説明

Fターム[5J500AK01]の内容

増幅器一般 (93,357) | 回路要素 (18,409) | 演算増幅器(オペアンプ) (1,028)

Fターム[5J500AK01]に分類される特許

21 - 40 / 1,028


【課題】入力電圧に正確に対応した値の出力電流を得ることができる電圧電流変換回路およびその電圧電流変換回路で生成した電流を用いて高精度な発振周波数を得ることができるようにした電圧制御発振回路を提供する。
【解決手段】3容量Csと、容量CBと、スイッチSW1〜SW4と、オペアンプOP1と、トランジスタM1,M2とを備え、スイッチSW1,SW2がオン/オフするときスイッチSW3,SW4がオフ/オンするようにスイッチSW1〜SW4を制御し、電圧入力端子1に入力した入力電圧Vinに比例した電流IREFをトランジスタM1のドレインから出力する。 (もっと読む)


【課題】多段増幅段を含むRF電力増幅回路の低パワーおよび中間パワー時における電力付加効率(PAE)の低下を軽減する。
【解決手段】RF電力増幅回路313は、前段増幅器310、後段増幅器311、制御部312を具備する。前段増幅器310はRF送信入力信号Pinに応答して、前段増幅器310の出力の増幅信号に後段増幅器311が応答する。制御部312は、出力電力制御電圧Vapcに応答して、前段増幅器310と前記後段増幅器311のアイドリング電流を制御して前段増幅器310と前記後段増幅器311の利得を制御する。出力電力制御電圧Vapcに応答して、前段増幅器310のアイドリング電流と利得とは第1の連続関数2ndAmpに従って連続的に変化して、後段増幅器311のアイドリング電流と利得とは第2の連続関数3rdAmpに従って連続的に変化する。第2の連続関数3rdAmpは、第1の連続関数2ndAmpよりも1次以上高次の関数である。 (もっと読む)


【課題】正の単一電源で作動(動作)するオペアンプを用いて負の信号レベルの信号を含む受信信号を増幅することのできる受信回路を提供する。
【解決手段】受信回路100は、基準端子11と基準端子11の電圧を基準とする受信信号を出力する信号端子12とを有する信号部10と、正の入力端子21と負の入力端子22と出力端子23とを有し、正の単一電源E2から電圧が印加されて作動するオペアンプ20と、出力端子23と負の入力端子22との間に接続される第1負荷部30と、信号端子12と負の入力端子22との間に接続される第2負荷部40と、カソード側が接地され、アノード側が基準端子11と正の入力端子21とに接続されるダイオード52を含む基準電圧部50と、を備える。 (もっと読む)


【課題】反転入力容量Csinが異なる場合、帰還容量Cfが小容量の固定値であっても、周波数特性の肩特性の劣化やピークがほとんど生じない増幅回路および帰還回路を提供する。
【解決手段】個別に負帰還をかけるとともに直列に接続された複数の増幅器と、前記複数の増幅器に含まれる出力側の増幅器の出力側と入力側の増幅器の入力側に接続された帰還手段(帰還回路)とを備え、前記複数の増幅器は奇数個の反転増幅器を含む構成である。 (もっと読む)


【課題】ランプアップまたはランプダウンにおいてスイッチングスペクトラムの劣化を軽減すること。
【解決手段】初段と最終段のバイアス回路81、83が、初段と最終段の増幅回路41、43のアイドリング電流を決定する。電力検出回路5、6は、最終段出力信号Poutの信号レベルに応答する電力検出信号VDETを生成する。誤差増幅器7に検出信号VDETと目標電力信号VRAMPが供給され、電力制御電圧VAPCが制御信号増強回路9の入力に供給され、出力から増強制御信号VENを生成する。制御信号増強回路9は、所定の非線型の入出力特性を有する。増強制御信号VENが初段と最終段のバイアス回路81、83とに供給され、初段と最終段の増幅回路41、43のアイドリング電流は増強制御信号VENによって制御され、RF電力増幅器の制御利得の低下が補償される。 (もっと読む)


