説明

ハイブリッド建設機械の制御装置

【課題】 エンジンEの起動時に第1,2メインポンプMP1,MP2をアンロード状態にして、エンジンEの負荷を小さくする。
【解決手段】 エンジンEを起動させるためにイグニションキーを操作すると、コントローラCは、電磁開閉弁33を開いて、サブポンプSPの吐出流体をパイロット通路32に供給する。パイロット通路32に圧力流体が流れると、そのときのパイロット通路33の圧力がアンロード弁37のパイロット室37bに作用し、当該アンロード弁37を開位置に切り換える。アンロード弁37が開けば、第1,2メインポンプMP1,MP2は、このアンロード弁37を介してアンロードされる。このように第1,2メインポンプMP1,MP2がアンロードされている状態で、エンジンEを起動させる。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、例えばパワーショベル等の建設機械を制御する制御装置に関する。
【背景技術】
【0002】
パワーショベル等の建設機械におけるハイブリッド構造は、原則的にはエンジンでポンプを駆動するが、例えば、エンジンの余剰出力で発電機を回転して発電したり、あるいはアクチュエータの排出エネルギーで発電機を回転して発電したりするとともに、この発電機の電力を利用して電動モータを回転させてアクチュエータ等を作動させるようにしている。
【特許文献1】特開2002−275945号公報
【発明の開示】
【発明が解決しようとする課題】
【0003】
上記した従来の装置では、エンジンでメインポンプを回転させるが、例えば、イグニションキーを操作してエンジンを起動するとき、メインポンプの起動時の負荷がエンジンに作用する。このポンプの負荷が、回転数が十分に上がっていないエンジンに対して過負荷になり、エンジンは黒鉛を排出しながら回転することになる。この黒鉛は、当然のように公害の大きな要因になるという問題があった。
また、エンジンがある回転数を維持して当該回路系統がスタンバイ状態を維持するまで、当該建設機械のアクチュエータを使った作業ができないので、スタンバイ状態を保つまでの間、立ち上げに時間がかかるという問題もあった。
この発明の目的は、起動時のエンジンの負荷を小さくするとともに、立ち上がり時間を短くできるハイブリッド建設機械の制御装置を提供することである。
【課題を解決するための手段】
【0004】
第1の発明は、エンジンの駆動力で回転する可変容量型のメインポンプと、このメインポンプの傾転角を制御するレギュレータと、複数の操作バルブを設けるとともにメインポンプに接続した回路系統と、上記回路系統の操作バルブを中立位置に保持したときメインポンプの吐出流量が流通する中立流路と、この中立流路に設けるとともに中立流路に流れが発生したときに高い圧力を発生するパイロット圧生成機構と、このパイロット圧生成機構が生成したパイロット圧を上記レギュレータに導くパイロット流路とを備えている。
さらに、メインポンプの吐出側に設けるとともに当該メインポンプから上記操作バルブへの流通のみを許容するチェック弁と、電動モータの駆動力で回転するサブポンプと、一方を上記サブポンプの吐出側に接続するとともに他方を上記チェック弁の下流側に接続した合流通路と、サブポンプに接続したパイロット通路と、このパイロット通路に設けた電磁開閉弁と、この電磁開閉弁の下流側に設けるとともに通常は閉位置を保ち、上記電磁開閉弁の下流側の圧力作用で開位置に切り換って上記チェック弁の上流側をアンロードさせるアンロード弁とを備えている。
【0005】
第2の発明は、メインポンプと同軸回転するパイロットポンプと、このパイロットポンプの吐出圧をパイロット圧として切り換るバルブ群と、サブポンプに接続したパイロット通路に設けた減圧弁とを備えている。そして、上記サブポンプに接続したパイロット通路を上記パイロットポンプの吐出側に接続するとともに、上記減圧弁の上流側の圧力をアンロード弁のパイロット室に導き、このパイロット室の圧力作用でアンロード弁が開位置を保つ構成にしている。
【0006】
第3の発明は、エンジンのイグニションキー、上記電磁開閉弁及び上記電動モータに接続したコントローラを設けている。そして、このコントローラは、イグニションキーが操作されたときに電動モータを駆動してサブポンプを回転させる機能と、サブポンプを回転させてから電磁開閉弁を開位置に切り換える機能と、電磁開閉弁が開いてからエンジンを回転させる機能とを備えている。
