説明

タイヤの製造方法

【課題】中子本体を濡らすことなく該中子本体と加硫タイヤとを迅速に冷却する。
【解決手段】加硫金型から取り出された加硫タイヤ付きの剛性中子を冷却する冷却工程とを具える。この冷却工程は、水の微細ミストを、加硫タイヤの外表面に噴霧するタイヤ噴霧と、前記中子本体の露出面に噴霧する中子噴霧とからなる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、加硫金型から加硫タイヤと一体で取り出される剛性中子を、迅速に冷却しうる冷却工程を具えたタイヤの製造方法に関する。
【背景技術】
【0002】
近年、空気入りタイヤの形成精度を高めるため、図10(B)に示すように、タイヤ内面形状に相当する外形形状を有する剛性中子aを用い、この剛性中子a上に、インナーライナ、カーカスプライ、ベルトプライ、サイドウォールゴム、トレッドゴム等のタイヤ構成部材を順次貼り付けて生タイヤTを形成するとともに、この生タイヤTを剛性中子aごと加硫金型b内に投入し、内型である剛性中子aと外型である加硫金型bとの間でタイヤを挟んで加硫成形する方法が提案されている(例えば特許文献1参照。)。
【0003】
この方法では、加硫成形が終了した後、剛性中子aと加硫タイヤとが一体の状態で、加硫金型bから取り出されるが、このとき剛性中子a及び加硫タイヤは160〜190℃の高温状態にある。
【0004】
従って、この一体の状態のままで放置(自然冷却)した場合には、剛性中子aの熱によって加硫タイヤが過加硫を起こし、タイヤ品質を低下させる恐れがある。そこでできるだけ早く剛性中子aを分解して加硫タイヤから取り外すことが要求される。
【0005】
なお剛性中子aは、図10(A)に示すように、その中子本体a1を、タイヤ周方向に分割される複数の中子セグメントcによって形成している。具体的には、周方向両端の分割面が、半径方向内方に向かって周方向巾が減じる向きに傾斜する第1の中子セグメントc1と、この第1の中子セグメントc1とは周方向に交互に配されしかも周方向両端の分割面が、半径方向内方に向かって周方向巾が増す向きに傾斜する第2の中子セグメントc2とから構成される。そして、第2の中子セグメントc2から順次半径方向内方に一つずつ移動さることで、中子本体a1を分解して加硫タイヤのビード孔から取り出すことが可能である。
【0006】
しかし中子本体a1が前記の如き高温状態の場合には、熱膨張によって中子セグメントc同士が互いに噛み合うため分解することが困難であり、従って、従来においては、冷風を剛性中子a及び加硫タイヤに吹き付けるなどの方法によって冷却している。
【0007】
しかしながらこのような冷却方法では、中子本体a1が分解可能となる温度(例えば80〜100℃)に冷却するまでに2〜3時間程度の時間が必要であり、タイヤの過加硫抑制を不充分なものとしている。又この冷却の遅れは、タイヤの生産効率にも悪影響を及ぼす。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特開2006−160236号公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
そこで本発明は、水の微細ミストを、加硫タイヤの外表面及び中子本体の露出面にそれぞれ噴霧することを基本として、中子本体を濡らすことなく該中子本体と加硫タイヤとを迅速に冷却することができ、タイヤの過加硫を抑制するとともに、タイヤの生産効率を向上しうる製造方法を提供することを目的としている。
【課題を解決するための手段】
【0010】
上記課題を解決するために、本願請求項1の発明は、タイヤ周方向に分割される複数の中子セグメントからなる分解可能な中空なトロイド状の中子本体を有する剛性中子を用いて前記中子本体の外表面上で生タイヤを形成する生タイヤ形成工程と、