【課題】高速プリアンプ回路、検出電子機器、および放射線検出システムを提供する。
【解決手段】プリアンプ回路は、放射線検出器から電流信号を受信して、増幅電圧信号を生成するトランスインピーダンス・アンプを備える。トランスインピーダンス・アンプの出力は、第2増幅ステージに接続される。検出電子機器は、検出器上の第1位置から電流信号を受信して第1電圧信号を生成する第1トランスインピーダンス・アンプと、検出器上の第2位置から電流信号を受信して第2電圧信号を生成する第2トランスインピーダンス・アンプとを有する。第2増幅ステージは、第1増幅電圧信号と第2増幅電圧信号とを与える。差動出力ステージは、第1増幅電圧信号と第2増幅電圧信号を受信し、各々から一対の出力を提供する。読取回路類は、一対の出力の各々を処理する処理構造を有する。処理構造は、タイムスタンプを有する単一のデジタル出力を提供する。 (もっと読む)


【課題】低周波数帯域の雑音の影響をより一層小さくすることができるスイッチトキャパシター積分回路等を提供する。
【解決手段】スイッチトキャパシター積分回路10は、第1の容量と第2の容量とを有する電圧電荷変換回路20と、第1の容量に充電された電荷を積分する電荷積分回路30とを含む。電圧電荷変換回路20は、第1の期間において、第1の容量に充電された電荷を転送すると共に入力信号に対応した電荷を第2の容量に充電し、第2の期間において、第2の容量に充電された電荷の一部を第1の容量に充電すると共に入力信号に対応した電荷を第1の容量に充電する。電荷積分回路30は、第3の期間において、演算増幅器の入力に接続されるオフセットキャンセル容量の他端と第1の容量の一端とを接続し、第4の期間において、オフセットキャンセル容量の他端と接地電位とを接続する。 (もっと読む)


【課題】耐ノイズ性を高めつつ、ノイズ光を誤検知しても消費電力を抑えることができる光信号受信回路を提供する。
【解決手段】光信号受信回路10は、光信号を受信して電流信号を出力するフォトダイオードPDと、復調信号を出力する信号処理回路20と、信号処理回路20の電流源を制御する電流源制御回路30とを備えている。電流源制御回路30は、フォトダイオードPDからの電流信号に応じて光信号を検出した場合に、光信号検出信号を出力する第1の制御回路32と、光信号検出信号に基づいて信号処理回路20のアクティブ型のバンドパスフィルタである第1のBPF回路23へバイアス電流を供給する第1の電流源回路33と、第1のBPF回路23からの信号でキャリア成分を検出した場合に、キャリア検出信号を出力する第2の制御回路35と、キャリア検出信号に基づいて信号処理回路20へバイアス電流を供給する第2の電流源回路36とを備えている。 (もっと読む)


【課題】アンプが必要とする電源を提供するために用いられ、発生される電源は入力信号の大小に従い適切に変化し、これにより、大幅なエネルギーの損失を省くことができ、電池の作動時間を延長させることが可能なだけでなく、熱量の発生と排出を減少させることが可能な電源発生システムを提供する。
【解決手段】少なくとも一つの信号追跡ユニットは入力信号を受信し、これに基づき追跡信号を発生させ、前記追跡信号の波形は入力信号のピークを追跡する。少なくとも一つのDC−DCコンバータは前記追跡信号を受信し、これに基づき電源を発生させる。 (もっと読む)


【課題】電源電圧が瞬時低下しても所望の出力波形を出力し続けることが可能な電力増幅回路を提供する。
【解決手段】電力増幅回路は、第1および第2のオペアンプを備える。電力増幅回路は、第1ないし第4の帰還抵抗を備える。電力増幅回路は、非反転入力端子が第1のオペアンプの出力端子に接続され、反転入力端子が第2のオペアンプの出力端子に接続され、非反転出力端子が第1の信号出力端子に接続され、反転出力端子が第2の信号出力端子に接続され、差動利得を一定に保つ全差動オペアンプを備える。電力増幅回路は、第2の帰還抵抗の他端と接地との間に接続されたスイッチ回路を備える。電力増幅回路は、第1の信号入力端子と基準電圧が印加される基準端子との間に接続された第1の入力抵抗を備える。電力増幅回路は、第2の信号入力端子と基準端子との間に接続された第2の入力抵抗を備える。電力増幅回路は、電源電圧を監視し、電源電圧の値に応じてスイッチ回路を制御する中点電位制御回路と、を備える。 (もっと読む)