【0007】
第4の発明は、パイロット圧生成機構に接続したパイロット流路に圧力センサーを設け、この圧力センサーが検出したパイロット圧を上記コントローラに入力する構成にしている。そして、上記コントローラは、イグニションキーが操作されたときに電動モータを駆動してサブポンプを回転させる機能と、サブポンプを回転させてから電磁開閉弁を開位置に切り換える機能と、電磁開閉弁が開いてからエンジンを回転させる機能と、サブポンプの吐出量が中立流路に流れて上記圧力センサーからの圧力信号が予め設定した圧力に達したときサブポンプの吐出量を減少させる機能とを備えている。
【0008】
第5の発明は、上記コントローラが、電磁開閉弁を開位置に切り換えた後にアンロード弁を開位置に切り換えてメインポンプをアンロードにする一方、エンジンの回転数が予め設定した回転数に達した後、あるいはイグニションキーを操作してから予め設定した時間を経過した後に、上記電磁開閉弁を閉じてオンロードにする機能と、上記電磁開閉弁が閉じたときサブポンプの吐出量を減少させる機能とを備えている。
【発明の効果】
【0009】
第1〜4の発明によれば、エンジンを起動するとき、メインポンプの吐出側をアンロードしてそれを無負荷状態にできるので、エンジンの起動時における負荷も小さくできる。したがって、起動時のエンジンの立ち上がりが早くなるとともに、従来のようエンジンに過負荷が作用して黒鉛を排出するなどといった問題が発生しない。
また、メインポンプがアンロード状態にあっても、サブポンプの吐出量が中立流路に導かれる。このように中立流路に導かれたサブポンプの吐出量でパイロット圧生成機構にパイロット圧を生成させることができる。したがって、メインポンプは、この生成されたパイロット圧に相当する傾転角を維持する。
【0010】
第2の発明によれば、コントローラの指令で、電動モータを回転してサブポンプの吐出量を確保するとともに、電磁開閉弁を開けば、パイロット通路に設けた減圧弁の上流側の圧力がアンロード弁に作用してそれを開弁させ、サブポンプの吐出量をパイロットポンプの吐出側に供給する。このように電動モータの回転からサブポンプの吐出量を中立流路及びパイロットポンプの吐出側に導くまでのスタンバイ状態を連続的に無駄なく実行できる。
【0011】
第3の発明によれば、コンローラは、イグニションキーが操作されたときに電動モータを駆動してサブポンプを回転させるとともに、電磁開閉弁を開位置に切り換え、しかも電磁開閉弁が開いてからエンジンを回転させるので、パイロット流量を確保するなどスタンバイ状態が整った後に、エンジンを回転させることになる。したがって、エンジンを軽負荷で回転させられるとともに、短時間で所定の回転数に到達させられるので、エンジン停止から当該建設機械を短時間で作業状態にすることができる。
【0012】
第4の発明によれば、イグニションキーを操作してからスタンバイ状態を保つまでの立ち上がり時間を短くできる。
第5の発明によれば、エンジンの負荷を少なくしながら、短時間でスタンバイ状態にすることができる。すなわち、イグニションキーが操作されると、まず、電動モータが回転するので、サブポンプからアシスト流量が操作バルブ群に供給される。それと同時に電磁開閉弁が開位置に切り換るので、操作バルブ群に対するパイロット圧が確保されるとともに、アンロード弁が開位置に切り換る。したがって、当該回路系統では、パイロット圧生成機構でパイロット圧が生成されるとともに、このパイロット圧でメインポンプの傾転角がほぼ最小角に保たれる。ただし、この状態では、メインポンプはまだ回転していない。
上記プロセスを経過した段階で、コントローラがエンジンを回転させる。このようにエンジンが回転すれば、メインポンプも回転するが、このときにはその傾転角が上記のようにほぼ最小角に保たれているので、メインポンプは、少ない流量を吐出しながらアンロードされるとともに、パイロットポンプも回転する。
