている。フォーカス・レベリング検出系は、基板P表面のZ軸方向の位置情報、及び基板PのθX及びθY方向の傾斜情報を検出する。
【0028】
レーザ干渉計94の計測結果は制御装置CONTに出力される。フォーカス・レベリング検出系の受光結果も制御装置CONTに出力される。制御装置CONTは、フォーカス・レベリング検出系の検出結果に基づいて、基板ステージ駆動装置PSTDを駆動し、基板Pのフォーカス位置及び傾斜角を制御して基板Pの表面Paをオートフォーカス方式、及びオートレベリング方式で投影光学系PLの像面に合わせ込む。また、制御装置CONTは、レーザ干渉計94の計測結果に基づいて、レーザ干渉計94で規定される2次元座標系内で基板ステージ駆動装置PSTDを介してXYステージ53を駆動することで、基板ホルダPHに保持されている基板PのX軸方向及びY軸方向における位置を制御する。
【0029】
液体供給機構10は、所定の液体LQを投影光学系PLの像面側に供給するためのものであって、液体LQを送出可能な液体供給部11と、液体供給部11にその一端部を接続する供給管13とを備えている。液体供給部11は、液体LQを収容するタンク、加圧ポンプ、及び液体LQ中に含まれる異物や気泡を取り除くフィルタユニット等を備えている。液体供給部11の液体供給動作は制御装置CONTにより制御される。基板P上に液浸領域AR2を形成する際、液体供給機構10は液体LQを基板P上に供給する。
【0030】
第1液体回収機構20は、投影光学系PLの像面側の液体LQを回収するためのものであって、液体LQを回収可能な液体回収部21と、液体回収部21にその一端部を接続する回収管23とを備えている。液体回収部21は例えば真空ポンプ等の真空系(吸引装置)、回収された液体LQと気体とを分離する気液分離器、及び回収した液体LQを収容するタンク等を備えている。なお真空系として、露光装置EXに真空ポンプを設けずに、露光装置EXが配置される工場の真空系を用いるようにしてもよい。液体回収部21の液体回収動作は制御装置CONTにより制御される。基板P上に液浸領域AR2を形成するために、第1液体回収機構20は液体供給機構10より供給された基板P上の液体LQを所定量回収する。
【0031】
投影光学系PLを構成する複数の光学素子のうち、液体LQに接する光学素子2の近傍にはノズル部材70が配置されている。ノズル部材70は、基板P(基板ホルダPH)の上方において、光学素子2の側面を囲むように設けられた環状部材である。ノズル部材70と光学素子2との間には隙間が設けられており、ノズル部材70は光学素子2に対して振動的に分離されるように所定の支持機構で支持されている。また、その隙間に液体LQが浸入しないように、且つその隙間から液体LQ中に気泡が混入しないように構成されている。ノズル部材70は、例えばステンレス鋼によって形成されている。
【0032】
ノズル部材70は、基板P(基板ホルダPH)の上方に設けられ、その基板P表面に対向するように配置された供給口12を備えている。本実施形態において、ノズル部材70は2つの供給口12A、12Bを有している。供給口12A、12Bはノズル部材70の下面70Aに設けられている。
【0033】
ノズル部材70の内部には、基板P上に供給される液体LQが流れる供給流路が形成されている。ノズル部材70の供給流路の一端部は供給管13の他端部に接続され、供給流路の他端部は供給口12A、12Bのそれぞれに接続されている。ここで、ノズル部材70の内部に形成された供給流路の他端部は、複数(2つ)の供給口12A、12Bのそれぞれに接続可能なように途中から分岐している。
【0034】
また、ノズル部材70は、基板P(基板ステージPST)の上方に設けられ、その基板P表面に対向するように配置された回収口22を備えている。本実施形態において、回収口22は、ノズル部材70の下面70Aにおいて、投影光学系PLの光学素子2(投影領域AR1)及び供給口12を囲むように環状に形成されている。
【0035】
また、ノズル部材70の内部には、回収口22を介して回収された液体LQが流れる回収流路が形成されている。ノズル部材70の回収流路の一端部は回収管23の他端部に接続され、回収流路の他端部は回収口22に接続されている。ここで、ノズル部材70の内部に形成された回収流路は、回収口22に応じた環状流路と、その環状流路を流れた液体LQを集合するマニホールド流路とを備えている。
【0036】
本実施形態において、ノズル部材70は、液体供給機構10及び第1液体回収機構20それぞれの一部を構成している。液体供給機構10を構成する供給口12A、12Bは、投影光学系PLの投影領域AR1を挟んだX軸方向両側のそれぞれの位置に設けられており、第1液体回収機構20を構成する回収口22は、投影光学系PLの投影領域AR1に対して液体供給機構10の液体供給口12A、12Bの外側に設けられている。なお本実施形態における投影光学系PLの投影領域AR1は、Y軸方向を長手方向とし、X軸方向を短手方向とした平面視矩形状に設定されている。
【0037】
液体供給部11の動作は制御装置CONTにより制御される。制御装置CONTは液体供給部11による単位時間あたりの液体供給量を制御可能である。基板P上に液体LQを供給する際、制御装置CONTは、液体供給部11より液体LQを送出し、供給管13及びノズル部材70内部に形成された供給流路を介して、基板Pの上方に設けられている供給口12A、12Bより基板P上に液体LQを供給する。液体LQは、供給口12A、12Bを介して、投影領域AR1の両側から供給される。
【0038】
液体回収部21の液体回収動作は制御装置CONTにより制御される。制御装置CONTは液体回収部21による単位時間あたりの液体回収量を制御可能である。基板Pの上方に設けられた回収口22から回収された基板P上の液体LQは、ノズル部材70内部に形成された回収流路、及び回収管23を介して液体回収部21に回収される。
【0039】
次に、図2、図3、及び図4を参照しながら、基板Pを保持する基板ホルダPHの一実施形態について説明する。図2は基板Pを保持した基板ホルダPHの側断面図、図3は基板ホルダPHを上方から見た平面図、図4は基板Pを保持した基板ホルダPHを上方から見た平面図である。
【0040】
図2及び図3において、基板ホルダPHは、基板Pの裏面Pbと所定距離だけ離れて対向する底面35Bを有する基材35と、基材35上に形成され、基板Pの裏面Pbと対向する上面33Aを有する周壁部33と、周壁部33の内側の底面35B上に形成された複数の支持部34とを備えている。周壁部33は、基板Pの形状に応じて略円環状に形成されている。周壁部33の上面33Aは、基板Pの裏面Pbのエッジ領域に対向するように形成されている。また、周壁部33の上面33Aは平坦面となっている。なお、図においては、周壁部33の上面33Aは比較的広い幅を有しているが、実際には1〜2mm程度の幅である。
【0041】
基板ホルダPHの支持部34は、周壁部33の内側において複数一様に設けられている。本実施形態においては、基板ホルダPHの支持部34は複数の支持ピンを含んで構成されており、基板ホルダPHは、所謂ピンチャック機構を構成している。基板ホルダPHのピンチャック機構は、基板ホルダPHの基材35と周壁部33と基板Pとで囲まれた空間31を負圧にする吸引機構40を備えており、空間31を負圧にすることによって基板Pを支持部34で支持する。支持部34で支持された基板Pの裏面Pbと底面35Bとは所定距離だけ離れて対向する。
【0042】
基板ホルダPHの吸引機構40は、周壁部33の内側に複数設けられた吸引口41と、吸引口41のそれぞれに流路42を介して接続されている第1真空系43とを備えている。吸引口41は、周壁部33の内側の底面35B上のうち支持部34以外の複数の所定位置にそれぞれ設けられており、周壁部33の内側において複数一様に配置されている。
【0043】
第1真空系43は、基材35と周壁部33と基板Pとで囲まれた空間31を負圧にするためのものであって、真空ポンプを含んで構成される。制御装置CONTは、第1真空系43を駆動し、基材35と周壁部33と基板Pとで囲まれた空間31内部のガス(空気)を吸引してこの空間31を負圧にすることによって、基板ホルダPHの支持部34に基板Pを吸着保持する。
【0044】
Zチルトステージ52(基板ステージPST)の凹部50によって形成された内側面50Tと周壁部33の外側面33Sとの間には所定の距離を有するギャップ(隙間)Cが設けられている。また、基板ホルダPHに保持された基板Pの外側のエッジ部と、その基板Pの周囲に設けられたZチルトステージ52(基板ステージPST)の上面51(内側面50T)との間には、0.1〜1.0mm程度の距離を有するギャップAが形成されている。本実施形態においては、ギャップAは0.3mm程度である。周壁部33の外径は基板Pの外径より小さく形成されており、ギャップCはギャップAより大きく、例えば1.5mm程度である。
【0045】
また、図4に示すように、本実施形態における基板Pには、位置合わせのための切欠部であるノッチ部NTが形成されている。ノッチ部NTにおける基板PとZチルトステージ52の上面51との間のギャップの距離も0.1〜1.0mm程度に設定されるように、基板Pの外形(ノッチ部NTの形状)に応じて、上面51の形状が設定されている。すなわち、ノッチ部NTを含む基板Pのエッジ部の全域と上面51との間に、0.1〜1.0mm程度の距離を有するギャップAが確保されている。具体的には、Zチルトステージ52の上面51には、基板Pのノッチ部NTの形状に対応するように、凹部50の内側に向かって突出する突起部150が設けられている。Zチルトステージ52の内側面50Tには、突起部150の形状に応じた凸部50Nが形成されている。突起部150は、基板ホルダPHに保持された基板Pのノッチ部NTにおける表面Paと上面51とのギャップを小さくするためのギャップ調整部としての機能を有している。なお、ここでは突起部150はZチルトステージ52の上面51の一部であって一体的に形成されているが、Zチルトステージ52の上面51と突起部150とを別々に設け、Zチルトステージ52の上面51に対して突起部150を交換可能としてもよい。
【0046】