前記生タイヤを剛性中子ごと加硫金型内に投入して生タイヤを加熱加硫する加硫工程と、
前記加硫金型から取り出された加硫タイヤ付きの剛性中子を冷却する冷却工程とを具えるとともに、
前記冷却工程は、水の微細ミストを、加硫タイヤの外表面に噴霧するタイヤ噴霧と、前記中子本体の露出面に噴霧する中子噴霧とからなることを特徴としている。
【0011】
又請求項2の発明では、前記タイヤ噴霧は、加硫タイヤのトレッド部の外表面におけるタイヤ周方向の複数位置に、前記微細ミストを噴霧するトレッド冷却と、両サイドウォール部の外表面におけるタイヤ周方向の複数位置に、前記微細ミストを噴霧するサイドウォール冷却とを含み、かつ前記微細ミストの噴霧パターンを略円形状パターンとするとともに、
前記中子噴霧は、中子本体の露出面におけるタイヤ周方向の複数位置に、前記微細ミストを噴霧するとともに、前記微細ミストの噴霧パターンをタイヤ周方向に長い偏平パターンとしたことを特徴としている。
【発明の効果】
【0012】
本発明は叙上の如く、加硫金型から取り出された加硫タイヤ付きの剛性中子に対して、水の微細ミストを、加硫タイヤの外表面、及び中子本体の露出面にそれぞれ噴霧する冷却工程を行っている。このような微細ミストは、気流中で水滴が蒸発して気流自身の温度が低下すること、及び水滴がタイヤや中子本体などに衝突しその表面上で蒸発して潜熱を奪うことなどにより、冷風冷却に比して冷却効果を大幅に向上させることができる。
【0013】
特に中子本体の露出面に、微細ミストを直接噴霧しているため、中子本体への冷却効果をより高めることができる。しかも微細ミストは、加硫タイヤ及び中子本体に衝突した後にすばやく蒸発するため、その表面を実質的に濡らすことがない。そのため、中子本体に直接噴霧しても、中子本体の内部に収容される加硫加熱用の電気ヒータ及びその配線部分である電気回りを濡らすことがなく、安定かつ安全な冷却を行いうる。
【0014】
さらに、冷却工程がタイヤ噴霧と中子噴霧とに区別されているため、熱伝導率や熱容量が異なる加硫タイヤ及び中子本体に対して、微細ミストの噴霧量及び噴霧時間などを別々に制御することができ、それぞれの冷却速度を揃えるなどバランスの良い冷却を行うことができる。
【図面の簡単な説明】
【0015】
【図1】本発明のタイヤの製造方法における生タイヤ形成工程を示す断面図である。
【図2】それに用いる剛性中子を示す分解斜視図である。
【図3】中子本体を軸心方向から見た側面図である。
【図4】加硫工程を示す断面図である。
【図5】冷却工程を示す断面図である。
【図6】冷却工程を軸心方向から見た側面図である。
【図7】(A)、(B)はタイヤ噴霧における微細ミストの噴霧パターンを示す斜視図、及び正面図である。
【図8】(A)、(B)は中子噴霧における微細ミストの噴霧パターンを示す斜視図、及び正面図である。
【図9】テストによる中子本体の内部温度の時間的変化を示すグラフである。
【図10】(A)は従来の剛性中子を軸心方向から見た側面図、(A)はその剛性中子を用いた空気入りタイヤの形成方法を示す断面図である。
【発明を実施するための形態】
【0016】
以下、本発明の実施の形態について、詳細に説明する。本発明は、剛性中子1を用いたタイヤの製造方法であって、生タイヤ形成工程S1と、加硫工程S2と、冷却工程S3とを含んで構成される。
【0017】
図1に示すように、前記生タイヤ形成工程S1では、剛性中子1の中子本体2の外表面上で生タイヤTを形成する。前記剛性中子1は、外表面にタイヤ成形面Jを有する中子本体2を具え、従来と同様、この中子本体2の前記タイヤ成形面J上に、インナーライナ、カーカスプライ、ベルトプライ、サイドウォールゴム、トレッドゴム等のタイヤ構成部材を順次貼り付けることにより前記生タイヤTが形成される。
【0018】
