説明

Fターム[2G052EB11]の内容

Fターム[2G052EB11]に分類される特許

421 - 440 / 448


【解決手段】
坩堝・試料取り扱いシステム及び方法は、プリパッケージされ複数の坩堝(30)を保持する坩堝保持カートリッジ(50)を提供する。端部キャップを取り外して出口開口を露出させた後、カートリッジ(50)は、そこから個々の坩堝(30)をプラットフォーム(92)上に排出する坩堝供給アセンブリに装填され、ピック・プレースアーム(200)アセンブリが燃焼炉(40)内に坩堝(30)を置く。個々の試料は積み重ねられた試料保持カローセル(340〜345)から天秤(25)に落下させられ、計量後、天秤から空気的に吸引され、燃焼のために炉(40)と坩堝(30)に導入される。
(もっと読む)


【課題】 被測定物の形状が不揃い、かつ微量でも、測定精度良くかつ測定時間を短くすることを可能とする。
【解決手段】 物質測定装置は、被測定物を高温に熱し柔らかくする溶融ステーション3と、被測定物をプレスするプレスステーション4と、被測定物に含まれる物質を蛍光X線分析方法によって測定する測定ステーション5と、被測定物を前記各装置間で移動させる回転テーブル1とを備えている。 (もっと読む)


【課題】 懸濁物質の結合状態や集合状態を観察する方法がなかったため、懸濁物質の結合状態や集合状態が水溶液に対してどのような影響を与えているのかを判断する事が難しく、水溶液を的確に浄化処理できなかった。
【解決手段】 観測用プレートに水溶液を滴下させ、それを乾燥させて肉眼で水分が視認できなくなったら乾燥を止め、観測用プレート上に析出顕在化した懸濁物質の結合状態、集合状態を光学顕微鏡により観察するようにした。 (もっと読む)


【課題】 マイクロ波加熱時の有害物質脱着機構の解明に貢献する分析装置を提供する。
【解決手段】 CaO・6Al固化体からなる試料ホルダー10と、試料ホルダー10にマイクロ波を照射するマイクロ波照射装置20と、試料ホルダー10に配置された試料の温度を測定する温度測定機器30と、試料ホルダー10に配置された試料から発生したガスの成分を分析する分析装置50とを有する分析装置である。 (もっと読む)


【課題】 ダイオキシン類の疎水性溶媒溶液から、バイオアッセイ法による分析に適した信頼性の高い親水性のダイオキシン類分析用試料を容易にかつ短時間で調製する。
【解決手段】 ダイオキシン類分析用試料の調製方法は、シリカゲル系充填材22aを充填した後段カラム22へダイオキシン類の疎水性溶媒溶液を供給する工程と、当該疎水性溶媒溶液が供給された後段カラム22に対して第一溶媒供給部60から疎水性溶媒を供給して通過させる工程と、アルミナ系充填材30aを充填した溶媒置換用カラム30へ後段カラム22を通過後の疎水性溶媒を供給して通過させる工程と、疎水性溶媒が通過後の溶媒置換用カラム30に対し、疎水性溶媒の通過方向とは逆方向にダイオキシン類を溶解可能な親水性溶媒を第二溶媒供給部70から供給して通過させる工程と、溶媒置換用カラム30を通過した親水性溶媒を確保する工程とを含んでいる。 (もっと読む)


【課題】微小流路型チップを用いて、リンパ細胞のような微小な物質を、微小容量の試料溶液として容易に分離できる方法を提供する。
【解決手段】
水に混和若しくは溶解する試料または親水性の試料(対象試料)を含有する独立の分画を連続して形成する、微小容量の試料溶液を形成する方法。対象試料を含有する水性溶液を経路1に注入し、油類を経路2に注入し、経路1と経路2とは合流して経路3を形成し、経路1と経路2との合流部において、水性溶液と油類とは、交互に、独立の分画を形成し、経路3中に前記対象試料が含有される水性溶液の独立分画が得られる前記方法。 (もっと読む)


【課題】 計測検出器をダクトへ取り付ける管台部分のガス溜まり及び管台部分からの放熱を生じさせないようにすると共に、計測検出器の排ガスと接触する部分にセラミック樹脂による保護層を形成し、計測検出器の腐食を防止して計測検出器の延命を図れるようにする。
【解決手段】 排ガスが流れるダクト1の壁面に設けた管台2に挿通状態で取り付けられる排ガスの計測検出器3に於いて、計測検出器3を取り付ける管台2の長さLを極力短くし、管台2部分にガス溜まりを生じさせないようにすると共に、管台2部分からの放熱を生じさせないようにする。又、計測検出器3の排ガスと接触する表面にセラミック樹脂による保護層7を形成する。 (もっと読む)