周壁部33の外側面33S及びその上面33Aには、上面51の突起部150及び基板Pのノッチ部NTの形状に応じた凹部33Nが形成されており、周壁部33の内側面33Tには、凹部33N(ノッチ部NT)に応じて内側に向かって突出する凸部33N’が形成されている。周壁部33の凹部33Nは内側面50Tの凸部50Nと対向する位置に設けられており、凹部33Nと凸部50Nとの間には所定の距離を有するギャップCが形成されている。
【0047】
なおここでは、基板Pの切欠部としてノッチ部NTを例にして説明したが、切欠部として基板Pにオリエンテーションフラット部が形成されている場合には、上面51、内側面50T、及び周壁部33のそれぞれを、基板Pの外形(オリエンテーションフラット部の形状)に応じた形状にし、基板Pのオリフラ部とその周囲の上面51との間において所定の距離を有するギャップAを確保するようにすればよい。
【0048】
第2液体回収機構60は、周壁部33の内側に設けられた回収口61(61A〜61C)と、回収口61に流路62を介して接続された第2真空系63とを備えている。第2液体回収機構60は、回収口61を介して液体LQを回収可能であり、回収された液体LQと気体とを分離する気液分離器、及び回収した液体LQを収容するタンク等も備えている。
【0049】
回収口61は、周壁部33の内側において底面35Bのうち支持部34以外の複数の所定位置にそれぞれ設けられており、複数の回収口61のそれぞれは流路62を介して第2真空系63に接続されている。周壁部33は、支持部34、吸引口41、及び回収口61のそれぞれを囲むように形成されている。
【0050】
図3に示すように、回収口61は、周壁部33の内側面33Tに沿うように周壁部33の内側近傍に設けられた第1の回収口61A及び第2の回収口61Bと、底面35Bの略中央部に設けられた第3の回収口61Cとを備えている。複数の回収口61のうち、第1の回収口61Aは、基板ホルダPHの底面35Bにおいて、周壁部33の内側面33Tに沿うように内側面33Tの近傍に複数配置されている。第1の回収口61Aのそれぞれは、平面視において略円弧状のスリット状に形成されており、空間31を囲むように配置されている。また、第2の回収口62Bは、基板ホルダPHの底面35Bにおいて、周壁部33の凹部33N(凸部33N’)の内側近傍に複数設けられている。第2の回収口61Bのそれぞれは、平面視において、凸部33N’の形状に応じてスリット状に形成されている。また、第3の回収口61Cは、底面35Bの略中央部に複数設けられている。第3の回収口61Cのそれぞれは平面視において略円形状に形成されている。なお図3に示した回収口61A〜61Cの形状及び配置は一例であって、その形状及び配置は任意に設定可能である。例えば、第1の回収口61Aを周壁部33の内側面33Tに沿って連続的に設けてもよいし、第1の回収口61Aのそれぞれを平面視において略円形状とし、その円形状の第1の回収口61Aを周壁部33の内側面33Tに沿って複数配置するようにしてもよい。
【0051】
第2真空系63は、空間31の内側に設けられた回収口61を介して液体LQを吸引回収するためのものであって、真空ポンプを含んで構成されている。また、第2真空系63の上流側(回収口61側)には、回収した液体LQを気体とを分離する気液分離器が設けられている。そして、空間31を負圧にするための吸引口41に接続された第1真空系43と、液体LQを回収するための回収口61に接続された第2真空系63とは、互いに独立した構成となっている。制御装置CONTは、第1真空系43及び第2真空系63それぞれの動作を個別に制御可能であり、第1真空系43による吸引動作と、第2真空系63よる吸引動作とをそれぞれ独立して行うことができる。
【0052】
また、本実施形態においては、基板ホルダPHの支持部34は、周壁部33と同じ高さか、周壁部33よりも僅かに高く形成されている。すなわち、支持部34の上面34AのZ軸方向に関する位置は、周壁部33の上面33AのZ軸方向に関する位置と同じか、あるいは周壁部33の上面33AのZ軸方向に関する位置よりも僅かに高く形成されている。これにより、周壁部33に囲まれた空間31を負圧にすることによって、基板Pを支持部34の上面34Aで支持しているとき、周壁部33の上面33Aと基板Pの裏面Pbとの間には所定の距離D2を有するギャップBが形成される。距離D2(ギャップB)は僅かであるので、空間31の負圧は維持される。なお、周壁部33の上面33Aと基板Pの裏面Pbとが接触する場合、距離D2(ギャップB)はゼロとなる。
【0053】
なお、支持部34の上面34AのZ軸方向に関する位置が、周壁部33の上面33AのZ軸方向に関する位置よりも僅かに低く形成されていてもよい。これにより、周壁部33に囲まれた空間31を負圧にすることによって、周壁部33の上面33Aと基板Pの裏面Pbとが密着し、距離D2(ギャップB)はゼロになる。基板Pの裏面Pbと周壁部33の上面33Aとが密着することにより、仮にギャップAから液体LQが基板Pの裏面Pb側に浸入しても、基板Pの裏面Pbと周壁部33の上面33Aとの間を介して、空間31に液体LQが浸入することを防止することができる。
【0054】
また、本実施形態においては、周壁部33の上面33Aは平坦面となっており、その上面33Aは撥液性を有している。本実施形態においては、上面33Aに撥液化処理を施すことで、その上面33Aに撥液性を付与している。上面33Aを撥液性にするための撥液化処理としては、ポリ四フッ化エチレン等のフッ素系樹脂材料あるいはアクリル系樹脂材料等の撥液性材料を塗布、あるいは前記撥液性材料からなる薄膜を貼付する処理が挙げられる。なお、上面33Aを含む基板ホルダPH全体を撥液性を有する材料(フッ素系樹脂など)で形成してもよい。
【0055】
更に、本実施形態においては、基板ホルダPHのうち、周壁部33の外側面33S、及びZチルトステージ52の内側面50Tも、上記撥液化処理を施されて撥液性を有している。また、基板ステージPST(Zチルトステージ52)の上面51も、上記撥液化処理を施されて撥液性を有している。更に、支持部34の表面や底面35Bを含む基材35の表面も撥液化処理を施されて撥液性を有している。
【0056】
また、基板Pの露光面である表面Paにはフォトレジスト(感光材)が塗布されている。本実施形態において、感光材はArFエキシマレーザ用の感光材であって撥液性(撥水性)を有している。また、本実施形態において、基板Pの側面Pcは撥液化処理(撥水化処理)されている。具体的には、基板Pの側面Pcにも、撥液性を有する上記感光材が塗布されている。これにより、Zチルトステージ52の内側面50Tと基板Pの側面Pcとの間のギャップAからの液体LQの浸入を更に確実に防止することができる。更に、基板Pの裏面Pbにも上記感光材が塗布されて撥液化処理されている。なお、基板Pの裏面Pbや側面Pcを撥液性にするための材料としては、上記感光材に限らず、所定の撥液性材料であってもよい。例えば、基板Pの露光面である表面Paに塗布された感光材の上層にトップコート層と呼ばれる保護層(液体から感光材を保護する膜)を塗布する場合があるが、このトップコート層の形成材料(例えばフッ素系樹脂材料)が撥液性(撥水性)を有している場合には、基板Pの側面Pcや裏面Pbにこのトップコート層形成材料を塗布するようにしてもよい。もちろん、感光材やトップコート層形成用材料以外の撥液性を有する材料を塗布するようにしてもよい。
【0057】
なお、投影光学系PLの光学素子2の下面(液体接触面)2A、及びノズル部材70の下面(液体接触面)70Aは親液性(親水性)を有している。本実施形態においては、光学素子2は、純水との親和性が高い蛍石で形成されている。光学素子2の液体接触面2Aは親液性であるので、光学素子2の液体接触面2Aのほぼ全面に液体LQを密着させることができる。また、本実施形態においては、液体供給機構10は、光学素子2の液体接触面2Aとの親和性が高い液体(水)LQを供給するようにしているので、光学素子2の液体接触面2Aと液体LQとの密着性を高めることができ、光学素子2と基板Pとの間の光路を液体LQで確実に満たすことができる。なお光学素子2は、水との親和性が高い石英であってもよい。また光学素子2の液体接触面2A及びノズル部材70の液体接触面70Aに親液化(親水化)処理を施して、液体LQとの親和性をより高めるようにしてもよい。親液化処理としては、MgF、Al、SiOなどの親液性材料を前記液体接触面に設ける処理が挙げられる。あるいは、本実施形態における液体LQは極性の大きい水であるため、親液化処理(親水化処理)として、例えばアルコールなど極性の大きい分子構造の物質で薄膜を設けるようにしてもよい。
【0058】
図3及び図4に示すように、Zチルトステージ52(基板ステージPST)は、平面視において略矩形状に形成されており、そのZチルトステージ52の互いに垂直な2つの縁部には、Zチルトステージ52(基板ホルダPH)の位置を計測するためのレーザ干渉計94用の移動鏡93が形成されている。そして、Zチルトステージ52の上面51には、投影光学系PLを介したマスクMのパターンの像に対する基板Pの位置を規定するための基準部材300が設けられている。基準部材300には、基準マークPFMと基準マークMFMとが所定の位置関係で形成されている。基準マークPFMは、例えば特開平4−65603号公報に開示されているような、基板ステージPST(基板ホルダPH)を静止させてマーク上にハロゲンランプからの白色光等の照明光を照射して、得られたマークの画像を撮像素子により所定の撮像視野内で撮像し、画像処理によってマークの位置を計測するFIA(フィールド・イメージ・アライメント)方式の基板アライメント系により検出される。また基準マークMFMは、例えば特開平7−176468号公報に開示されているような、マークに対して光を照射し、CCDカメラ等で撮像したマークの画像データを画像処理してマーク位置を検出するVRA(ビジュアル・レチクル・アライメント)方式のマスクアライメント系により、マスクMと投影光学系PLとを介して検出される。
【0059】