【課題】 送信機の電力効率を向上させるシステム及び方法が提供される。
【解決手段】 本開示の幾つかの実施形態によると、回路は、入力コイルの第1の入力ポート及び第2の入力ポートにおいて無線周波数(RF)信号を受信するよう構成されたバランを有する。バランは、入力コイルに通信可能に結合された出力コイルにおいてRF信号を出力するよう更に構成される。回路は、入力コイルに結合され、入力コイルにおいて受信したRF信号の電力レベルに従って、入力コイルにおけるバイアス電圧を調整するよう構成された供給電圧選択回路も有する。 (もっと読む)


【課題】2つの出力信号間のタイミングのずれを低減すること。
【解決手段】入力信号IN,XINはトランジスタM1,M2のゲートに供給される。トランジスタM1のドレインはトランジスタM3のドレインとトランジスタM4のゲートに接続され、トランジスタM2のドレインはトランジスタM3のゲートとトランジスタM4のドレインに接続される。また、トランジスタM1,M2のドレインは差動対のトランジスタM11,M12のゲートに接続される。トランジスタM3,M4のソースには、ゲートにバイアス電圧VBが供給されるトランジスタM5が接続される。トランジスタM11,M12のソースには、ゲートにバイアス電圧VBが供給されるトランジスタM13が接続される。 (もっと読む)


【課題】コンプリメンタリSEPP回路において、出力抵抗を高くすることなくバイアス電流の安定したバイアス回路を提供する。
【解決手段】バイアス電流を検出する差動増幅器と、所定の電圧値と差動増幅器の出力電圧値との差分を増幅する演算増幅器と、演算増幅器の出力信号を絶縁伝達する絶縁伝達器と、絶縁伝達器の出力に応じたバイアス電圧を出力するバイアス電圧源とを備えたコンプリメンタリSEPP回路のバイアス回路。差動増幅器、演算増幅器、絶縁伝達器の動作により、バイアス電圧源は、バイアス電流が増加すると出力するバイアス電圧を低下させる。 (もっと読む)


【課題】信号の平均化値のずれを抑制した信号平均化回路を提供する。
【解決手段】キャパシタCa1の正端子に接続され、キャパシタCa1への信号の入力を制御するスイッチング素子S9と、キャパシタCa2の正端子に接続され、キャパシタCa2への信号の入力を制御するスイッチング素子S10と、キャパシタCa1とキャパシタCa2の正端子同士とを接続する平均化スイッチ素子S13と、を備え、パワーオフ期間後にキャパシタCa1に信号を入力することにより充電を行うプリチャージ期間と、プリチャージ期間後に、キャパシタCa2に信号を入力することにより充電を行う第1サンプリング期間と、第1サンプリング期間後にキャパシタCa1に信号を入力することにより再充電を行う第2サンプリング期間と、前記第2サンプリング期間後にキャパシタCa1,Ca2の正端子同士を接続した状態とする平均化期間と、を設ける。 (もっと読む)


【課題】オペアンプの動作点を定める基準電圧が電源電圧の1/2からずれても出力ダイナミックレンジを確保することのできるBTLアンプを提供する。
【解決手段】実施形態のBTLアンプは、入力信号電圧Vinを電圧−電流変換するgmアンプgmから出力される電流Iinが流れる抵抗Rn1と抵抗Rn2の接続点に基準電圧を印加する基準電圧端子REFと、非反転入力端子が抵抗Rn1の他端に接続され、反転入力端子が帰還抵抗Rf1を介して自己の出力端子に接続されるオペアンプOP1と、非反転入力端子が抵抗Rn2の他端に接続され、反転入力端子が帰還抵抗Rf2を介して自己の出力端子に接続されるオペアンプOP2と、オペアンプOP1の反転入力端子とオペアンプOP2の非反転入力端子との間に接続された抵抗Rs1と、オペアンプOP2の反転入力端子とオペアンプOP1の非反転入力端子との間に接続された抵抗Rs2とを備える。 (もっと読む)