そして、上記の状態からエンジンの回転数が所定の回転数に達するか、あるいはイグニションキーを操作してから予め設定した時間を経過したとき、電磁開閉弁が閉位置に切り換ってメインポンプをオンロードにすると同時に、サブポンプの吐出量を減少させる。したがって、当該回路系統には、メインポンプの吐出量と減少したサブポンプの吐出量とが供給される。最終的にサブポンプの吐出量がゼロになれば、メインポンプはアシスト流量がない状態でスタンバイ流量を確保する。
このようなシーケンス制御の中で、エンジンの負荷を少なくしながら、短時間でスタンバイ状態にすることができる。
【発明を実施するための最良の形態】
【0013】
図示の実施形態は、パワーショベルの制御装置で、エンジンEの駆動力で同軸回転する可変容量型の第1,2メインポンプMP1,MP2及び固定容量型のパイロットポンプPPを備えている。
上記第1メインポンプMP1は第1回路系統に接続するとともに、その傾転角を制御するレギュレータ1を設けている。また、第2メインポンプMP2は第2回路系統を接続するとともに、その傾転角を制御するレギュレータ2を設けている。
上記第1回路系統には、その上流側から順に、旋回モータRMを制御する旋回モータ用の操作バルブ3、図示していないアームシリンダを制御するアーム1速用の操作バルブ4、ブームシリンダBCを制御するブーム2速用の操作バルブ5、図示していない予備用アタッチメントを制御する予備用の操作バルブ6および図示していない左走行用モータを制御する左走行モータ用の操作バルブ7を接続している。
【0014】
上記各操作バルブ3〜7のそれぞれは、中立流路8およびパラレル通路9を介して第1メインポンプMP1に接続している。そして、中立流路8であって、左走行モータ用の操作バルブ7の下流側にはパイロット圧生成機構10を設けている。このパイロット圧生成機構10はそこを流れる流量が多ければ高いパイロット圧を生成し、その流量が少なければ低いパイロット圧を生成するものである。
また、上記中立流路8は、上記操作バルブ3〜7のすべてが中立位置もしくは中立位置近傍にあるとき、第1メインポンプMP1から吐出された流体の全部または一部をタンクに導くが、このときにはパイロット圧生成機構10を通過する流量も多くなるので、上記したように高いパイロット圧が生成される。
【0015】
一方、上記操作バルブ3〜7がフルストロークの状態で切り換えられると、中立流路8が閉ざされて流体の流通がなくなる。したがって、この場合には、パイロット圧生成機構10を流れる流量がほとんどなくなり、パイロット圧はゼロを保つことになる。
ただし、操作バルブ3〜7の操作量によっては、ポンプ吐出量の一部がアクチュエータに導かれ、一部が中立流路8からタンクに導かれることになるので、パイロット圧生成機構10は、中立流路8に流れる流量に応じたパイロット圧を生成する。言い換えると、パイロット圧生成機構10は、操作バルブ3〜7の操作量に応じたパイロット圧を生成することになる。
【0016】
そして、上記パイロット圧生成機構10にはパイロット流路11を接続するとともに、このパイロット流路11を上記レギュレータ1に接続している。このようにしたレギュレータ1は、パイロット圧と逆比例して第1メインポンプMP1の吐出量を制御する。したがって、操作バルブ3〜7をフルストロークして中立流路8の流れがゼロになったとき、言い換えるとパイロット圧生成機構10が発生するパイロット圧がゼロになったときに第1メインポンプMP1の吐出量が最大に保たれる。
上記のようにしたパイロット流路11には第1圧力センサー12を接続するとともに、この第1圧力センサー12で検出した圧力信号をコントローラCに入力するようにしている。
【0017】
一方、上記第2回路系統には、その上流側から順に、図示していない右走行用モータを制御する右走行モータ用の操作バルブ13、図示していないバケットシリンダを制御するバケット用の操作バルブ14、ブームシリンダBCを制御するブーム1速用の操作バルブ15および図示していないアームシリンダを制御するアーム2速用の操作バルブ16を接続している。なお、上記ブーム1速用の操作バルブ15には、その操作方向および操作量を検出する図示していないセンサーを設けている。
【0018】
上記各操作バルブ13〜16は、中立流路17を介して第2メインポンプMP2に接続するとともに、バケット用の操作バルブ14およびブーム1速用の操作バルブ15はパラレル通路18を介して第2メインポンプMP2に接続している。