また、上面51には、光学センサとして、例えば特開昭57−117238号公報に開示されているような照度ムラセンサ400、特開2002−14005号公報に開示されているような空間像計測センサ500、及び特開平11−16816号公報に開示されているような照射量センサ(照度センサ)600等が挙げられる。これら基準部材300や光学センサ400、500、600を設ける場合には、基準部材300の上面、及び光学センサ400、500、600の上面も、基板ステージPSTの上面51及び基板Pの表面Paとほぼ面一にする。また、これら基準部材300、光学センサ400、500、600の上面も、撥液化処理を施して撥液性にする。
【0060】
図2に示すように、基板ホルダPHは、基板Pの裏面Pbを保持し、基板ホルダPHに対して基板Pを昇降するピン部材からなる昇降部材56を備えている。基材35には昇降部材56を配置するための穴部56Hが設けられており、基板Pを昇降する昇降部材56は周壁部33の内側(すなわち空間31の内側)に設けられた構成となっている。本実施形態において、昇降部材56は3箇所のそれぞれに設けられている(図3参照)。昇降部材56は不図示の駆動装置により、基板Pの裏面Pbを保持して昇降するようになっており、制御装置CONTは、駆動装置を介して昇降部材56の昇降動作を制御する。そして、昇降部材56が基板Pの裏面Pbを保持して昇降することにより、基板Pの裏面Pbと周壁部33の上面33Aとの距離を調整することができる。
【0061】
次に、上述した露光装置EXを用いて基板Pを露光する方法について図5A〜Dの模式図を参照しながら説明する。
【0062】
露光処理されるべき基板Pを搬送アームを使って基板ホルダPH上に搬入(ロード)するために、制御装置CONTは、昇降部材56を上昇する。搬送アームは基板Pを上昇している昇降部材56に渡す。昇降部材56は搬送アームより渡された基板Pを保持して下降する。昇降部材56を下降し、基板Pが基板ホルダPH上に設置された後、制御装置CONTは、第1真空系43を駆動し、空間31を負圧にする。これにより、基板Pは基板ホルダPHに吸着保持される。なおこのとき、第2真空系63の駆動は停止している。上述したように、空間31を負圧にすることによって基板Pを支持部34で支持しているときの周壁部33の上面33Aと基板Pの裏面Pbとの間には、距離D2を有するギャップBが形成される。
【0063】
そして、基板ホルダPで基板Pを吸着保持した後、基板Pの露光処理を開始する前に、制御装置CONTは、上記基準部材300、基板アライメント系、及びマスクアライメント系等を使って、レーザ干渉計94で規定される座標系内での投影光学系PLを介したマスクMのパターン像の投影位置と基板アライメント系の検出基準位置との位置関係(ベースライン量)を決定する。また、制御装置CONTは、基板Pの露光処理を開始する前に、光学センサ400、500、600上に液体LQの液浸領域AR2を形成し、液体LQを介して投影光学系PLの結像特性を計測する。そして、制御装置CONTは、光学センサ400、500、600の計測結果に基づいて、投影光学系PLの結像特性調整(キャリブレーション)処理等を行う。
【0064】
計測処理が終了すると、制御装置CONTは、基板ステージPST(XYステージ53)を移動し、投影光学系PLの像面側に形成されている液浸領域AR2を基板P上に移動する。これにより、図5Aに示すように、投影光学系PLと基板Pとの間に液体LQの液浸領域AR2が形成される。
【0065】
本実施形態の露光装置EXは、マスクMと基板PとをX軸方向(走査方向)に移動しながらマスクMのパターン像を基板Pに投影露光するものであって、走査露光時には、液浸領域AR2の液体LQ及び投影光学系PLを介してマスクMの一部のパターン像が投影領域AR1内に投影され、マスクMが−X方向(又は+X方向)に速度Vで移動するのに同期して、基板Pが投影領域AR1に対して+X方向(又は−X方向)に速度β・V(βは投影倍率)で移動する。基板P上には複数のショット領域がマトリクス状に設定されており、1つのショット領域への露光終了後に、基板Pのステッピング移動によって次のショット領域が走査開始位置に移動し、以下、ステップ・アンド・スキャン方式で基板Pを移動しながら各ショット領域に対する走査露光処理が順次行われる。
【0066】
基板P上のショット領域のそれぞれを露光するときは、制御装置CONTは、基板P上の複数のショット領域のそれぞれに付随して設けられているアライメントマークを基板アライメント系を使って検出する。基板アライメント系が基板P上のアライメントマークを検出しているときの基板ステージPSTの位置はレーザ干渉計94によって計測されている。制御装置CONTは、アライメントマークの検出結果に基づいて、基板アライメント系の検出基準位置に対するショット領域の位置情報を求め、その位置情報と先に計測していたベースライン量とに基づいて基板ステージPSTを移動することで、マスクMのパターン像の投影位置とそのショット領域とを位置合わせする。
【0067】
本実施形態においては、基板Pのエッジ領域Eに設けられたショット領域に対しても液浸露光が行われる。基板Pのエッジ領域Eにも露光処理を施してパターンを形成することで、後工程であるCMP(化学的機械的研磨)処理時においてCMP装置の研磨面に対する基板Pの片当たりを防止したり、あるいはエッジ領域Eにも小さいデバイスパターンを形成することで基板Pを有効活用することができる。
【0068】
基板Pのエッジ領域Eに設けられたショット領域を露光するときは、液体LQの液浸領域AR2はギャップA上に形成されるが、ギャップAの距離は0.1〜1.0mm程度に設定されている。また、基板Pの表面Pa及びZチルトステージ52の上面51は撥液性であり、ギャップAを形成する基板Pの側面PcやZチルトステージ52の内側面50Tは撥液性である。そのため、液体LQの表面張力により、ギャップAを介して液浸領域AR2の液体LQが基板Pの裏面Pb側に浸入することが抑えられる。更に本実施形態においては、基板Pのノッチ部(切欠部)NTにおいても、基板Pと上面51との間のギャップAが確保されているので、ノッチ部NT近傍からの液体LQの浸入も防止されている。
【0069】
また、Zチルトステージ52の上面51も撥液性であるため、基板Pのエッジ領域Eを露光する場合にも、上面51により投影光学系PLの下に液体LQを良好に保持することができ、露光後においては、上面51での液体LQの残留を防止できる。また、上面51に液体LQが残留していても、上面51Aは撥液性であるので、その上面51に残留した液体LQを円滑に回収することができる。
【0070】
また、仮にギャップAを介して基板Pの裏面Pb側に液体LQが浸入した場合でも、基板Pの裏面Pbは撥液性であり、その裏面Pbに対向する周壁部33の上面33Aも撥液性であるため、所定の距離D2を有するギャップBが形成されている場合においても、そのギャップBを介して液体LQが空間31に浸入することが防止される。したがって、空間31の内側にある吸引口41を介して第1真空系43に液体LQが浸入することを防止することができる。また、基板Pの裏面Pbと、その裏面Pbに対向する周壁部33の上面33Aとのそれぞれは撥液性であって、所定の距離D2を有するギャップBが確保されているため、空間31に液体LQが浸入することを防止されている。したがって、空間31の内側にある吸引口41を介して第1真空系43に液体LQが浸入することも防止される。なお、基板Pの裏面Pbを撥液性にする場合、裏面Pbの全域を撥液性にしてもよいし、裏面Pbのうち周壁部33の上面33Aと対向する一部の領域のみを撥液性にしてもよい。
【0071】
基板P上の各ショット領域の走査露光が終了すると、制御装置CONTは、液体供給機構10による液体供給を停止する。一方、制御装置CONTは、液体供給機構10による液体供給を停止した後、第1液体回収機構20の駆動を所定時間継続する。これにより、図5Bに示すように、基板Pの表面Pa上やZチルトステージ52の上面51上の液体LQが回収される。なお第1液体回収機構20を使って基板P上や上面51上の液体LQを回収するときは、第1液体回収機構20の回収口22に対して基板ステージPSTをXY方向(場合によってはZ軸方向)に移動することで、液体LQをより円滑に回収できる。基板P上の液体LQを回収した後、制御装置CONTは、基板ステージPSTを基板Pの搬入及び搬出を行うロード・アンロード位置へ移動し、第1真空系43の駆動を停止し、基板ホルダPHの基板Pに対する吸着保持を解除する。
【0072】
基板ホルダPHによる基板Pの吸着保持を解除した後、図5Cに示すように、制御装置CONTは、昇降部材56によって基板Pの裏面Pbを保持した状態で、その昇降部材56を所定距離だけ上昇し、ギャップB’を形成する。制御装置CONTは、基板Pを保持した昇降部材56を所定量駆動することで、周壁部33の上面33Aと基板Pの裏面Pbとの間のギャップB’の距離を調整する。そして制御装置CONTは、周壁部33の上面33Aと基板Pの裏面Pbとの間を所定距離D1だけ離した状態で、昇降部材56の駆動を停止する。ここで、ギャップB’の距離D1は、空間31を負圧にすることによって基板Pを支持部34で支持しているときの周壁部33の上面33Aと基板Pの裏面Pbとの間のギャップBの距離D2よりも長い。換言すれば、基板Pを基板ホルダPHで吸着保持しているときのギャップBの距離D2は、ギャップB’の距離D1よりも短い。
【0073】
そして制御装置CONTは、周壁部33の上面33Aと基板Pの裏面Pbとの間の距離D1を維持した状態で、第2液体回収機構60の第2真空系63を駆動する。制御装置CONTは、昇降部材56を使って周壁部33の上面33Aと基板Pの裏面Pbとの間を距離D1だけ離した状態で、第2真空系63を駆動することにより、基板Pの外周から基板Pの裏面Pb側に浸入した液体LQを回収口61(61A〜61C)を介して吸引回収することができる。
【0074】
図6は周壁部33の上面33Aと基板Pの裏面Pbとが所定距離D1だけ離れた状態で、第2真空系63を駆動したときの、基板Pの外周近傍の気体の流れを示す模式図である。周壁部33の上面33Aと基板Pの裏面Pbとが所定距離D1だけ離れた状態で、第2真空系63が駆動されることにより、基材35と周壁部33と基板Pとで囲まれた空間31内部のガス(空気)が回収口61を介して吸引され、これにより空間31が負圧化される。空間31が負圧化されることにより、空間31の内側と外側との間に圧力差が発生し、ギャップB’には、空間31の外側から内側に向かう気体の流れが生成される。
