説明

Fターム[4K029EA06]の内容

物理蒸着 (93,067) | 測定、制御 (3,915) | プラズマ (225)

Fターム[4K029EA06]に分類される特許

41 - 60 / 225


【課題】基板に良好に薄膜を成膜する。
【解決手段】第1の電流検出部15及び第2の電流検出部16のいずれか一方の電流検出部により先に検出された正常放電タイミングをトリガとして計時を開始する。他方の電流検出部により正常放電タイミングが検出されたカソードに対しては、一方の電流検出部により検出された正常放電タイミングと、他方の電流検出部により検出された正常放電タイミングとの時間差を求める。そして、所定時間に時間差を加えた時間を計時した時点で放電が終了するように印加電圧を設定する。 (もっと読む)


【課題】周方向全体に渡ってカスプ磁場によるプラズマの閉じこめ効果を高めることでプラズマ処理の均一性を高める。
【解決手段】減圧された処理室内に処理ガスのプラズマを生成することにより基板に対して所定の処理を施すプラズマ処理装置であって,処理室の周囲に沿って上下に離間して設けられた2つのマグネットリング210,220を有し,各マグネットリングは内周面にその周方向に沿って2個ずつ交互に極性が逆になる順序で同じように配列された多数のセグメント212,222を有する磁場形成部200を備え,磁場形成部は,下部マグネットリング220を上部マグネットリング210に対して周方向にずらして配置することで上下の磁極配置をずらしたものである。 (もっと読む)


【課題】 Fe及びR,O(Rは、Ho,Er,Tm,Yb,Lu,Yのうち少なくとも1つ以上である)を含む薄膜原料供給源と基板との間に、プラズマを発生させ、基板上にRFe24薄膜を形成する気相成膜方法であって、前記プラズマが、5435cpsより少ないO活性種の発光強度を有し、Fe活性種の発光強度に対するO活性種の発光強度が、O活性種の発光強度/Fe活性種の発光強度<2
である気相成膜方法を提供する。
【解決手段】本発明によれば,RFe24薄膜製造方法が提供される。 (もっと読む)


【課題】 高価な測定装置を用いることなく、小型で、簡便な方法によりプラズマの電子密度及び電子温度の測定が可能な測定プローブ及び測定装置を実現する。
【解決手段】 測定プローブ10は、長さが異なる複数のスリット13、14を備え、絶縁膜15、16を設けることにより各スリットに対応して1つの測定プロープで複数の共振周波数を持つように構成されている。これにより、プラズマの電子密度ne及び電子温度Teの共振周波数依存性から当該プラズマの電子密度ne及び電子温度Teを算出することができる。 (もっと読む)


【課題】異常放電の発生回数の検出のみならず、異常放電の状態を把握することが可能な放電状態検知装置および放電状態検知方法を得る。
【解決手段】高周波電力で被処理体の表面に薄膜を形成する基板処理装置60より発生した放電を検出し、放電の状態を検出する放電状態検知装置2であって、放電によって発生する基板処理装置60からの反射波電力を検出し電圧として出力する反射波検波器12と、反射波検波器12からの電圧を積分する反射波積分器14と、瞬間的な放電が発生したか否かを判定する第1の設定値21と反射波検波器12からの電圧とを比較した結果と、継続的な放電が発生したか否かを判定する第2の設定値22と積分器で積分された電圧とを比較した結果と、に応じて、継続的な放電の数と瞬間的な放電の数とをカウントする放電状態検知部70と、を備えた。 (もっと読む)


【課題】減圧下であっても広範囲の圧力で放電し、効率良く一様に処理できる板状陰極表面処理装置を提供する。
【解決手段】真空容器10の内部に設けられた陰極機構30、陰極機構30内の板状陰極36、板状陰極36の放電にさらされる面の反対側に磁気機構40を配し、磁気機構40により板状陰極36の放電にさらされる面の一端から出て他端に入る磁力線411を発生させ、陰極表面上にほぼこれと平行な成分をもつ磁界を設定する手段、板状陰極36に電力を供給して表面にある磁界411と少くとも直交する成分を有する電界420を発生する手段、放電空間の圧力をガス導入系と排気系により調整することの出来る板状陰極放電を利用する表面処理装置であって、磁気機構40が磁力線の遠回り手段を備える。 (もっと読む)


【課題】極性が異なる複数の磁石を有する磁石機構の個々の高さを容易に調整可能とし、薄膜形成における膜厚不均一性を改善することが可能なプラズマ処理装置を提供する。
【解決手段】真空排気可能な処理室100、処理室内に配置された第1の電極(高周波電極)10を具備する。また、第1の電極10上に配置され、隣り合う磁石間で極性を逆にして配置された複数の磁石14、第1の電極10と対向して設けられた第2の電極(基板載置電極)20を具備する。そして、それぞれ磁石14と第1の電極10との距離を調整する距離調整機構を設け、個別に複数の磁石14の第1の電極10に対する距離を調整可能とする。 (もっと読む)