上記中立流路17であって、アーム2速用の操作バルブ16の下流側にはパイロット圧生成機構19を設けているが、このパイロット圧生成機構19は、先に説明したパイロット圧生成機構10と全く同様に機能するものである。
【0019】
そして、上記パイロット圧生成機構19にはパイロット流路20を接続するとともに、このパイロット流路20を、第2メインポンプMP2の傾転角を制御するレギュレータ2に接続している。このようにしたレギュレータ2は、パイロット圧と逆比例して第2メインポンプMP2の吐出量を制御する。したがって、操作バルブ13〜16をフルストロークして中立流路17の流れがゼロになったとき、言い換えるとパイロット圧生成機構19が発生するパイロット圧がゼロになったとき、第2メインポンプMP2の吐出量が最大に保たれる。
上記のようにしたパイロット流路20には第2圧力センサー21を接続するとともに、この第2圧力センサー21で検出した圧力信号をコントローラCに入力するようにしている。
【0020】
なお、上記パイロットポンプPPの吐出流体は上記した各操作バルブ3〜7,13〜16等のバルブ群のパイロット経路に導かれる。したがって、これらバルブ群は、図示していない操作レバーを操作することによって、パイロットポンプPPから吐出されるパイロット圧の作用で切り換るものである。
【0021】
次に、発電機兼用の電動モータMGを駆動源として回転する可変容量型のサブポンプSPについて説明する。
このサブポンプSPは、後で説明する可変容量型のアシストモータAMと同軸回転するもので、その傾転角を制御する傾角制御器22をコントローラCに接続し、コントローラCからの信号に応じてサブポンプSPの傾転角を制御するようにしている。また、サブポンプSPを回転させる電動モータMGも、インバータIを介してコントローラCに接続し、コントローラCからの信号に応じて電動モータMGを起動停止したり、その回転数を制御したりできるようにしている。
【0022】
上記のようにしたサブポンプSPには吐出通路23を接続しているが、この吐出通路23は、第1メインポンプMP1の吐出側に合流する第1合流通路24と、第2メインポンプMP2の吐出側に合流する第2合流通路25とに分岐するとともに、これら第1,2合流通路24,25のそれぞれには、コントローラCの出力信号で開度が制御される第1,2比例電磁絞り弁26,27を設けている。
なお、図中符号28,29は上記第1,2合流通路24,25に設けたチェック弁で、サブポンプSPから第1,2メインポンプMP1,MP2の合流点への流通のみを許容するものである。
また、上記第1,2合流通路24,25と第1,2メインポンプMP1,MP2との合流点よりも、上記メインポンプから見て上流側に第1,2チェック弁30,31を設けているが、この第1,2チェック弁30,31は、第1,2メインポンプMP1,MP2から第1,2回路系統への流通のみを許容するものである。したがって、サブポンプSPの吐出流体が第1,2メインポンプMP1,MP2に逆流することはない。
【0023】
さらに、上記サブポンプSPに接続した上記吐出通路23には、パイロット通路32を接続するとともに、このパイロット通路32をパイロットポンプPPの吐出側に合流させている。このようにしたパイロット通路32には、パイロットポンプPPに向かってその上流側から電磁開閉弁33、減圧弁34を設けている。そして、電磁開閉弁33はそれに設けたソレノイドをコントローラCに接続し、通常は図示の閉位置を保つが、当該コントローラCの出力信号で開位置に切り換るようにしている。
【0024】
一方、上記第1,2メインポンプMP1,MP2の吐出側に設けた上記第1,2チェック弁30,31の上流側には、アンロード通路35,36を接続するとともに、このアンロード通路35,36にアンロード弁37を設けている。このアンロード弁37は、通常はスプリング37aの作用で図示の閉位置を保ち、両アンロード通路35,36を閉じる。そして、上記スプリング37aとは反対側に設けたパイロット室37bの圧力作用で切り換り、アンロード通路35,36をタンクに連通させる。さらに、パイロット室37bは上記電磁開閉弁33と減圧弁34との間に接続している。したがって、電磁開閉弁33が開いてパイロット通路32にサブポンプSPからの流体が流れれば、減圧弁34の上流側に圧力が発生するが、その圧力がアンロード弁37のパイロット室37bに作用し、当該アンロード弁37を開弁するものである。