【0075】
基板Pの露光前や露光中に基板ホルダPHで基板Pを吸着保持しているとき、Zチルトステージ52(基板ステージPST)の上面51と基板Pとの間には所定のギャップAが形成されており、ギャップAを介した基板Pの側面Pcへの液体LQの付着や、基板Pの裏面Pb側への液体LQの浸入(回り込み)が防止されているものの、液体LQが基板Pの側面Pcや裏面Pbに付着する可能性がある。また、浸入した液体LQが、基板ホルダの周壁部33の上面33Aや周壁部33の内側面33T、あるいは底面35Bに付着する可能性もある。本実施形態においては、ギャップB’の距離D1を最適値に維持した状態で、空間31の内側に設けられている回収口61を介して空間31を負圧化し、空間31の外側から内側への流体の流れを作ることで、基板Pの外周から浸入し、基板Pの裏面Pb、側面Pcに付着した液体LQや、周壁部33の上面33A、内側面33T、及び底面35Bを含む基板ホルダPHに付着した液体LQを、回収口61を介して吸引回収することができる。この場合、空間31の外側に配置されている裏面Pbや側面Pcに付着している液体LQも、前記気体の流れによって良好に回収することができる。そして、ギャップB’の距離D1を最適値に維持した状態で空間31を負圧化することで、第2液体回収機構60は、基板Pの裏面Pb及び側面Pcに付着した液体LQと基板ホルダPHに付着した液体LQとを回収口61を介して略同時に回収することができる。また、空間31に浮遊している湿った空気も、基板Pの裏面Pb等に付着している液体LQと一緒に、回収口61を介して略同時に回収することができる。更に、基板Pのノッチ部NT近傍においても、基板Pの裏面Pbと周壁部33の上面33Aとの間に所定距離D1を有するギャップB’が形成されているので、基板Pのノッチ部NT近傍の裏面Pbや側面Pc、あるいはノッチ部NTに対応して形成された周壁部33の凸部33N’などに付着した液体LQも略同時に回収口61(61B)を介して回収することができる。
【0076】
回収口61は、基板ホルダPHのうち、基板Pの外周から浸入した液体LQが付着しやすい位置近傍に設けることが好ましく、また、気体の流れの状態(流速、流れの方向など)を所望状態にできるような形状及び配置であることが好ましい。本実施形態においては、基板Pの外周から浸入した液体LQは、周壁部33の上面33Aや内側面33T等に付着しやすいため、周壁部33の内側近傍において内側面33Tに沿って形成されたスリット状の第1の回収口61Aを介して、周壁部33に付着した液体LQを円滑に回収することができる。また、基板Pのノッチ部NT近傍においても基板Pの外周から液体LQが浸入しやすいため、基板Pのノッチ部NTに応じた凹部33N(凸部33N’)近傍に設けた第2の回収口61Bを介して、その液体LQを円滑に回収することができる。更に、底面35Bの中央部にも第3の回収口61Cを設けたので、ギャップB’における気体の流れを所望状態にすることができるとともに、基板Pの外周から空間31に浸入した液体LQをより確実に回収することができる。
【0077】
また、第2液体回収機構60は、空間31を負圧化して気体の流れを生成することで、その気体の流れの流路上にある周壁部33の上面33Aや基板Pの裏面Pb、側面Pcに付着した液体LQを吸引回収しているが、液体LQのみならず、基板Pの裏面Pb、側面Pcや基板ホルダPHに付着した異物(不純物、パーティクル)を回収することも可能である。例えば、基板Pに塗布されているフォトレジストの一部が剥離し、それが異物となって基板Pや基板ホルダPHに付着することが考えられるが、制御装置CONTは、第2液体回収機構60を駆動することによって、液体LQとともに異物も吸引回収することができる。
【0078】
ところで、ギャップB’に配置されている液体LQを移動して回収口61より回収するためには、第2液体回収機構60は、ギャップB’に配置された液体LQの粘性抵抗力以上の力で吸引回収する必要がある。ギャップB’の距離D1が小さい場合、ギャップB’に配置される液体LQの粘性抵抗力が大きくなるため、ギャップB’に配置されている液体LQを移動(回収)するために、第2液体回収機構60は、第2真空系63の吸引力を強くして空間31の圧力を十分に低下する必要がある。ところが、第2真空系63の吸引力を強くして空間31の圧力を低下しすぎると、昇降部材56に保持されている基板Pのエッジ部に撓み変形が生じる可能性がある。一方、ギャップB’の距離D1が大きい場合、ギャップB’において生成される気体の流れの流速を高速化できず、ギャップB’に配置されている液体LQを移動(回収)することが困難となる。また、液体LQの粘性抵抗力は、周壁部33の上面33A及び基板Pの裏面Pbのそれぞれと液体LQとの親和性(接触角)に応じても変化する。また、本実施形態における液体LQは純水であるが、純水以外の液体を使用した場合には、液体の物性(粘度など)によっても粘性抵抗力が変化する。そこで、ギャップB’の距離D1は、液体LQの物性、周壁部33の上面33A及び基板Pの裏面Pbそれぞれの液体LQとの親和性、及び第2真空系63の吸引力に応じて設定することが好ましい。本実施形態においては、空間31は−80KPa程度に設定され、ギャップB’は1μm以上10mm以下程度に設定されている。
【0079】
そして、上述したように、周壁部33の上面33Aを含む基板ホルダPHの表面が撥液性であるため、第2液体回収機構60は、第2真空系63の吸引力を過剰に強くすることなく、すなわち空間31の圧力を過剰に低下することなく、基板ホルダPHの表面に付着した液体LQを円滑に回収可能である。また、昇降部材56の表面を撥液性にすることで、仮に昇降部材56の表面に液体LQが付着した場合でも、その液体LQを円滑に回収することができる。
【0080】
なお、図7に示すように、周壁部33の外側(空間31の外側)にも第2昇降部材57を設け、基板Pの裏面Pbの中央部を昇降部材56で保持し、基板Pの裏面Pbのエッジ領域を第2昇降部材57で保持することで、第2真空系63の吸引力を上昇して空間31の圧力を低下した場合においても、基板Pのエッジ部の撓み変形を抑えることができる。
【0081】
そして、第2液体回収機構60による液体回収動作が完了した後、制御装置CONTは、基板Pの裏面Pbを保持した昇降部材56を更に上昇する。そして、図5Dに示すように、昇降部材56によって上昇した基板Pと基板ホルダPHとの間に搬送アームHが進入し、基板Pの裏面Pbを保持する。そして、搬送アームHは基板Pを基板ホルダPHから搬出(アンロード)する。
【0082】
以上説明したように、第2液体回収機構60は、基板Pの裏面Pb及び側面Pcと基板ホルダPHとのそれぞれに付着した液体LQを略同時に回収するので、液体LQを短時間のうちに素早く回収することができる。したがって、基板Pの裏面Pbあるいは基板ホルダPHに付着した液体LQに起因する不都合、例えば、基板Pの裏面Pbあるいは基板ホルダPHの支持部34の上面34Aにウォーターマークが形成されて、基板ホルダPHで基板Pを保持したときの基板Pの平坦度(フラットネス)が劣化する等の不都合の発生を防止し、良好な露光精度を維持することができる。
【0083】
また、基板Pの裏面Pbに液体LQが付着したり、ウォーターマークが形成されると、基板Pを基板ホルダPHから搬送アームHを使って搬出(アンロード)するとき、搬送アームHが基板Pの裏面Pbを良好に保持できなかったり、基板ホルダPHに保持されたときの基板Pの平坦度が劣化する可能性がある。また、搬送アームHが、基板Pの裏面Pbに付着した液体LQ、あるいは基板Pの裏面Pbに形成されたウォーターマークと接触することにより、汚染する可能性もある。また、基板Pの裏面Pbに液体LQが付着した状態でその基板Pを搬送すると、搬送経路上に基板Pから液体LQが飛散する不都合も生じる。また、基板Pの裏面Pbに液体LQが付着した状態で、あるいはウォーターマークが形成された状態で、露光処理後の所定のプロセス処理(例えば現像処理等)を行うと、その処理に影響を及ぼす可能性もある。更に、露光処理後の基板Pに現像処理を施し、次のレイヤーを露光するためにその基板Pを再び基板ホルダPHに搬入(ロード)したとき、その基板Pの裏面Pbにウォーターマークが形成されていると、基板ホルダPHは基板Pを良好に保持できない可能性がある。本実施形態においては、基板Pを基板ホルダPHからアンロードする前に、第2液体回収機構60が、基板Pの裏面や基板ホルダPHに付着した液体LQを素早く回収・除去するので、上記不都合の発生を防止することができる。
【0084】
そして、第2液体回収機構60は液体LQを短時間のうちに素早く回収するので、基板Pの外周から基板Pの裏面Pb側や空間31に浸入した液体LQが気化する前にその液体LQを回収できる。したがって、基板Pの裏面Pbや基板ホルダPHにウォーターマークが形成されることを未然に防止することができる。また、第2液体回収機構60は、短時間のうちに液体LQを回収できるため、液体回収処理に要する時間を短くでき、露光装置EXの稼働率を向上することもできる。
【0085】
なお、上述した実施形態においては、基板Pの露光終了後、吸引機構40の吸引動作を停止して基板Pに対する吸着保持を解除した後、昇降部材56を使って基板Pを基板ホルダPHに対して上昇し、その後、第2液体回収機構60を駆動して液体LQを吸引回収しているが、基板Pの露光終了後、吸引機構40による吸引動作を停止しなくてもよい。例えば吸引機構40による吸引口41を介した吸引力を、基板Pを吸着保持するときの吸着よりも弱めた状態で、具体的には昇降部材56を使って基板Pを上昇できる程度に吸引機構40による吸引力を弱めた状態で、昇降部材56を使って基板Pを基板ホルダPHに対して上昇し、基板Pの裏面Pbと周壁部33の上面33Aとの間に距離D1を有するギャップB’を設けるようにしてもよい。
【0086】