本例の剛性中子1は、図1、2に示すように、前記中子本体2と、この中子本体2の中心孔2Hに内挿される円筒状のコア4と、前記中子本体2の軸心方向両側に配される一対の側板5L、5Uとを具える。
【0019】
前記中子本体2は、前記タイヤ成形面Jを有するトロイド状主部2Aの半径方向内端部に、半径方向内方に向かって軸心方向外側に傾斜するテーパ面6を有して軸心方向外側に膨出する膨出部2Bを具える。又この中子本体2には、該中子本体2と同心な内腔7が形成されるとともに、この内腔7内には、前記生タイヤTを内側加熱する例えば電気ヒータなどの加熱手段8が配される。
【0020】
又前記中子本体2は、図2、3に示すように、タイヤ周方向に分割された複数の中子セグメント9から形成される。この中子セグメント9は、周方向両端の分割面9Sを、半径方向内方に向かって周方向巾が減じる向きに傾斜させた第1の中子セグメント9Aと、前記第1の中子セグメント9Aとは周方向に交互に配され、かつ周方向両端の分割面9Sを、半径方向内方に向かって周方向巾が増す向きに傾斜させた第2の中子セグメント9Bとから構成される。これにより中子セグメント9は、第2の中子セグメント9Bを半径方向内側に移動させることができ、又この移動の後、第1の中子セグメント9Aも半径方向内側に順次移動させることができる。なお中子本体2では、従来と同様、第2の中子セグメント9Bから順次半径方向内方に一つずつ移動させて、タイヤのビード孔から順次取り出すことができる。
【0021】
前記コア4は円筒状をなし、前記中子本体2の中心孔2Hに内挿されることにより、各中子セグメント9の半径方向内側への移動を阻止する。このコア4の軸心方向の一方側の端部は、軸心方向一方側の側板5Lの内側面に例えばボルト等を用いて固着される。なお一方側の側板5Lには、前記中子本体2のテーパ面6と当接するフランジ部11を有し、これにより側板5Lと中子本体2とを同心に位置合わせしうる。
【0022】
又前記コア4は、本例では、その中心孔4Hの軸心方向他方側に、内ネジ部13を具えるとともに、コア4の外周面には、軸心方向に連続してのびる蟻溝14又は蟻ほぞ15の一方からなる第1の蟻継ぎ部16が形成される。又各前記中子セグメント9の内周面には、軸心方向にのびかつ前記第1の蟻継ぎ部16に係合する蟻溝14又は蟻ほぞ15の他方からなる第2の蟻継ぎ部17が形成される。
【0023】
又軸心方向他方側の側板5Uも、前記中子本体2のテーパ面6と当接することにより同心に位置合わせしうるフランジ部11を有するとともに、側板5Uの内側面には、前記コア4の中心孔4Hに設ける前記内ネジ部13に着脱自在に螺合しうるボス部20が突設される。又前記一方側、他方側の側板5L、5Uには、その外側面に支持軸部12が突設される。この支持軸部12は、例えば搬送装置によって剛性中子1を把持して、生タイヤ形成機や加硫金型まで搬送するための把持部、或いは搬送した剛性中子1を生タイヤ形成機、加硫金型、冷却装置などに装着するための装着部として機能する。又前記支持軸部12を把持する搬送装置のチャック部21、或いは支持軸部12を装着する生タイヤ形成機、加硫金型、冷却装置などのチャック部21は、本例では周知のボールロック機構を有する連結手段22を介して前記支持軸部12とワンタッチで着脱自在に連結される。
【0024】
次に、前記加硫工程S2では、図4に示すように、前記生タイヤTを剛性中子1ごと加硫金型18内に投入し、内型である剛性中子1と外型である加硫金型18との間で生タイヤTを挟んで加熱加硫が行われる。なお前記加硫金型18は周知構造をなし、その内部に、前記生タイヤTを外側加熱する蒸気ジャケット、電気ヒータなどの加熱手段(図示しない)が配されている。
【0025】
次に、前記冷却工程S3では、図5に示すように、前記加硫金型18から取り出された加硫タイヤT1付きの剛性中子1を冷却する。この冷却工程S3では、水の微細ミストMを、加硫タイヤT1の外表面に噴霧するタイヤ噴霧30と、前記中子本体2の露出面2Sに噴霧する中子噴霧31とからなる。