【0025】
そして、コントローラCは、エンジンEの図示していないイグニションスイッチがオンになると、まず、電動モータMGを回転させるが、このときには傾角制御器22を介して、サブポンプSPは最大の傾転角を維持する。
したがって、電動モータMGが回転すれば、サブポンプSPから流体が吐出されるが、このときにはコントローラCが電磁開閉弁33を開いているので、サブポンプSPの吐出圧は減圧弁34で減圧されてパイロットポンプPPの吐出側に導かれるとともに上記したパイロット経路に導かれる。
また、上記のようにサブポンプSPの吐出流体が減圧弁34を通過すれば、その上流側に圧力が発生するが、この圧力がアンロード弁37のパイロット圧となって当該アンロード弁37を開位置に切り換え、第1,2メインポンプMP1,MP2をアンロード状態にする。このように電磁開閉弁33が開き、コントローラCはエンジンEを起動させるが、このときには第1,2メインポンプMP1,MP2がアンロード状態にあるので、エンジンEの起動時にはその負荷が小さくなる。
【0026】
さらに、上記のようにイグニションキーが操作されてサブポンプSPが回転するときには、コントローラCが第1,2比例電磁絞り弁26,27の開度を制御して第1,2チェック弁30,31の下流側に流体を供給する。このように第1,2チェック弁30,31の下流側に流体が供給されると、その流体は中立流路8,17及びパイロット圧生成機構10,19を経由してタンクに戻される。
したがって、パイロット圧生成機構10,19でパイロット圧が生成されるが、このパイロット圧がレギュレータ1,2に作用して第1,2メインポンプMP1,MP2の傾転角を小さくしてその吐出量をスタンバイ流量にする。また、このときには、パイロット圧生成機構10,19で生成されたパイロット圧の圧力信号が、第1,2圧力センサー12,21を介して、コントローラCに入力する。
【0027】
上記のように第1,2圧力センサー12,21からの信号を受信したコントローラCは、第1,2メインポンプMP1,MP2に接続した第1,2回路系統がスタンバイ状態を保ちつつ、エンジンEが所定の回転数に達するか、あるいはイグニションキーを操作後所定の時間が経過した後に、電磁開閉弁33を閉位置に切り換えるとともに、サブポンプSPの吐出量を減少させる。なお、サブポンプSPの吐出量を減少させる手段としては、サブポンプSPの傾転角を小さくするか、あるいは電動モータMGの回転数を落とすかいずれであってもよい。サブポンプSPの傾転角を小さくするときには、コントローラCは傾角制御器22を介して制御し、電動モータMGの回転数を落とすときには、コントローラCは、インバータIを介して制御する。
【0028】
次に、サブポンプSPと同軸回転する可変容量型のアシストモータAMについて説明する。
コントローラCに接続した傾角制御器55で傾転角が制御されるアシストモータAMには、接続用通路42を接続しているが、この接続用通路42は、導入通路43およびチェック弁44,45を介して、旋回モータRMに接続した通路46,47に接続している。しかも、上記導入通路43にはコントローラCで開閉制御される電磁切換弁48を設けるとともに、この電磁切換弁48とチェック弁44,45との間に、旋回モータRMの旋回時の圧力あるいはブレーキ時の圧力を検出する圧力センサー49を設け、この圧力センサー49の圧力信号をコントローラCに入力するようにしている。
そして、コントローラCは、旋回モータRMの旋回あるいはブレーキ動作に影響を及ぼさない範囲内であって、ブレーキ弁b1,b2の設定圧よりも低い圧力信号を受信したとき、電磁切換弁48を開位置に切り換えて、旋回モータRMの圧力流体の一部をアシストモータAMに導く。
【0029】
また、導入通路43であって、旋回モータRMから接続用通路42への流れに対して、上記電磁切換弁48よりも下流側となる位置には、安全弁50を設けているが、この安全弁50は、例えば電磁切換弁48などが故障して開弁しっぱなしになったり、接続通路42に故障が生じたりしたとき、通路46,47の圧力を維持して旋回モータRMがいわゆる逸走するのを防止するものである。