なお、上述した実施形態においては、第2液体回収機構60を使った液体回収動作を行うとき、昇降部材56を使って基板Pを基板ホルダPHに対して上昇し、基板Pの裏面Pbと周壁部33の上面33Aとの間に所定距離D1を有するギャップB’を形成しているが、周壁部33の上面33Aと基板Pの裏面Pbとの距離を調整するギャップ調整機構としては、昇降部材56に限られず、基板Pの裏面Pbと基板ホルダPHの周壁部33の上面33Aとの距離を調整可能なものであれば任意の機構を採用することができる。例えばギャップ調整機構としては、基板Pの表面Paあるいは側面Pcを保持し、基板ホルダPHに対して基板Pを移動可能なアーム装置であってもよい。また、停止状態の基板ホルダPHに対して基板Pを上昇させる代わりに、所定の保持装置で基板Pを保持してその基板PのZ軸方向に関する位置を維持した状態で、基板ホルダPHを下方に移動することによって、基板Pの裏面Pbと周壁部33の上面33Aとの距離D1を調整するようにしてもよい。あるいは、基板Pと基板ホルダPHとの双方を移動するようにしてもよい。
【0087】
なお、上述した実施形態においては、基板Pの露光中におけるギャップBは距離D2を有し、基板Pの露光終了後、第2液体回収機構60による液体回収動作をするときのギャップB’は、距離D2よりも大きい距離D1を有しているが、ギャップBの距離D2を維持した状態で基板Pを露光し、その基板Pの露光終了後においても、基板Pと基板ホルダPHとのZ軸方向に関する相対位置を変化させずに(昇降部材56で基板Pを上昇せずに)、ギャップBの距離D2を維持した状態で、回収口61を介して吸引動作を行って空間31を負圧にしてもよい。そして、空間31を負圧にして気体の流れを生成して、基板Pの裏面Pbや側面Pc、あるいは基板ホルダPHに付着している液体LQを回収口61を介して吸引回収するようにしてもよい。その場合、第2液体回収機構60による吸引力を、基板Pの露光中において基板Pを基板ホルダPHで吸着保持するときの吸引機構40による吸引力よりも大きくすることで、ギャップBに気体の流れを生成して、基板Pの裏面Pbや基板ホルダPHに付着した液体LQを回収することができる。一方、液体回収するとき、露光時において基板Pを吸着保持するときよりも強い吸引力で空間31の気体を吸引すると、基板Pの撓み変形が発生する確率が高くなる。そのため、上述した実施形態のように、基板Pを基板ホルダPHで吸着保持するときの基板Pの裏面Pbと周壁部33の上面33Aとの距離D2と、第2液体回収機構60を使って液体LQを回収するときの基板Pの裏面Pbと周壁部33の上面33Aとの距離D1との距離を異ならせて、第2液体回収機構60による液体回収動作時には、最適な距離D1及び最適な吸引力で液体回収動作を実行することが好ましい。
【0088】
なお、上述した実施形態においては、第2液体回収機構60による液体回収動作を行うとき、ギャップB’の距離D1を確保するために、制御装置CONTは、昇降部材56を駆動する駆動装置の駆動量をモニタし、そのモニタ結果(駆動装置の駆動量)に基づいて、昇降部材56の上昇量(昇降部材56の位置)を求め、その求めた結果に基づいて、周壁部33の上面33Aと基板Pの裏面Pbとの距離D1を導出している構成である。一方、周壁部33の上面33Aと基板Pの裏面Pbとの距離を計測する計測装置を設け、制御装置CONTは、その計測装置の計測結果に基づいて、昇降部材56の駆動を制御して、周壁部33の上面33Aと基板Pの裏面Pbとの距離を調整するようにしてもよい。
【0089】
図8は周壁部33の上面33Aと基板Pの裏面Pbとの距離を計測する計測装置80の一例を示す模式図である。図8に示す計測装置80はレーザ干渉計によって構成されており、Zチルトステージ52の上面51に参照ビームを照射するとともに、基板Pの表面Paに測長ビームを照射する。なお、Zチルトステージ52の上面51における参照ビーム照射領域、及び基板Pの表面Paにおける測長ビーム照射領域のそれぞれは、これらビームを反射可能な面となっている。ここで、計測装置80(あるいはこの計測装置80に接続された記憶装置)には、Zチルトステージ52の上面51と周壁部33の上面33AとのZ軸方向に関する距離に関する情報が記憶されているとともに、基板Pの表面Paと裏面PbとのZ軸方向に関する距離(すなわち基板Pの厚み)に関する情報が記憶されている。計測装置80は、上面51に照射した参照ビームの光路長と基板Pの表面Paに照射した測定ビームの光路長との差、及び上記記憶情報に基づいて、周壁部33の上面33Aと基板Pの裏面Pbとの間のギャップB’の距離D1を求めることができる。
【0090】
なお、上述した実施形態においては、基板Pの露光終了後、その露光処理済みの基板Pを基板ステージPSTより搬出する前に、第2液体回収機構60による液体回収動作が実行されるが、露光されるべき未露光の基板Pが基板ステージPSTに搬送(ロード)された後、基板ホルダPHに吸着保持される前に、第2液体回収機構60による液体回収動作を実行するようにしてもよい。基板ステージPSTにロードされる前の基板Pの裏面Pbには異物が付着している可能性があり、また、基板Pをロードされる前の基板ホルダPHにも異物や液体LQが付着している可能性がある。そこで、基板Pをロードする前に、第2液体回収機構60による液体回収動作(異物回収動作)を実行することで、液体LQや異物を除去した状態で、基板ホルダPHで平坦度良く基板Pを保持することができる。
【0091】
なお、上述した実施形態においては、第2液体回収機構60による液体回収動作は、基板Pの露光終了後、基板Pを基板ステージPST(基板ホルダPH)よりアンロードする前に行っているが、その場合、基板Pをアンロードする毎に(基板P毎に)行うことが好ましい。こうすることにより、例えば、基板Pの裏面Pbに液体LQが付着したままで、基板Pが基板ステージPSTよりアンロードされ、搬送経路上に液体LQが飛散する不都合の発生を回避することができる。
【0092】
一方、図9に示すように、液体LQを検出可能な検出装置90を基板ホルダPHの所定位置に設け、制御装置CONTは、その検出装置90の検出結果に基づいて、第2液体回収機構60の動作を制御するようにしてもよい。図9において、検出装置90は液体LQに接触することにより液体LQの有無を検出可能な液体有無センサによって構成されており、基板Pの外周から空間31に浸入した液体LQが付着しやすい位置、具体的には、周壁部33の内側面33Tに設けられている。そして、検出装置90は、基板Pの外周から浸入した液体LQが基板ホルダPHに付着したか否かを検出可能となっている。なお、基板Pの裏面Pbや側面Pcに液体LQが付着したか否かを検出可能な位置に検出装置を設けることにより、その検出装置で基板Pの裏面Pbに液体LQが付着したか否かを検出することもできる。あるいは、液体LQの有無を例えば光学的に非接触方式で検出する検出装置を採用し、制御装置CONTは、前記検出装置の検出結果に基づいて、基板Pの裏面Pb(側面Pc)及び基板ホルダPHのうち少なくともいずれか一方に液体LQが付着したか否かを判断するようにしてもよい。
【0093】
基板Pの露光中や基板Pのアンロード動作時において、検出装置90が基板Pの外周から浸入した液体LQを検出したとき、制御装置CONTは、基板Pを基板ステージPSTよりアンロードする前に、第2液体回収機構60を使って、基板Pの裏面Pb、側面Pc、あるいは基板ホルダPHに付着した液体LQを吸引回収する。一方、基板Pの露光中や基板Pのアンロード動作時において、検出装置90が液体LQを検出しなかった場合、制御装置CONTは、第2液体回収機構60による液体回収動作を行わずに、基板Pの露光終了後、その基板Pを搬送アームに渡してアンロードする。このように、基板Pの裏面Pb(側面Pc)及び基板ホルダPHのうち少なくともいずれか一方に液体LQが付着したか否かを検出する検出装置90を設けたことにより、検出装置90の検出結果に基づいて、液体LQが基板Pの裏面Pbや側面Pc、基板ホルダPHに液体QLが付着していないと判断したとき、制御装置CONTは、第2液体回収機構60による液体回収動作を行わないようにすることで、無駄な液体回収動作を行わないので、露光装置EXの稼働率を向上することができる。そして、検出装置90によって液体LQを検出したときは、第2液体回収機構60による液体回収動作を実行することで、付着した液体LQに起因してウォーターマークが形成されたり、搬送アームに液体LQが付着する等の不都合の発生を防止することができる。また、第2液体回収機構60による液体回収動作を実行した後、検出装置90を使って液体LQが回収(除去)されたか否かを確認(検出)し、その検出結果に基づいて、液体LQが回収されていないと判断した場合には、制御装置CONTは、第2液体回収機構60による液体回収動作を再び実行するようにしてもよい。
【0094】
また、基板Pの露光中に、基板Pの裏面Pb及び基板ホルダPHのうち少なくともいずれか一方に液体LQが付着したか否かを検出装置90で検出し、検出装置90が液体LQを検出した場合には、制御装置CONTは、基板Pに対する露光光ELの照射動作及び基板Pの基板ホルダPHによる吸着保持動作(第1真空系43による吸引動作)を含む露光動作を停止(中断)するようにしてもよい。そして、露光動作を停止した後、制御装置CONTは、第2液体回収機構60を使って、液体LQを回収するようにしてもよい。一方、基板Pの露光中において検出装置90が液体LQを検出していない場合には、制御装置CONTは基板Pに対する露光動作を継続し、基板Pの露光終了後、第2液体回収機構60による液体回収動作を行うこと無く、その基板Pを基板ステージPSTより搬出(アンロード)する。検出装置90が液体LQを検出したとき、第1真空系43による吸引動作を含む露光動作を停止することにより、空間31に浸入した液体LQが、吸引口41を介して第1真空系43に流入して第1真空系43が破損する等の不都合の発生を防止することができる。
【0095】
一方、基板Pの露光中において、検出装置90が液体LQを検出した場合においても、第2液体回収機構60による液体回収動作を行わずに、基板Pの全てのショット領域(あるいは所定のショット領域)の露光が完了するまで露光動作を継続するようにしてもよい。この場合、第1真空系43の上流側に気液分離器を設けるなどして吸引機構40が吸引口41を介して液体LQを吸引回収可能な構成としておくことで、吸引口41に液体LQが流入しても、第1真空系43の破損等を防止することができる。