【0026】
前記水の微細ミストMとは、霧状の微細な水の水滴であって、平均粒子径が300μm以下、さらには100μmm以下、さらに好ましくは30μm以下のものが好適に採用される。このような微細ミストMは、例えば水を高圧で噴出するミスト用の一流体ノズル、或いは水を低圧のエアーで粉砕して噴出するミスト用の二流体ノズルを使用することにより、ミスト流として容易に噴霧することができ、又前記ミスト用の一流体ノズル、二流体ノズルとして市販のものが好適に採用しうる。微細ミストMの流量をコントロールするために、二流体ノズルを用いることが好ましい。なお前記ミスト用の一流体ノズル、二流体ノズルを総称してミスト用ノズル33という場合がある
【0027】
このような微細ミストMは、気流中で水滴が蒸発して気流自身の温度が低下すること、及び水滴が加硫タイヤT1及び中子本体2に衝突しその表面上で蒸発して潜熱を奪うことなどにより、冷風冷却に比して冷却効果を大幅に向上させることができる。特に中子本体2の露出面2Sに、微細ミストMを直接噴霧しているため、中子本体2への冷却効果をより高めることができる。しかも微細ミストMは、加硫タイヤT1及び中子本体2に衝突した後にすばやく蒸発するため、その表面を実質的に濡らすことがない。そのため、中子本体2に直接噴霧しても、中子本体2の内部に収容される加硫加熱用の電気ヒータ(加熱手段8)及びその配線部分である電気回りを濡らすことがなく、安定かつ安全な冷却を行いうる。
【0028】
さらに前記冷却工程S3が、タイヤ噴霧30と中子噴霧31とに区別されているため、熱伝導率や熱容量が異なる加硫タイヤT1及び中子本体2に対して、微細ミストMの噴霧量及び噴霧時間などを別々に制御することができ、それぞれの冷却速度を揃えるなどバランスの良い冷却を行うことができる。
【0029】
本例の冷却工程S3では、図6に示すように、前記タイヤ噴霧30として、加硫タイヤT1のトレッド部T1aの外表面におけるタイヤ周方向の複数位置Qaに、前記微細ミストMを噴霧するトレッド冷却30aと、両サイドウォール部T1bの外表面におけるタイヤ周方向の複数位置Gbに、前記微細ミストMを噴霧するサイドウォール冷却30bとを含んで加硫タイヤT1を冷却している。又前記中子噴霧31として、中子本体2の露出面2Sにおけるタイヤ周方向の複数位置Qcに、前記微細ミストMを噴霧してる。なお前記中子本体2は、その外表面のうち、加硫タイヤT1のビードトウ端T1eと、側板5L、5Uの外端5eとの間の範囲Yが外部に露出しており、この環状の範囲Yを前記露出面2Sと呼ぶ。
【0030】
そして、前記タイヤ噴霧30では、図6、7に示すように、ミスト用ノズル33による微細ミストMの噴霧パターンを略円形状パターンP1とするとともに、中子噴霧31では、図6、8に示すように、ミスト用ノズル33による微細ミストMの噴霧パターンをタイヤ周方向に長い偏平パターンP2としている。
【0031】
このように、タイヤ噴霧30では、トレッド冷却30aとサイドウォール冷却30bとに区分しているため、ゴム厚さ等に起因して熱容量が異なるトレッド部T1a及びサイドウォール部T1bに対して噴霧量及び噴霧時間などを別々に制御することができ、それぞれの冷却速度を揃えることができる。しかもタイヤ噴霧30では、略円形状パターンP1を採用することで微細ミストMを広範囲に亘って効率よく噴霧しうる。
【0032】
これに対して、中子噴霧31では、前記露出面2Sが幅狭の円環帯状をなすため、前記偏平パターンP2を採用することで、前記露出面2Sからのはみ出しを抑えながら該露出面2Sを効率よく噴霧しうる。
【0033】
以上、本発明の特に好ましい実施形態について詳述したが、本発明は図示の実施形態に限定されることなく、種々の態様に変形して実施しうる。