【0030】
さらに、上記ブームシリンダBCは、そのピストン側室51aと操作バルブ15とを接続する通路過程に比例電磁弁52を設け、上記ピストン側室51aと比例電磁弁52との間には、接続用通路42に連通する通路53を接続するとともに、この通路53にはコントローラCで制御される電磁弁54を設けている。
そして、操作バルブ15を切り換え操作して、ブームシリンダBCの上記ロッド側室51bを第2メインポンプMP2に接続し、ピストン側室51aをタンクに連通したときには、コンローラCは、上記操作バルブ15に設けた図示していないセンサーを介して当該バルブ15の操作状況を認識する。コントローラCが操作バルブ15の上記の操作状況を認識すると、コントローラCは、比例電磁弁52を完全に閉じるとともに、電磁弁54を開位置に切り換える。電磁弁54がこのように開位置に切り換れば、ブームシリンダBCのピストン側室51aの戻り流体がアシストモータAMに供給されることになる。
【0031】
一方、上記したようにエンジンEを起動させたとき、第1,2メインポンプMP1,MP2に接続した第1,2回路系統がスタンバイ状態を保ったら、電磁開閉弁33を閉じるとともに、サブポンプSPの吐出量を減少させるが、それ以後は、コントローラCが、第1,2圧力センサー12,21などの信号をもとにして、サブポンプSPのアシスト制御をする。このときのサブポンプSP及びアシストモータAMは、次のように機能する。
【0032】
例えば、第1,2圧力センサー12,21からコントローラCに相対的に高い圧力信号が入力すると、コントローラCは、第1,2メインポンプMP1,MP2が最小吐出量を維持しているものと判定して傾角制御器22,55を制御し、サブポンプSPおよびアシストモータAMの傾転角をゼロもしくは最小にする。
コントローラCが、上記のように第1,2メインポンプMP1,MP2の吐出量が最小である旨の信号を受信したとき、コントローラCは電動モータMGの回転を停止してもよいし、その回転を継続させてもよい。
電動モータMGの回転を止める場合には、消費電力を節約できるという効果があり、電動モータMGを回転し続けた場合には、サブポンプSPおよびアシストモータAMも回転し続けるので、当該サブポンプSPおよびアシストモータAMの起動時のショックを少なくできるという効果がある。いずれにしても、電動モータMGを止めるかあるいは回転し続けるかは、当該建設機械の用途や使用状況に応じて決めればよいことである。
【0033】
上記の状況で第1回路系統あるいは第2回路系統のいずれかの操作バルブを切り換えれば、その操作量に応じて中立流路8あるいは17を流れる流量が少なくなり、それにともなってパイロット圧生成機構10あるいは19で生成されるパイロット圧も低くなる。このようにパイロット圧が低くなれば、それにともなって第1メインポンプMP1あるいは第2メインポンプMP2は、その傾転角を大きくして吐出量を増大させる。
また、上記のように第1メインポンプMP1あるいは第2メインポンプMP2の吐出量を増大するときには、コントローラCは、電動モータMGを常に回転した状態に保つ。つまり、第1,2メインポンプMP1,MP2の吐出量が最小のときに電動モータMGを停止した場合には、コントローラCは、パイロット圧が低くなったことを感知して、電動モータMGを再起動させる。
そして、コントローラCは、第1,2圧力センサー12,21の圧力信号に応じて、第1,2比例電磁絞り弁26,27の開度を制御し、サブポンプSPの吐出量を按分して、第1,2回路系統に供給する。
【0034】
一方、アシストモータAMが回転力を得れば、その回転力は、同軸回転する電動モータMGに作用するが、このアシストモータAMの回転力は、電動モータMGに対するアシスト力として作用する。したがって、アシストモータAMの回転力の分だけ、電動モータMGの消費電力を少なくすることができる。
また、上記アシストモータAMの回転力でサブポンプSPの回転力をアシストすることもできるが、このときには、アシストモータAMとサブポンプSPとが相まって圧力変換機能を発揮させる。