ミクロトームにより切片化可能な支持体上に収容された組織標本(210)をハンドリングし包埋する自動機械(10)を提供する。この機械(10)は、組織包埋操作の前に、ミクロトームにより切片化可能な複数の支持体(150a)を保持するように構成された入力部材(100)を含む。出力部材(32a〜32d)は、組織包埋操作の後で、ミクロトームにより切片化可能な複数の支持体(150a)を保持するように構成される。冷却ユニット(80)は、組織包埋操作の中に、ミクロトームにより切片化可能な支持体(150a)の少なくとも1つを保持するように構成される。移動用の電動キャリアアセンブリ(40)が取り付けられ、ミクロトームにより切片化可能な支持体(150a)の少なくとも1つを保持するように構成される。キャリアアセンブリ(40)は、支持体(150a)を、入力部材(100)から冷却ユニット(80)に、最後に出力部材(32a〜32d)に移動させる。分注装置(212)は、包埋操作中に、ミクロトームにより切片化可能な支持体(150a)と、ミクロトームにより切片化可能な支持体(150a)によって担持された少なくとも1つの組織標本(210)の上に包埋材料(205)を分注する。
(もっと読む)


【課題】 液体吐出ユニットを用いてプローブ担体を製造する際に、プローブ担体基板上に配置された各プローブ材料に、異なったプローブ材料が混ざることのない、配置された各プローブ材料の純度が高い良好なプローブ担体の製造方法および、配置された各プローブ材料の純度が高い良好なプローブ担体の提供を可能にする、プローブ担体の製造装置を提供すること。
【解決手段】 プローブ溶液の吐出を行う前記液体吐出ユニットは異なった液体を吐出するm行n列に配置された液体吐出ユニットのノズルを備え、該液体吐出ユニットの複数のノズルが配置されたノズル面をワイピングする、m個またはn個のワイパーを備え、該ワイパーの可動範囲を、異なった液体を吐出する液体吐出ユニットのノズル間隔以下に設定する事を特徴とするプローブ担体の製造装置。 (もっと読む)


【課題】 蛍光X線分析を目的として、高周波誘導加熱によりガラスビードを作製する際に、高温状態にある白金るつぼの温度を非接触で正確に測定することができる。
【解決手段】 白金るつぼ5と、白金るつぼ5を加熱する高周波誘導加熱コイル4を備えた高周波誘導加熱装置と、白金るつぼ5の近くにこれと接触させずに配置される、高温安定性、熱伝導性および耐食性に優れた板状セラミック体9と、セラミック体9の温度を測定する放射温度計8と、放射温度計8による温度出力値に基づいて、前記高周波誘導加熱装置の設定電力を制御する制御手段とを備えている。 (もっと読む)


【課題】 試料の種類および試料の表面状態によらず高い感度を得ることを可能にする。
【解決手段】 半導体基板2を酸蒸気に暴露する工程と、酸蒸気に暴露された半導体基板の表面の不純物を酸溶液で走査回収する工程と、走査回収した酸溶液6を表面が鏡面状態の基板上で濃縮乾燥させ濃縮乾燥物8に変える工程と、濃縮乾燥物を酸を用いて粒子状の濃縮物8aに変える工程と、粒子状の濃縮物を全反射蛍光X線分析装置40にて分析する工程とを備えている。 (もっと読む)


【課題】
【解決手段】本発明は、組織標本(新鮮または固定組織切片、ホモジナイズした組織、及び培養細胞を含むがこれに制限されない)の形態及び高原性を保持すると同時に、前記組織から多量の生体分子(タンパク質、DNA、及び/またはRNAを含むがこれに制限されない)を抽出するための非破壊高分子抽出(NDME)装置を提供するものである。前記装置は基部、スライドカバー、及び温度制御装置を含む。前記組織標本は、基部上に置かれる。前記スライドカバーは、抽出用液を添加する空間を形成するように基部へ備えられる。前記装置は、任意でスライドカバーの上にチェンバーカバーを有する。前記チェンバーカバー及びスライドカバーは反応室を形成し、該反応室には組織の湿度を維持するために蒸気が送り込まれる。抽出溶液は界面活性剤を含む。また、同様に本発明は抽出方法を提供する。 (もっと読む)


本発明は、生物学的粒子を収集するための方法、チップ、装置、及びシステムに関係している。本方法は、帯電した電極に対する生物学的粒子の静電吸着を利用しており、好ましくは、気体サンプルに関して機能する。この方法、チップ、装置、及びシステムは、例えば、空気サンプルからの細菌胞子やウイルスなどの病原粒子の収集に有用であり、この結果、収集された生物学的粒子を分析可能である。
(もっと読む)