【実施例】
【0034】
本発明の効果を確認するため、加硫金型から取り出された加硫タイヤ(タイヤサイズ_215/45R17)付きの剛性中子に対して、下記の冷却方法によって冷却を行い、その時の中子本体の温度変化を測定するとともに、その結果を図9に記載した。なお中子本体の温度は、中子内腔面上のタイヤ赤道位置に、4つの温度センサ(熱電対)を周方向に等間隔を隔てて取り付け、各温度センサによる測定温度の平均値を用いている。
【0035】
又冷却方法として、自然冷却(比較例1)、冷風冷却(比較例2)、及び微細ミストを用いた本発明に係わるミスト冷却(実施例1)を行った。
(1)自然冷却(比較例1)では、加硫タイヤ付きの剛性中子を、室温(25℃)の工場内に放置して、自然冷却した。
(2)冷風冷却(比較例2)では、スポットクーラーを用い、加硫タイヤ付きの剛性中子に対して、温度(15℃)の冷風を、風速(300m/分)で吹き付けて強制冷却した。
(3)ミスト冷却(実施例1)では、二流体ノズルを用い平均粒子径が10〜30μmの微細ミストを噴霧した。噴霧位置は、トレッド外表面上でかつタイヤ周方向に等間隔を隔てた8位置、サイドウォール外表面上でかつタイヤ周方向に等間隔を隔てた8位置、及び中子本体の露出面上でかつタイヤ周方向に等間隔を隔てた8位置とした。又二流体ノズルは、各表面から150mm隔てた位置から噴霧され、微細ミストの総噴霧量は、0.5リッター/分である。なおタイヤ噴霧は円形状パターン、中子噴霧は偏平パターンとした。
【0036】
図9に示すように、実施例1では、中子本体を迅速に冷却することができ、タイヤの過加硫抑制とタイヤの生産効率向上とを図りうるのが確認できる。
【符号の説明】
【0037】
1 剛性中子
2 中子本体
2S 露出面
9 中子セグメント
18 加硫金型
30 タイヤ噴霧
30a トレッド冷却
30b サイドウォール冷却
31 中子噴霧
M 微細ミスト
P1 略円形状パターン
P2 偏平パターン
S1 生タイヤ形成工程
S2 加硫工程
S3 冷却工程
T 生タイヤ
T1a トレッド部
T1b サイドウォール部

【特許請求の範囲】
【請求項1】
タイヤ周方向に分割される複数の中子セグメントからなる分解可能な中空なトロイド状の中子本体を有する剛性中子を用いて前記中子本体の外表面上で生タイヤを形成する生タイヤ形成工程と、
前記生タイヤを剛性中子ごと加硫金型内に投入して生タイヤを加熱加硫する加硫工程と、
前記加硫金型から取り出された加硫タイヤ付きの剛性中子を冷却する冷却工程とを具えるとともに、
前記冷却工程は、水の微細ミストを、加硫タイヤの外表面に噴霧するタイヤ噴霧と、前記中子本体の露出面に噴霧する中子噴霧とからなることを特徴とするタイヤの製造方法。
【請求項2】
前記タイヤ噴霧は、加硫タイヤのトレッド部の外表面におけるタイヤ周方向の複数位置に、前記微細ミストを噴霧するトレッド冷却と、両サイドウォール部の外表面におけるタイヤ周方向の複数位置に、前記微細ミストを噴霧するサイドウォール冷却とを含み、かつ前記微細ミストの噴霧パターンを略円形状パターンとするとともに、
前記中子噴霧は、中子本体の露出面におけるタイヤ周方向の複数位置に、前記微細ミストを噴霧するとともに、前記微細ミストの噴霧パターンをタイヤ周方向に長い偏平パターンとしたことを特徴とする請求項1記載のタイヤの製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2013−10217(P2013−10217A)
【公開日】平成25年1月17日(2013.1.17)
【国際特許分類】
【出願番号】特願2011−143381(P2011−143381)
【出願日】平成23年6月28日(2011.6.28)
【出願人】(000183233)住友ゴム工業株式会社 (3,458)
【Fターム(参考)】