【0035】
つまり、接続用通路42に流入する流体圧はポンプ吐出圧よりも低いことが多い。この低い圧力を利用して、サブポンプSPに高い吐出圧を維持させるために、アシストモータAMおよびサブポンプSPによって増圧機能を発揮させるようにしている。
すなわち、上記アシストモータAMの出力は、1回転当たりの押しのけ容積Qとそのときの圧力Pの積で決まる。また、サブポンプSPの出力は1回転当たりの押しのけ容積Qと吐出圧Pの積で決まる。そして、この実施形態では、アシストモータAMとサブポンプSPとが同軸回転するので、Q×P=Q×Pが成立しなければならない。そこで、例えば、アシストモータAMの上記押しのけ容積Qを上記サブポンプSPの押しのけ容積Qの3倍すなわちQ=3Qにしたとすれば、上記等式が3Q×P=Q×Pとなる。この式から両辺をQで割れば、3P=Pが成り立つ。
したがって、サブポンプSPの傾転角を変えて、上記押しのけ容積Qを制御すれば、アシストモータAMの出力で、サブポンプSPに所定の吐出圧を維持させることができる。
【0036】
また、アシストモータAMを駆動源として電動モータMGを発電機として使用することもできるが、このときには、サブポンプSPの傾転角をゼロにしてほぼ無負荷状態にし、アシストモータAMには、電動モータMGを回転させるために必要な出力を維持しておけば、アシストモータAMの出力を利用して、電動モータMGに発電機能を発揮させることができる。
【0037】
上記のようにしたこの実施形態によれば、エンジンEを起動させる際にイグニションキーを操作すると、コントローラCがそれを感知して、まず電動モータMGを回転させるとともに、サブポンプSPから圧力流体を吐出させる。
また、コントローラCは、第1,2比例電磁絞り弁26,27を開くとともに、電磁開閉弁33を開位置に切り換える。電磁開閉弁33が開位置に切り換ると、サブポンプSPの吐出流体がパイロット通路32に流れ、減圧弁34を介してパイロットポンプPPの吐出側に供給される。このようにしてパイロットポンプPPの吐出側に供給された圧力流体は、前記したパイロット経路を通ってバルブ群に供給され、バルブ群をいつでも切り換えられる状態に保つ。
【0038】
また、減圧弁34の上流側の圧力が、アンロード弁37のパイロット室37bに作用するとともに、当該アンロード弁37を開位置に切り換える。したがって、第1,2メインポンプMP1,MP2はアンロード状態に保たれる。
このように第1,2メインポンプMP1,MP2がアンロード状態になったら、コントローラCはエンジンEを起動させるが、このエンジンEの起動時には、第1,2メインポンプMP1,MP2の回転負荷がエンジンEにほとんど作用しなくなり、エンジンEが短時間で立ち上がるとともに、過負荷状態で黒鉛を発生するようなこともない。
【0039】
上記のようにエンジンEが立ち上がるまでの間は、第1,2メインポンプMP1,MP2がアンロード状態を保っているが、第1,2回路系統の中立流路8,17には、サブポンプSPからの吐出流体が供給されるので、パイロット圧生成機構10,19が高いパイロット圧を生成する。したがって、この高いパイロット圧の作用で、第1,2メインポンプMP1,MP2はスタンバイ流量を保つのに必要な傾転角に保たれるとともに、第1,2回路系統はスタンバイ状態を維持する。
なお、上記サブポンプSPの吐出流体が、上記のように中立流路8,17に供給されるときには、第1,2チェック弁30,31が機能するので、上記サブポンプSPの吐出流体がアンロードされることはない。
【0040】
そして、コントローラCは、第1,2回路系統のメインポンプMP1,MP2をスタンバイ状態に保ちつつ、エンジンEが所定の回転数に達するが、イグニションキーを操作した後、所定の時間経過後に、電磁開閉弁33を閉じるとともに、サブポンプSPの吐出量を減少させる。
上記のようにコントローラCは、イグニションキーの操作から電動モータMGの起動、サブポンプSPの吐出流体の制御、第1,2メインポンプMP1,MP2のアンロード制御、エンジンEの起動等を連続的に無駄なく実行する。
【図面の簡単な説明】
【0041】
【図1】この発明の実施形態を示す回路図である。
【符号の説明】
【0042】
E エンジン
MP1 第1メインポンプ