【0096】
そして、第1真空系43の上流側に気液分離器を設けるなどして吸引機構40が吸引口41を介して液体LQを吸引回収可能な構成としておくことで、第2液体回収機構60の回収口61を介した液体回収動作と並行して、吸引口41を介した液体回収動作を行うようにしてもよい。すなわち、第2液体回収機構60による液体回収動作時においても、吸引機構40の駆動は必ずしも停止される必要はない。
【0097】
あるいは、第2液体回収機構60の回収口61と、基板Pを支持部34で支持するときに空間31を負圧にするための吸引口41とを兼用してもよい。すなわち、基板Pを基板ホルダPHに吸着保持するために空間31を負圧にするときは、第1真空系43を駆動して、吸引口41より空間31の気体を吸引し、基板Pの露光終了後、基板Pを昇降部材56を使って上昇するときは、吸引口41を介した吸引動作を停止あるいは吸引力を低下する。そして、昇降部材56を使って基板Pの裏面Pbと周壁部33の上面33Aとの距離D1を最適値に調整した後は、吸引口41を介した吸引力を所定値にして、吸引口41を介して液体LQを回収する。基板Pを吸着保持するための吸引口41と、液体LQを回収するための回収口(61)とを兼用することで、第2真空系63や流路62を設けなくてすむため、装置構成を簡略化することができる。一方、上述した実施形態のように、基板Pを吸着保持するための吸引口41と、液体LQを回収するための回収口61とを独立して設けることで、回収口61を任意の位置に設けることができるため、基板Pの外周から浸入した液体LQが付着しやすい位置に回収口61を設けることができ、液体LQをより確実に回収できる。また、回収口61の形状や配置位置を最適に設定できるので、ギャップB’を介した気体の流れを所望状態にすることができる。
【0098】
なお、上述した実施形態においては、基板ホルダPHの底面35BはXY平面と略平行に形成され、第2液体回収機構60の回収口61は、その底面35Bの所定位置に設けられた構成であるが、図10に示すように、底面35Bに、回収口61に向かって下がるように傾斜した傾斜領域KRを設けるようにしてもよい。こうすることにより、第2液体回収機構60は、基板Pの外周から空間31に浸入し、底面35Bに付着した液体LQを、液体LQの自重(重力作用)と回収口61を介した吸引力とによって、より円滑に回収口61を介して回収することができる。
【0099】
また、上述した実施形態においては、底面35Bと、周壁部33の内側面33Tとはほぼ直交しているが、図11に示すように、周壁部33の内側面33Tと底面35Bの接続部35Cとを断面視において略円弧状に形成してもよい。こうすることにより、周壁部33の内側面33Tに付着している液体LQは、円弧状の接続部35Cを流れ落ちるようにして、内側面33Tの近傍に設けられた回収口61より円滑に回収される。
【0100】
なお、上述した各実施形態において、ギャップB’に沿って移動可能な回収口を有するノズルを設け、そのノズルをギャップB’に沿って移動しつつ吸引回収動作を行い、気体の流れを生成するようにしてもよい。
【0101】
また、例えばZチルトステージ52の内側面50T、あるいは周壁部33の外側面33S等、ギャップCに接続する位置に回収口を更に設け、その回収口を介して、ギャップAより浸入した液体LQを回収するようにしてもよい。ギャップCに接続する回収口を介した吸引動作を行うことによっても、空間31への液体LQや異物の浸入を防止することができる。更には、周壁部33の上面33Aに回収口を設けてもよい。周壁部33の上面33Aに設けられた回収口を介して吸引動作を行うことによっても、空間31への液体LQや異物の浸入を防止することができる。
また基板裏面などに付着した液体を回収する液体回収機構としては、上述したような、基板ホルダPHの内部に設けられた回収口を介して回収する構成のものに限られない。例えば回収口を、基板ホルダPHよりも外側(外周側)に配置させても良い。例えば国際公開番号「WO2004/112108A1」の公報に開示されているように、基板ホルダの外側で且つ基板ステージの一部(内部)に回収口を設けると共に、その基板ステージ内部にその一部が設置された流路を介して液体を回収する構成を採用しても良い。基板に付着した液体が回収できる構成となってさえいれば、回収口やその流路の設置位置は任意で良い。
【0102】
なお、上述した各実施形態において、基板ホルダPH内部に設けられ、吸引口41と第1真空系43とを接続する流路42の内壁面、及び回収口61と第2真空系63とを接続する流路62の内壁面のそれぞれに(あるいはいずれか一方に)、撥液性材料及び断熱性材料のうち少なくともいずれか一方を設けるようにしてもよい。図12は流路62(又は流路42)を模式的に示す断面図であって、この図に示す例では、流路62の内壁面に断熱性材料がコーティングされて断熱層120が設けられ、その断熱層120上に、撥液性材料がコーティングされて撥液層121が設けられている。回収口61(又は吸引口41)から回収された液体LQは流路62(42)を流れるが、撥液層121を設け、流路62(42)のうち液体LQに接触する面を撥液性にすることで、流路62(42)に液体LQが残留することを防止できる。すなわち、流路の内側面近傍においては、真空系によって生成される気体の流れの流速はほぼ0となるので、内壁面に付着した液体LQは回収されずに流路の内側に残留する可能性が高くなる。また、流路に角部が形成されている場合には、その角部において液体LQが残留する可能性が高くなる。流路内に液体LQが残留すると、その液体LQが気化したときの気化熱によって基板ホルダPH(基材35)が熱変形するおそれがある。ところが、撥液層121を設けて流路62の内壁面を撥液性にすることで、内壁面と液体LQとの摩擦抵抗を低下させ、真空系によって生成される気体の流れによって流路内の液体LQを真空系で良好に回収することができる。したがって、基板ホルダPH(基材35)の熱変形を防止することができる。ここで、撥液層121を形成する撥液性材料としては、上述したようなフッ素系樹脂材料あるいはアクリル系樹脂材料等を用いることができる。
【0103】
また、断熱層120を設けておくことで、仮に流路内に残留した液体LQが気化したとしても、その気化熱が基板ホルダPH(基材35)に与える影響を抑えることができる。
ここで、断熱層120を形成する断熱性材料としては、基板ホルダPH(基材35)を形成する材料よりも熱伝導率λが低い材料であればよい。例えば、基板ホルダPH(基材35)がセラミックス(λ:63W/mK程度)で形成されている場合、断熱層120としては、ポリテトラフロロエチレン(PTFE)やテトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)等のフッ素系樹脂(λ:0.25W/mK程度)、ゴアテックス(登録商標)等を用いることができる。あるいは、熱伝導率λの低い空気の層を断熱層120としてもよい。ここで、上記フッ素系樹脂は撥液性も有しているため、流路62(42)の内壁面にフッ素系樹脂をコーティングすることにより、撥液性と断熱性との双方の機能を得ることができる。
【0104】
上述したように、本実施形態における液体LQは純水により構成されている。純水は、半導体製造工場等で容易に大量に入手できるとともに、基板P上のフォトレジストや光学素子(レンズ)等に対する悪影響がない利点がある。また、純水は環境に対する悪影響がないとともに、不純物の含有量が極めて低いため、基板Pの表面、及び投影光学系PLの先端面に設けられている光学素子の表面を洗浄する作用も期待できる。なお工場等から供給される純水の純度が低い場合には、露光装置が超純水製造器を持つようにしてもよい。
【0105】
そして、波長が193nm程度の露光光ELに対する純水(水)の屈折率nはほぼ1.44と言われており、露光光ELの光源としてArFエキシマレーザ光(波長193nm)を用いた場合、基板P上では1/n、すなわち約134nmに短波長化されて高い解像度が得られる。更に、焦点深度は空気中に比べて約n倍、すなわち約1.44倍に拡大されるため、空気中で使用する場合と同程度の焦点深度が確保できればよい場合には、投影光学系PLの開口数をより増加させることができ、この点でも解像度が向上する。
【0106】
なお、上述したように液浸法を用いた場合には、投影光学系の開口数NAが0.9〜1.3になることもある。このように投影光学系の開口数NAが大きくなる場合には、従来から露光光として用いられているランダム偏光光では偏光効果によって結像性能が悪化することもあるので、偏光照明を用いるのが望ましい。その場合、マスク(レチクル)のライン・アンド・スペースパターンのラインパターンの長手方向に合わせた直線偏光照明を行い、マスク(レチクル)のパターンからは、S偏光成分(TE偏光成分)、すなわちラインパターンの長手方向に沿った偏光方向成分の回折光が多く射出されるようにするとよい。投影光学系PLと基板P表面に塗布されたレジストとの間が液体で満たされている場合、投影光学系PLと基板P表面に塗布されたレジストとの間が空気(気体)で満たされている場合に比べて、コントラストの向上に寄与するS偏光成分(TE偏光成分)の回折光のレジスト表面での透過率が高くなるため、投影光学系の開口数NAが1.0を越えるような場合でも高い結像性能を得ることができる。また、位相シフトマスクや特開平6−188169号公報に開示されているようなラインパターンの長手方向に合わせた斜入射照明法(特にダイポール照明法)等を適宜組み合わせると更に効果的である。特に、直線偏光照明法とダイポール照明法との組み合わせは、ライン・アンド・スペースパターンの周期方向が所定の一方向に限られている場合や、所定の一方向に沿ってホールパターンが密集している場合に有効である。例えば、透過率6%のハーフトーン型の位相シフトマスク(ハーフピッチ45nm程度のパターン)を、直線偏光照明法とダイポール照明法とを併用して照明する場合、照明系の瞳面においてダイポールを形成する二光束の外接円で規定される照明σを0.95、その瞳面における各光束の半径を0.125σ、投影光学系PLの開口数をNA=1.2とすると、ランダム偏光光を用いるよりも、焦点深度(DOF)を150nm程度増加させることができる。