【課題】 抵抗及び小さな静電容量を用いた回路により、検出素子の出力信号を直流成分を除いて増幅する小型な信号処理装置を得る。
【解決手段】 入力信号が第1のインピーダンスを介して反転入力端子に入力される第1のオペアンプと、第1のオペアンプの反転入力端子と出力端子とに接続された第2のインピーダンスと、基準電圧が非反転入力端子に入力され、出力端子が第1のオペアンプの非反転入力端子に接続された第2のオペアンプと、第2のオペアンプの反転入力端子と出力端子とに接続された第1の静電容量と第1のスイッチと、第2のスイッチを介して第1のオペアンプの出力端子と前記第2のオペアンプの反転端子とに接続された第3の抵抗と、第3のスイッチを介して第1のオペアンプの出力端子と第2のオペアンプの反転端子とに接続された第4の抵抗とを備えた。 (もっと読む)


【課題】低電圧までの広い電圧範囲で動作可能で、バイアス電流の温度係数を設定可能なバイアス回路及び増幅回路を提供する。
【解決手段】電流生成回路と、電圧生成回路と、を備えたことを特徴とするバイアス回路が提供される。前記電流生成回路は、接合部の面積の異なる2つのPN接合の順方向電圧の電圧差に基づいて第1の電流を生成し、前記2つのPN接合のうちの接合部の面積の小さいPN接合の順方向電圧に基づいて前記第1の電流の温度係数と異なる極性の温度係数を有する第2の電流を生成する。前記電圧生成回路は、前記第1の電流と前記第2の電流とを合成した電流から基準電圧を生成する。 (もっと読む)


【課題】 入力される高周波信号のレベルが小さい時はNF特性を十分に向上すると共に、高周波信号のレベルが大きい時は歪特性を十分に向上する。
【解決手段】 TR1のコレクタに接続されているコイルL2(負荷手段)とVccとの間に接続された抵抗R9と、該抵抗R9に並列接続された制御電圧Vgcに応じてオン/オフするTR3と抵抗R8との直列回路とからなるバイアスコントロール部11を備えている。入力信号のレベルが小さい時は、制御電圧VgcによりTR2,TR3がオフすることにより、TR1のバイアスが浅くなってNF特性が向上され、入力信号のレベルが大きい時は、制御電圧VgcによりTR2,TR3がオンすることにより、TR1のバイアスが深くなって歪特性が向上される。 (もっと読む)


【課題】センサの測定精度を向上する。
【解決手段】電圧電流変換回路であって、直流電源電流を供給又は遮断するスイッチS1と、スイッチS1に一端が接続されたインダクタL1と、周囲温度の変化に応じて測定値が変動し得るセンサの測定値に対応する入力電圧Vinに応じた電流がインダクタL1の充放電を通じて出力されるよう、スイッチS1のスイッチングを制御する制御回路12と、を備える。ここで、前記周囲温度の変化は、前記電圧電流変換回路の自己発熱に起因する温度変化を含む。 (もっと読む)


【課題】光ディスクの高倍速化により高い周波数応答特性が必要な場合においても、RF信号成分の信号振幅を低下させない受光増幅回路を提供することを目的とする。
【解決手段】入力された光電流を電圧に変換するとともに、変換した電圧のうち第1カットオフ周波数より低い周波数に対応する電圧のみを出力する電流電圧変換アンプ102と、電流電圧変換アンプ102の後段に接続され、電流電圧変換アンプ102から出力された電圧のうち第2カットオフ周波数より低い周波数に対応する電圧のみを出力するCRローパスフィルタ回路103と、CRローパスフィルタ回路103の後段に接続され、CRローパスフィルタ回路103から出力された電圧を増幅する電圧増幅アンプ104と、少なくとも電圧増幅アンプ104と接続され、電圧増幅アンプ104から出力された電圧を加算増幅するRF増幅加算アンプ105と、を備える。 (もっと読む)


21 - 40 / 1,028