MP2 第2メインポンプ
1,2 レギュレータ
PP パイロットポンプ
3〜7 操作バルブ
8 中立流路
10 レパイロット圧生成機構
11 パイロット流路
12 第1圧力センサー
C コントローラ
13〜16 操作バルブ
17 中立流路
19 パイロット圧生成機構
20 パイロット流路
21 第2圧力センサー
SP サブポンプ
MG 電動モータ
24,25 第1,2合流通路
30,31 第1,2チェック弁
32 パイロット通路
33 電磁開閉弁
34 減圧弁
37 アンロード弁

【特許請求の範囲】
【請求項1】
エンジンの駆動力で回転する可変容量型のメインポンプと、このメインポンプの傾転角を制御するレギュレータと、複数の操作バルブを設けるとともにメインポンプに接続した回路系統と、上記回路系統の操作バルブを中立位置に保持したときメインポンプの吐出流量が流通する中立流路と、この中立流路に設けるとともに中立流路に流れが発生したときに高い圧力を発生するパイロット圧生成機構と、このパイロット圧生成機構が生成したパイロット圧を上記レギュレータに導くパイロット流路とを備えた建設機械において、メインポンプの吐出側に設けるとともに当該メインポンプから上記操作バルブへの流通のみを許容するチェック弁と、電動モータの駆動力で回転するサブポンプと、一方を上記サブポンプの吐出側に接続し、他方を上記チェック弁の下流側に接続した合流通路と、サブポンプに接続したパイロット通路と、このパイロット通路に設けた電磁開閉弁と、通常は閉位置を保ち、上記電磁開閉弁の下流側の圧力作用で開位置に切り換って上記チェック弁の上流側をアンロードさせるアンロード弁とを備えたハイブリッド建設機械の制御装置。
【請求項2】
メインポンプと同軸回転するパイロットポンプと、このパイロットポンプの吐出圧をパイロット圧として切り換るバルブ群と、サブポンプに接続したパイロット通路に設けた減圧弁とを備え、上記サブポンプに接続したパイロット通路を上記パイロットポンプの吐出側に接続するとともに、上記減圧弁の上流側の圧力をアンロード弁のパイロット室に導き、このパイロット室の圧力作用でアンロード弁が開位置を保つ構成にした請求項1記載のハイブリッド建設機械の制御装置。
【請求項3】
エンジンのイグニションキー、上記電磁開閉弁及び上記電動モータに接続したコントローラを設けるとともに、このコントローラは、イグニションキーが操作されたときに電動モータを駆動してサブポンプを回転させる機能と、サブポンプを回転させてから電磁開閉弁を開位置に切り換える機能と、電磁開閉弁が開いてからエンジンを回転させる機能とを備えた請求項1又は2記載のハイブリッド建設機械の制御装置。
【請求項4】
パイロット圧生成機構に接続したパイロット流路に圧力センサーを設け、この圧力センサーが検出したパイロット圧を上記コントローラに入力する構成にし、上記コントローラは、イグニションキーが操作されたときに電動モータを駆動してサブポンプを回転させる機能と、サブポンプを回転させてから電磁開閉弁を開位置に切り換える機能と、電磁開閉弁が開いてからエンジンを回転させる機能と、サブポンプの吐出量が中立流路に流れて上記圧力センサーからの圧力信号が予め設定した圧力に達したときサブポンプの吐出量を減少させる機能とを備えた請求項1〜3のいずれかに記載のハイブリッド建設機械の制御装置。
【請求項5】
上記コントローラは、電磁開閉弁を開位置に切り換えた後にアンロード弁を開位置に切り換えてメインポンプをアンロードにする一方、エンジンの回転数が予め設定した回転数に達した後、あるいはイグニションキーを操作してから予め設定した時間を経過した後に、上記電磁開閉弁を閉じてオンロードにする機能と、上記電磁開閉弁が閉じたときサブポンプの吐出量を減少させる機能とを備えた請求項4記載のハイブリッド建設機械の制御装置。

【図1】
image rotate


【公開番号】特開2009−299301(P2009−299301A)
【公開日】平成21年12月24日(2009.12.24)
【国際特許分類】
【出願番号】特願2008−152453(P2008−152453)
【出願日】平成20年6月11日(2008.6.11)
【出願人】(000000929)カヤバ工業株式会社 (2,151)
【Fターム(参考)】