【課題】材料の蒸発速度とプラズマ密度を自由に設定し、成膜速度に対するガスバリア性を自由に設定出来、酸素バリア性および水蒸気バリア性に優れたガスバリア性積層体を生産する成膜装置を提供する
【解決手段】フィルム基材をロール・ツー・ロールで搬送する搬送手段と、フィルム基材へ蒸着材料を蒸着させる蒸着手段とを具備する成膜装置であって、蒸着手段が、蒸着材料を蒸発させる手段と、蒸発した蒸着材料をプラズマにより活性化させる手段とを有する。 (もっと読む)


【課題】 基板表面で均一・高濃度のイオンフラックスを形成し、またターゲットへの再堆積を生じる事のない、スパッタ成膜用の容量結合型プラズマ処理装置を提供する。
【解決手段】 容量結合型の機構を備えた上部電極1、上部電極に取り付けられた非磁性物質で作られたターゲット部材2、ターゲット部材の上部表面の上に配列された複数のマグネットで、そのうち2つの間に等しい距離を持ちかつ交互に替わる磁極極性持つ複数のマグネット6、上部電極に平行に配置された下部電極3、下部電極の上に搭載されたウェハ17、10〜300MHzの範囲の周波数で動作し、整合回路15を介して上部電極に接続された高周波電源16、を備えるプラズマ処理装置。 (もっと読む)


【課題】パーティクルの数が極めて少ない良質の薄膜を形成できる成膜装置及び成膜方法を提供する。
【解決手段】プラズマ発生部10においてアーク放電にともなって発生したプラズマは、プラズマ分離部40において斜め磁場により進行方向が曲げられ、パーティクルと分離される。そして、プラズマ移送部60を介して成膜チャンバ30に入り、基板31上に膜を形成する。プラズマ移送部60は、プラズマ分離部側接続部62と、成膜チャンバ側接続部67と、それらの間のパーティクル分離部63とに分離されている。プラズマ分離部側接続部62には−5V〜−15Vの電圧が印加され、パーティクル分離部43には接地電圧又は正の電圧が印加される。プラズマ中に含まれる正の電荷を有するパーティクルは、電気的引力によりプラズマから分離され、筺体内側のフィン642等に捕捉される。 (もっと読む)


【課題】プラズマ電流が真空容器内のグランド電位のものに流れる現象を抑制し、安定して成膜を行うことのできる成膜装置を提供する。
【解決手段】プラズマガンのプラズマ室1は、成膜室10に連結され、連結部側から順に、陽極4、中間電極3および陰極2が配置されている。陽極4と成膜室10との間には、グランド電位のグリッド5が備えられている。これにより、プラズマ電流の一部は、グランド電位のグリッド5に流れるため、成膜室内のグランド電位の物体にプラズマ電流が流れるのを防止することができる。 (もっと読む)


【課題】
毒性のない透明導電膜の低抵抗率化と大面積化を可能とし、製造過程に於ける基板選択性を高め低コスト化と同時に省エネルギー化を図る。
【解決手段】
透明基板1上の酸化亜鉛試料2に電位を与えておき、前面に酸素プラズマOPを形成し、プラズマ空間電位を直流電源9、交流電源10又はパルス電源11で制御する。酸素プラズマOPの電子温度分布を変化させ、酸化亜鉛試料2と酸素プラズマOPとの間のシース電圧を制御し、亜鉛蒸気ZVを亜鉛Znショット8を加熱して生成させ、非晶質の透明基板1付近の各種粒子の量及び運動量等を質量分析装置14とプラズマ発光分析装置13でモニタリングし、各量をオーブンの三次元移動、酸素ガス質量流量、プラズマ生成電源電力等で制御し、得られるZnO透明導電膜の元素成分を、亜鉛と酸素のいずれか低い存在量に対して、亜鉛、酸素及び水素を除く不純物元素の比が0.4%以下となるように制御する。 (もっと読む)


【課題】プラズマ光の強度の実際の値と測定値とのずれを較正することができ、またプラズマの発生領域に対し、複数の位置のプラズマ光の強度を精度よく測定できるプラズマ測定装置を提供する。
【解決手段】前記プラズマ測定装置は、プラズマが発光する光の強度を測定する受光手段と、前記受光手段で測定された前記プラズマが発光する光の強度を較正するための較正用光源と、一端側がプラズマ発光領域に向けて並べて配置され、他端側が前記受光手段に接続された測定用の光ファイバーと、他端側が前記較正用光源に接続された較正用の光ファイバーとを備えた光ファイバーユニットと、を有し、前記プラズマが発光する光は、前記測定用の光ファイバーを介し前記受光手段に入射し、前記較正用光源が発光する光は、前記較正用の光ファイバー及び前記測定用の光ファイバーを介し前記受光手段に入射することを特徴とする。 (もっと読む)