過剰サンプリングや気泡の混入を避けながら確実かつ簡便に多数種類の試料を代わる代わる測定ユニットへ導入することができるサンプリング装置。このサンプリング装置は、ペリスタリックポンプ(3)を用いて密度計(1)へ液体試料を導入する。判定手段(62)は、その試料が導入されたか否かを判定し、コントローラ(6)は、判定結果に基づいてペリスタリックポンプを制御する。 (もっと読む)


最大約10000psi(〜700bar)の圧力で流体試料を濃縮および分離するための濃縮器および分離器を有する流体アナライザ。濃縮器および分離器は、ソリッドステート薄膜ヒータ−吸収体と、固体基板によって支持されるチャンネルとから構成され得る。濃縮器は、試料流体の構成成分を吸収および脱着するための複数の加熱される相互作用的要素を有することができる。相互作用的要素は、ヒータによって時間段階的シーケンス方式で加熱されることができる。分離器は、化合物によって試料流体を分離することができる。熱伝導率検出器、流量センサ、および導電率検出器が、チャンネルに隣接して存在することができる。濃縮器、分離器、ヒータ、およびセンサからなるこのシステムは、試料流体組成についての情報を提供することができる。試料流体がチャンネル内を通り抜けるように、ポンプがチャンネルに接続されることができる。
(もっと読む)


熱伝導体表面に温度勾配を形成することにより、その表面に配置された複数の試料を同時に異なる温度に調節することができ、且つ、熱伝導体表面の温度プロファイルを所望に応じて調整可能な温度調節装置を提供する。本発明の温度調節装置は、加熱冷却素子と、加熱冷却素子と熱的に接触させて配置された熱伝導体とを含み、この熱伝導体の温度に応じて、これと熱的に接触させて配置された試料の温度を調節するものである。この装置において、加熱冷却素子は、2個以上設けられ、これらが互いに異なる温度に設定されることにより、熱伝導体の前記試料と熱的に接触する面に温度勾配が形成される。熱伝導体は、比重をd[kg/m]、比熱をc[J/(kg・K)]、熱伝導率をK[W/(m・K)]としたとき、dc/Kで表される値が、互いに異なる2種以上の材料で構成されている。 (もっと読む)


【課題】可動部品が無く、設計が単純であり、メンテナンスをあまり必要とせず、安価で、信頼性があり、及び通常は耐熱性及び耐腐食性があるポンプを提供する。
【解決手段】ガスサンプリング又はガス分析システムのためのポンプは、ガス不透過性の壁を有するポンプ本体と、本体内にある電気コイルとを含む。ポンプは、ガスセンサ及びサンプリング又は分析されるガスを収容するガス容積と直列に接続される。コイルに印加される交流又は直流のいずれかの振幅を変化させることによって、コイル温度すなわちポンプ内部のガス温度を変化させることができ、ポンプ内のガス温度が低下する時にポンプに「吸い込み」を起こさせ、ポンプ内のガス温度が上昇する時にポンプに「吐出」を起こさせ、これによってサンプリングのためにガス容積からのガスがセンサ内に周期的に引き込まれ、及びセンサから吐出されるのを可能にする。 (もっと読む)


【課題】
本発明は、後の分析装置、例えばガスクロマトグラフの中への導入を目的とした、液体、固体又はガス状サンプルからの揮発性成分の抽出及び濃縮のために特に好適な方法に関する。
【解決手段】
サンプルは、対象分析物の抽出のため、抽出剤のパッキンを通してフラッシングされる。好適な装置は、中空ニードルを有するシリンジを備える。チャンバーがニードルとシリンジとの間に設けられ、その中に抽出剤が配置される。 (もっと読む)


本願発明は、マイクロ波分解法に対応し、反応過程中の試料が外から目視することができ、変形することなく、あらゆるマイクロ波発生装置にも使用できる分解反応容器を提供することを目的とする。
その解決手段として、複数のスリットが穿設された外筒と該外筒の上部に着脱可能に螺合される外蓋とからなる金属製の外容器と、有底の半透明の内筒と該内筒の上部に着座する内蓋とからなる内容器とから構成され、前記内筒の外周面は前記外筒の内周面と密着状態で前記外容器に収納され、前記内筒と前記内蓋が押圧手段により押圧されて前記内容器の内部が密閉状態を保持する構造とした。 (もっと読む)


燃焼装置のサイズまたは滞留時間の何れをも増大させることなく酸化効率を向上させる燃焼装置(200)を開示する。本装置は、その長さに沿って静的混合ゾーン(208)を有する燃焼ゾーン(204)を含む。
(もっと読む)


421 - 440 / 448