【0107】
また、例えばArFエキシマレーザを露光光とし、1/4程度の縮小倍率の投影光学系PLを使って、微細なライン・アンド・スペースパターン(例えば25〜50nm程度のライン・アンド・スペース)を基板P上に露光するような場合、マスクMの構造(例えばパターンの微細度やクロムの厚み)によっては、Wave guide効果によりマスクMが偏光板として作用し、コントラストを低下させるP偏光成分(TM偏光成分)の回折光よりS偏光成分(TE偏光成分)の回折光が多くマスクMから射出されるようになる。この場合、上述の直線偏光照明を用いることが望ましいが、ランダム偏光光でマスクMを照明しても、投影光学系PLの開口数NAが0.9〜1.3のように大きい場合でも高い解像性能を得ることができる。
【0108】
また、マスクM上の極微細なライン・アンド・スペースパターンを基板P上に露光するような場合、Wire Grid効果によりP偏光成分(TM偏光成分)がS偏光成分(TE偏光成分)よりも大きくなる可能性もあるが、例えばArFエキシマレーザを露光光とし、1/4程度の縮小倍率の投影光学系PLを使って、25nmより大きいライン・アンド・スペースパターンを基板P上に露光するような場合には、S偏光成分(TE偏光成分)の回折光がP偏光成分(TM偏光成分)の回折光よりも多くマスクMから射出されるので、投影光学系PLの開口数NAが0.9〜1.3のように大きい場合でも高い解像性能を得ることができる。
【0109】
更に、マスク(レチクル)のラインパターンの長手方向に合わせた直線偏光照明(S偏光照明)だけでなく、特開平6−53120号公報に開示されているように、光軸を中心とした円の接線(周)方向に直線偏光する偏光照明法と斜入射照明法との組み合わせも効果的である。特に、マスク(レチクル)のパターンが所定の一方向に延びるラインパターンだけでなく、複数の異なる方向に延びるラインパターンが混在(周期方向が異なるライン・アンド・スペースパターンが混在)する場合には、同じく特開平6−53120号公報に開示されているように、光軸を中心とした円の接線方向に直線偏光する偏光照明法と輪帯照明法とを併用することによって、投影光学系の開口数NAが大きい場合でも高い結像性能を得ることができる。例えば、透過率6%のハーフトーン型の位相シフトマスク(ハーフピッチ63nm程度のパターン)を、光軸を中心とした円の接線方向に直線偏光する偏光照明法と輪帯照明法(輪帯比3/4)とを併用して照明する場合、照明σを0.95、投影光学系PLの開口数をNA=1.00とすると、ランダム偏光光を用いるよりも、焦点深度(DOF)を250nm程度増加させることができ、ハーフピッチ55nm程度のパターンで投影光学系の開口数NA=1.2では、焦点深度を100nm程度増加させることができる。
【0110】
本実施形態では、投影光学系PLの先端に光学素子2が取り付けられており、このレンズにより投影光学系PLの光学特性、例えば収差(球面収差、コマ収差等)の調整を行うことができる。なお、投影光学系PLの先端に取り付ける光学素子としては、投影光学系PLの光学特性の調整に用いる光学プレートであってもよい。あるいは露光光ELを透過可能な平行平面板であってもよい。
【0111】
なお、液体LQの流れによって生じる投影光学系PLの先端の光学素子と基板Pとの間の圧力が大きい場合には、その光学素子を交換可能とするのではなく、その圧力によって光学素子が動かないように堅固に固定してもよい。
【0112】
なお、本実施形態では、投影光学系PLと基板P表面との間は液体LQで満たされている構成であるが、例えば基板Pの表面に平行平面板からなるカバーガラスを取り付けた状態で液体LQを満たす構成であってもよい。
【0113】
なお、本実施形態の液体LQは水であるが、水以外の液体であってもよい、例えば、露光光ELの光源がFレーザである場合、このFレーザ光は水を透過しないので、液体LQとしてはFレーザ光を透過可能な例えば、過フッ化ポリエーテル(PFPE)やフッ素系オイル等のフッ素系流体であってもよい。この場合、液体LQと接触する部分には、例えばフッ素を含む極性の小さい分子構造の物質で薄膜を形成することで親液化処理する。また、液体LQとしては、その他にも、露光光ELに対する透過性があってできるだけ屈折率が高く、投影光学系PLや基板P表面に塗布されているフォトレジストに対して安定なもの(例えばセダー油)を用いることも可能である。この場合も表面処理は用いる液体LQの極性に応じて行われる。
【0114】
なお、上記各実施形態の基板Pとしては、半導体デバイス製造用の半導体ウエハのみならず、ディスプレイデバイス用のガラス基板や、薄膜磁気ヘッド用のセラミックウエハ、あるいは露光装置で用いられるマスクまたはレチクルの原版(合成石英、シリコンウエハ)等が適用される。
【0115】
露光装置EXとしては、マスクMと基板Pとを同期移動してマスクMのパターンを走査露光するステップ・アンド・スキャン方式の走査型露光装置(スキャニングステッパ)の他に、マスクMと基板Pとを静止した状態でマスクMのパターンを一括露光し、基板Pを順次ステップ移動させるステップ・アンド・リピート方式の投影露光装置(ステッパ)にも適用することができる。
【0116】
また、露光装置EXとしては、第1パターンと基板Pとをほぼ静止した状態で第1パターンの縮小像を投影光学系(例えば1/8縮小倍率で反射素子を含まない屈折型投影光学系)を用いて基板P上に一括露光する方式の露光装置にも適用できる。この場合、更にその後に、第2パターンと基板Pとをほぼ静止した状態で第2パターンの縮小像をその投影光学系を用いて、第1パターンと部分的に重ねて基板P上に一括露光するスティッチ方式の一括露光装置にも適用できる。また、スティッチ方式の露光装置としては、基板P上で少なくとも2つのパターンを部分的に重ねて転写し、基板Pを順次移動させるステップ・アンド・スティッチ方式の露光装置にも適用できる。
【0117】
また、本発明は、特開平10−163099号公報、特開平10−214783号公報、特表2000−505958号公報などに開示されているツインステージ型の露光装置にも適用できる。
【0118】
また、上述の実施形態においては、投影光学系PLと基板Pとの間に局所的に液体を満たす露光装置を採用しているが、本発明は、特開平6−124873号公報に開示されているような露光対象の基板を保持したステージを液槽の中で移動させる液浸露光装置にも適用可能である。
【0119】
露光装置EXの種類としては、基板Pに半導体素子パターンを露光する半導体素子製造用の露光装置に限られず、液晶表示素子製造用又はディスプレイ製造用の露光装置や、薄膜磁気ヘッド、撮像素子(CCD)あるいはレチクル又はマスクなどを製造するための露光装置などにも広く適用できる。
【0120】
基板ステージPSTやマスクステージMSTにリニアモータ(USP5,623,853またはUSP5,528,118参照)を用いる場合は、エアベアリングを用いたエア浮上型およびローレンツ力またはリアクタンス力を用いた磁気浮上型のどちらを用いてもよい。また、各ステージPST、MSTは、ガイドに沿って移動するタイプでもよく、ガイドを設けないガイドレスタイプであってもよい。
【0121】
各ステージPST、MSTの駆動機構としては、二次元に磁石を配置した磁石ユニットと、二次元にコイルを配置した電機子ユニットとを対向させ電磁力により各ステージPST、MSTを駆動する平面モータを用いてもよい。この場合、磁石ユニットと電機子ユニットとのいずれか一方をステージPST、MSTに接続し、磁石ユニットと電機子ユニットとの他方をステージPST、MSTの移動面側に設ければよい。
【0122】
基板ステージPSTの移動により発生する反力は、投影光学系PLに伝わらないように、特開平8−166475号公報(USP5,528,118)に記載されているように、フレーム部材を用いて機械的に床(大地)に逃がしてもよい。
【0123】
マスクステージMSTの移動により発生する反力は、投影光学系PLに伝わらないように、特開平8−330224号公報(US S/N 08/416,558)に記載されているように、フレーム部材を用いて機械的に床(大地)に逃がしてもよい。
【0124】
以上のように、本願実施形態の露光装置EXは、本願特許請求の範囲に挙げられた各構成要素を含む各種サブシステムを、所定の機械的精度、電気的精度、光学的精度を保つように、組み立てることで製造される。これら各種精度を確保するために、この組み立ての前後には、各種光学系については光学的精度を達成するための調整、各種機械系については機械的精度を達成するための調整、各種電気系については電気的精度を達成するための調整が行われる。各種サブシステムから露光装置への組み立て工程は、各種サブシステム相互の、機械的接続、電気回路の配線接続、気圧回路の配管接続等が含まれる。この各種サブシステムから露光装置への組み立て工程の前に、各サブシステム個々の組み立て工程があることはいうまでもない。各種サブシステムの露光装置への組み立て工程が終了したら、総合調整が行われ、露光装置全体としての各種精度が確保される。なお、露光装置の製造は温度およびクリーン度等が管理されたクリーンルームで行うことが望ましい。
【0125】
半導体デバイス等のマイクロデバイスは、図13に示すように、マイクロデバイスの機能・性能設計を行うステップ201、この設計ステップに基づいたマスク(レチクル)を製作するステップ202、デバイスの基材である基板を製造するステップ203、前述した実施形態の露光装置EXによりマスクのパターンを基板に露光する基板処理ステップ204、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージ工程を含む)205、検査ステップ206等を経て製造される。
【符号の説明】
【0126】
10…液体供給機構、20…第1液体回収機構、31…空間、33…周壁部、33A…上面、35B…底部、35C…接続部、33N…凹部、34…支持部、41…吸引口、43…第1真空系、56…昇降部材(ギャップ調整機構)、60…第2液体回収機構、61(61A〜61C)…回収口、63…第2真空系、80…計測装置、90…検出装置、EL…露光光、EX…露光装置、KR…傾斜領域、LQ…液体、NT…ノッチ部(切欠部)、P…基板、Pa…基板の表面、Pb…基板の裏面、Pc…基板の側面、PH…基板ホルダ、PL…投影光学系