【課題】 高アスペクト比の微細ホールに対して高いボトムカバレッジ率で、かつ、膜厚分布の面内均一性よく成膜できる高い生産性の成膜方法を提供する。
【解決手段】真空チャンバ1内で基板Wを保持し、チャンバ内が、10〜30Paの高圧力領域に保持されるようにスパッタガスを導入し、基板に対向近接配置されたターゲット2に直流電圧を印加すると共に、基板に高周波バイアス電圧を印加し、ターゲット側の直流プラズマと基板側の高周波バイアスプラズマとが重畳されたプラズマをターゲット及び基板間に発生させてターゲットをスパッタして成膜する。ターゲットの下方に磁場を局所的に形成する磁石ユニット6をターゲット中央から径方向外方にオフセット配置し、成膜中、少なくともターゲットの中央部を除くその外周が侵食されるように磁石ユニットを回転移動する。 (もっと読む)


【課題】プラズマに混入する帯電ドロップレット及び中性ドロップレットをより効率的に除去でき、高純度プラズマによる成膜等の表面処理精度の向上を図る。
【解決手段】プラズマ発生部Aとプラズマ輸送管Bとプラズマ処理部Cを含むプラズマ処理装置において、プラズマ輸送管の始端側と終端側に絶縁体IS及び絶縁体IFを介し、プラズマ輸送管Bをプラズマ発生部Aとプラズマ処理部Cから電気的に独立させた絶縁体介装型プラズマ処理装置を構成する。プラズマ輸送管Bを中間絶縁体II1を介して複数の小輸送管B01、B23に分割し、各小輸送管を電気的に独立させる。プラズマ輸送管又は複数の小輸送管を電気的浮動状態にし、又は輸送管用バイアス電源EB01、EB23を接続して、プラズマ輸送管又は小輸送管の電位をGND、可変正電位又は可変負電位に設定可能にする。又、小輸送管を屈曲状に連接して幾何学的構造でドロップレットを除去する。 (もっと読む)


【課題】本発明は、持続的に真空アーク放電を保持することができる真空アーク放電発生装置を提供することを目的としている。
【解決手段】本発明は、真空中でアーク電源を介して接続される陰極と陽極との間にアーク放電を発生させ、前記陰極と前記陽極と前記アーク電源とが真空アークプラズマを介して主閉回路を形成する真空アーク放電発生装置において、装置内に副陽極を配置し、少なくとも前記陰極と前記副陽極と前記アーク電源とが真空アークプラズマを介した副閉回路を形成し、前記副閉回路に副陽極を介してアーク放電の状態を計測するモニター装置を配設することを特徴とする真空アーク放電発生装置である。 (もっと読む)


【課題】
本発明は、流れるワーキングガスを供給しながらアーク放電によって束縛されたプラズマビームを生成させるための、前記ワーキングガスの流れの中で互いに距離をあけて配置された2つの電極及びこれらの2つの電極間に電圧を発生させる電圧源を有するビーム発生器に関する。
【解決手段】
前記電圧源は、アーク放電のための点弧電圧とパルス周波数とを有する電圧パルスを生成し、この電圧パルスは、前後して続く2つの電圧インパルス間ごとにアークを消弧することができる。
(もっと読む)


【課題】ターゲットが磁性体で厚かったり、ターゲットとして強磁性体を用いる場合であっても、ターゲットの表面に放電に必要な磁気トンネルを形成させるために十分な大きさの漏洩磁場を発生させることが可能なマグネトロンスパッタカソード、マグネトロンスパッタ装置及び磁性デバイスの製造方法を提供すること。
【解決手段】本発明のマグネトロンスパッタカソードは、ターゲット10のスパッタ面10aに設けられた第2環状溝14と、ターゲット10の非スパッタ面10bに設けられた第3環状凸部23と、非スパッタ面10bの、第3環状凸部23の外側に設けられた第4環状溝24と、非スパッタ面10bの、第4環状溝24の外側に設けられた第4環状凸部25とを有するターゲットを備える。また、上記マグネトロンスパッタカソードは、非スパッタ面10b側に、第1磁石5、及び第1磁石5と極性の異なる第2磁石6を備える。 (もっと読む)


【課題】各電極の極性反転時に発生する過電圧を抑制することで、アーク放電の誘発を防止することができるスパッタリング装置用の交流電源を提供する。
【解決手段】直流電力供給源1からの正負の直流出力ライン2a、2b間に、複数のスイッチングトランジスタSW1乃至SW4から構成されるブリッジ回路3を設ける。直流電力供給源1からブリッジ回路3への正負の直流出力ライン2a、2bの少なくとも一方に、直流出力を定電流特性とするインダクタDCLを設け、ブリッジ回路3の入力3a、3bに対して並列にスナバ回路7を設ける。 (もっと読む)


【課題】より安定に記憶保持が行えるメモリ装置が構成できるなど、金属酸化物を用いて安定した動作が得られる素子を提供できるようにする。
【解決手段】強誘電体層(104)を下部電極層(103)と上部電極(105)とで挾み、下部電極層(103)と上部電極(105)との間に所定の電圧(DC,パルス)を印加して強誘電体層(104)の抵抗値を変化させ、安定な高抵抗モードと低抵抗モードを切り替えれば、メモリ動作が得られる。読み出しは、上部電極(105)に、所定の電圧を印加したときの電流値を読み取ることで容易に行うことができる。 (もっと読む)


41 - 60 / 225