【特許請求の範囲】
【請求項1】
投影光学系と液体とを介して基板の表面に露光光を照射して前記基板を露光する露光装置において、
前記基板の裏面を保持する基板ホルダと、
前記基板の裏面と前記基板ホルダとのそれぞれに付着した液体を略同時に回収する回収機構とを備えたことを特徴とする露光装置。
【請求項2】
前記回収機構は、前記基板の側面に付着した液体も略同時に回収可能であることを特徴とする請求項1記載の露光装置。
【請求項3】
前記基板ホルダは、前記基板の裏面と対向する上面を有する周壁部と、前記周壁部の内側に配置された支持部とを備え、前記周壁部に囲まれた空間を負圧にすることによって前記基板を前記支持部で支持し、
前記回収機構は、前記周壁部の内側に設けられた回収口と、前記回収口に接続する真空系とを有し、前記周壁部の上面と前記基板の裏面とが第1距離だけ離れた状態で、前記液体を前記回収口より吸引回収することを特徴とする請求項1又は2記載の露光装置。
【請求項4】
投影光学系と液体とを介して基板の表面に露光光を照射して前記基板を露光する露光装置において、
周壁部と該周壁部の内側に配置された支持部とを有し、前記周壁部に囲まれた空間を負圧にすることによって前記基板を前記支持部で支持する基板ホルダと、
前記周壁部の内側に設けられた回収口と該回収口に接続する真空系とを有する回収機構と備え、
前記周壁部の上面と前記基板の裏面とが第1距離だけ離れた状態で、前記基板の外周から浸入した液体を吸引回収することを特徴とする露光装置。
【請求項5】
前記周壁部に囲まれた空間を負圧にすることによって前記基板を前記支持部で支持しているときの前記周壁部の上面と前記基板の裏面との距離を第2距離とし、
前記第2距離は前記第1距離よりも短いことを特徴とする請求項3又は4記載の露光装置。
【請求項6】
前記第1距離は、前記液体の物性、前記周壁部の上面及び前記基板の裏面それぞれの前記液体との親和性、及び前記真空系の吸引力に応じて設定されることを特徴とする請求項3〜5のいずれか一項記載の露光装置。
【請求項7】
前記周壁部の上面は撥液性であることを特徴とする請求項3〜6のいずれか一項記載の露光装置。
【請求項8】
前記周壁部の上面と前記基板の裏面との距離を調整するギャップ調整機構を有することを特徴とする請求項3〜7のいずれか一項記載の露光装置。
【請求項9】
前記ギャップ調整機構は、前記基板の裏面を保持し、前記基板ホルダに対して前記基板を昇降する昇降部材を含むことを特徴とする請求項8記載の露光装置。
【請求項10】
前記周壁部の上面と前記基板の裏面との距離を計測する計測装置を備え、
前記ギャップ調整機構は、前記計測装置の計測結果に基づいて、前記距離を調整することを特徴とする請求項8又は9記載の露光装置。
【請求項11】
前記回収口は、前記周壁部の内側近傍に設けられていることを特徴とする請求項3〜10のいずれか一項記載の露光装置。
【請求項12】
前記基板は切欠部を有し、前記周壁部の前記切欠部の近傍には該切欠部に応じた凹部が設けられ、前記回収口は、前記凹部近傍に設けられていることを特徴とする請求項3〜11のいずれか一項記載の露光装置。
【請求項13】
前記基板ホルダは、前記周壁部の内側に、前記支持部で支持された前記基板の裏面と所定距離だけ離れて対向する底部を有し、
前記回収口は前記底部の所定位置に設けられており、
前記底部は前記回収口に向かって下がるように傾斜した傾斜領域を有することを特徴とする請求項3〜12のいずれか一項記載の露光装置。
【請求項14】
前記基板ホルダは、前記周壁部の内側に、前記支持部で支持された前記基板の裏面と所定距離だけ離れて対向する底部を有し、
前記周壁部と前記底部との接続部は断面視において円弧状に形成されていることを特徴とする請求項3〜13のいずれか一項記載の露光装置。
【請求項15】
前記回収機構の前記回収口と、前記基板を前記支持部で支持するときに前記空間を負圧にするための吸引口とが兼用されていることを特徴とする請求項3〜14のいずれか一項記載の露光装置。
【請求項16】
前記基板ホルダは、前記周壁部の内側に設けられ、真空系に接続された吸引口を有し、
前記吸引口に接続された真空系と前記回収口に接続された真空系とは互いに独立していることを特徴とする請求項3〜15のいずれか一項記載の露光装置。
【請求項17】
前記基板の露光終了後に、前記回収機構が液体を回収することを特徴とする請求項1〜16のいずれか一項記載の露光装置。
【請求項18】
前記基板の裏面及び前記基板ホルダのうち少なくともいずれか一方に液体が付着したか否かを検出する検出装置と、
前記検出装置の検出結果に基づいて、前記回収機構の動作を制御する制御装置とを備えたことを特徴とする請求項1〜16のいずれか一項記載の露光装置。
【請求項19】
前記回収機構は、前記基板又は前記基板ホルダに付着した異物も回収可能であることを特徴とする請求項1〜18のいずれか一項記載の露光装置。
【請求項20】
前記回収機構は、回収口と、真空系と、該回収口と該真空系とを接続する流路とを有し、
前記流路の内壁面に、撥液性材料及び断熱性材料のうちの少なくとも一方を設けたことを特徴とする請求項1又は2に記載の露光装置。
【請求項21】
前記回収機構は、前記回収口と前記真空系とを接続する流路を有し、
前記流路の内壁面に、撥液性材料及び断熱性材料のうちの少なくとも一方を設けたことを特徴とする請求項3又は4に記載の露光装置。
【請求項22】
前記吸引口と、該吸引口に接続された真空系とを接続する流路の内壁面に、撥液性材料及び断熱性材料のうちの少なくとも一方を設けたことを特徴とする請求項15に記載の露光装置。
【請求項23】
投影光学系と液体とを介して、基板ホルダ上に保持された基板の表面に露光光を照射して前記基板を露光する露光装置において、
回収口と、真空系と、該回収口と該真空系とを接続する流路とを有し、且つ前記液体を、該回収口を介して回収する回収機構を有し、
前記流路の内壁面に断熱性材料を設けたことを特徴とする露光装置。
【請求項24】
前記流路の少なくとも一部は、前記基板ホルダ内部に配置されていることを特徴とする請求項23に記載の露光装置。
【請求項25】
前記流路の内壁には前記断熱性材料による断熱層が設けられ、且つ該断熱層上に前記撥液性材料が設けられていることを特徴とする請求項24に記載の露光装置。
【請求項26】
前記断熱性材料は、前記基板ホルダを形成する材料よりも熱伝導率が低い材料を含むことを特徴とする請求項20〜25のうちのいずれか一項に記載の露光装置。
【請求項27】
投影光学系と液体とを介して、基板ホルダ上に保持された基板の表面に露光光を照射して前記基板を露光する露光装置において、
回収口と、真空系と、該回収口と該真空系とを接続する流路とを有し、且つ前記液体を、該回収口を介して回収する回収機構を有し、
前記流路の少なくとも一部は、前記基板ホルダ内部に配置されており、且つ該流路の内壁面に撥液性材料を設けたことを特徴とする露光装置。
【請求項28】
投影光学系と液体とを介して、基板ホルダ上に保持された基板の表面に露光光を照射して前記基板を露光する露光装置において、
回収口と、真空系と、該回収口と該真空系とを接続する流路とを有し、且つ前記液体を、該回収口を介して回収する回収機構を有し、
前記流路の内壁面に、撥液性材料及び断熱性材料を設けたことを特徴とする露光装置。
【請求項29】
前記流路の少なくとも一部は、前記基板ホルダ内部に配置されていることを特徴とする請求項28に記載の露光装置。
【請求項30】
前記基板ホルダは、前記基板を該基板ホルダ上に吸着保持するための真空系と接続された吸引口を有し、
前記吸引口と前記吸着保持用のための真空系とを接続する流路の内壁面に、撥液性材料及び断熱性材料のうちの少なくとも一方を設けたことを特徴とする請求項23〜29のうちのいずれか一項に記載の露光装置。
【請求項31】
前記撥液性材料は、フッ素系樹脂材料、又はアクリル系樹脂材料を含むことを特徴とする請求項20〜22、25、27〜30のうちのいずれか一項に記載の露光装置。
【請求項32】
投影光学系と液体とを介して、基板ホルダ上に保持された基板の表面に露光光を照射して前記基板を露光する露光装置において、
回収口と、真空系と、該回収口と該真空系とを接続する流路とを有し、且つ前記液体を該回収口を介して回収する回収機構を有し、
前記流路の少なくとも一部は、前記基板ホルダ内部に配置されており、且つ該流路の内壁面にはフッ素系樹脂材料が設けられていることを特徴とする露光装置。
【請求項33】
前記回収機構は、前記回収口を介して、前記基板の裏面及び側面のうちの少なくとも一方に付着した液体を回収することを特徴とする請求項23〜32のうちのいずれか一項に記載の露光装置。
【請求項34】
前記基板ホルダは、前記基板の裏面と対向する上面を有する周壁部と、前記周壁部の内側に配置された支持部とを備え、前記周壁部に囲まれた空間を負圧にすることによって前記基板を前記支持部で支持するものであることを特徴とする請求項23〜33のうちのいずれか一項に記載の露光装置。
【請求項35】
請求項1〜請求項34のいずれか一項記載の露光装置を用いることを特徴とするデバイス製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5A】
image rotate

【図5B】
image rotate

【図5C】
image rotate

【図5D】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate


【公開番号】特開2011−258965(P2011−258965A)
【公開日】平成23年12月22日(2011.12.22)
【国際特許分類】
【出願番号】特願2011−160786(P2011−160786)
【出願日】平成23年7月22日(2011.7.22)
【分割の表示】特願2006−514839(P2006−514839)の分割
【原出願日】平成17年6月21日(2005.6.21)
【出願人】(000004112)株式会社ニコン (12,601)
【Fターム(参考)】