説明

内視鏡装置

【課題】内視鏡作業中の温度環境に関係なく、歪みのない観察画像を得る。
【解決手段】走査型内視鏡装置において、SFEスキャナ16によって光ファイバ先端部を螺旋状に駆動させ、所定のフレームレートで照明光を螺旋走査させる。初期信号処理回路32は、フォトセンサ26R、26G、26Bから出力される一連の画素信号に対してマッピング処理を実行し、その後、リマッピング回路34がリマッピング処理を実行する。リマッピングのとき、温度センサ54、温度調節器56の温度センサによって検出される外気温度、スコープ先端部温度に応じたリマッピングデータを決定し、システムコントロール回路40の制御の下で画素変換(画素位置修正)を行う。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、照明光を器官内壁などの観察対象に向けて走査させ、観察画像を取得する内視鏡装置に関し、特に、作業中のスコープ先端部温度に起因する画像歪みの補正処理に関する。
【背景技術】
【0002】
内視鏡装置として、スコープ先端部に撮像素子を設ける代わりに、光ファイバ先端部を共振させて照明光を走査させる内視鏡装置(以下、走査型内視鏡装置という)が知られている(例えば、特許文献1参照)。そこでは、走査型光ファイバがスコープ内部に設けられ、ファイバ先端部分が圧電素子によって2次元振動することによって、照明光が螺旋状に走査される。
【0003】
ファイバ先端部は、定められたフレームレート(例えば1/30秒間隔)に従って周期的に螺旋運動し、観察対象エリアを照明する。そして、観察対象からの反射光をフォトセンサによって順次受光し、画素信号を時系列的に検出する。検出される一連の画素信号をファイバ先端部の走査位置と対応させることによって、観察画像を得る。
【0004】
一方、撮像素子をスコープ先端部に設けた電子内視鏡装置では、撮像素子付近の温度上昇を防ぐため、スコープ先端部にサーミスタを設けて温度を検出する構成が知られている(特許文献2参照)。温度が所定温度を超えると、撮像素子周りを冷却する。これにより、スコープ先端部の加熱を防ぐ。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2008−043763号公報
【特許文献2】特開2006−664号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
走査型内視鏡装置の場合、スコープ先端部に圧電素子などのファイバ駆動部が設けられているが、その動作特性は熱に影響され、僅かな温度の違いによってもその動作特性が変わる。スコープを体内に挿入すると、体内温度に合わせてコープ先端部温度が変化し、ファイバ駆動部の動作が温度上昇に依って変化する。その結果、ファイバ先端部が本来の動きから外れてしまい、走査の乱れによって取得する画像に歪みが生じる。
【0007】
特に、圧電素子などは、僅かな温度変化によっても駆動特性が変化し、観察画像の画質に影響を及ぼす。したがって、走査型内視鏡装置では、画像の歪みを抑制し、作業中のスコープ先端部の温度状況に関わらず適正な観察画像を常に取得することが要求される。
【課題を解決するための手段】
【0008】
本発明の内視鏡装置は、光ファイバ先端部を駆動する駆動部(圧電素子など)を有し、照明光を観察対象に向けて走査させる走査手段と、観察対象からの反射光を受光し、一連の画素信号を出力するフォトセンサと、一連の画素信号を走査位置と対応づけること(マッピング)によって、観察画像を形成する画像形成手段を備える。
【0009】
さらに本発明の内視鏡装置は、スコープ先端部温度を検出する第1の温度検出部と、外気温度を検出する第2の温度検出部とを備える。ただし、ここでの「外気温度」は、被験対象外の温度で、内視鏡装置の設置された作業室内の温度などを示す。スコープ先端部温度をある程度一定に維持するため、スコープ先端部に温度調節器を設けてもよい。
【0010】
内視鏡作業中、体内にあるスコープ先端部は体内温度の雰囲気にあるが、スコープ挿入部の被験者口元部分は外気温度の雰囲気にある。スコープ先端部とスコープ挿入部の口元付近との間に温度差あるため、スコープ先端部からプロセッサ側に向けて温度勾配が生じやすい。
【0011】
本発明では、外気温度とスコープ先端部温度の両方を検出し、内視鏡作業中における駆動部の動作特性が2つの温度によって検知される。そして画像形成手段は、検出されるスコープ先端部温度および外気温度に応じた駆動部の駆動特性に基づいて、観察画像の歪みを補正する。ここでの「観察画像の歪みを補正する」とは、マッピングにより形成される観察画像に生じる画像の乱れを解消するように、駆動部の駆動修正、あるいは画像処理を行うことを意味する。
【0012】
スコープ挿入部に温度勾配が生じていても、駆動部の実際の動作環境温度が2つの温度によって正確に把握され、その動作環境温度に合わせた画像歪み補正が行われる。そのため、画像補正に誤りが無く、歪みのない観察画像が得られる。
【0013】
駆動部に大きな動作乱れがある場合、駆動部を制御して光ファイバ先端部の動きを修正すればよい。一方、螺旋走査では、観察画像中心付近に画像歪みが生じやすい。その場合、画素位置を変換してマッピングを修正するのが望ましく、画像形成手段は、検出されるスコープ先端部温度および外気温度に応じて位置ずれのある画素位置を本来の位置に変換するリマッピング処理を実行するのがよい。
【0014】
画像処理によって歪みを解消する場合、あらかじめ駆動部の動作特性を調べ、そのデータに基づいて歪み補正を行うのがよい。例えば、先端部温度および外気温度の組み合わせに応じた画素変換位置関係を示す一連のリマッピングデータを、メモリにあらかじめ格納しておけばよい。画像形成手段は、検出されるスコープ先端部温度および外気温度に応じたリマッピングデータに基づいてリマッピング処理を行う。
【0015】
スコープ先端部にヒータなどの温度調整用器具を設けた場合、作業中にもスコープ先端部の温度が微妙に変化する。そのような温度変化にも対処して観察画像の歪み発生を防ぐため、画像形成手段は、1フレーム周期毎にスコープ先端部温度および外気温度を検出するのが望ましい。
【0016】
駆動部の動作特性を正確に判断することを考慮し、第1の温度検出部は、スコープ先端部内部の駆動部の傍に設置するのがよい。特に、管状の圧電素子に光ファイバを通すような構成の場合、動作特性に最も影響ある部分、すなわち駆動部と光ファイバ先端部の接合部付近に設置するのがよい。
【0017】
一方、外気温度を計測する第2の温度検出部は、プロセッサに設けてもよいが、温度勾配を正確に検出するため、スコープ挿入部に近い場所、例えば、スコープのプロセッサ接続部に設けるのが望ましい。
【0018】
本発明の他の局面における画像補正装置は、光ファイバ先端部を駆動する駆動部を有し、照明光を観察対象に向けて走査させる走査型内視鏡装置に適用される画像補正装置であり、スコープ先端部に設けられるスコープ温度センサによってスコープ先端部温度を検出する先端部温度検出手段と、スコープもしくはプロセッサに設けられる外気温度センサによって外気温度を検出する外気温度検出手段と、検出されるスコープ先端部温度および外気温度に応じた駆動部の駆動特性に基づき、観察画像の歪みを補正する画像補正手段とを備えたことを特徴とする。
【発明の効果】
【0019】
このように本発明によれば、内視鏡作業中の温度環境に関係なく、歪みのない観察画像を得ることができる。
【図面の簡単な説明】
【0020】
【図1】本実施形態である走査型内視鏡装置のブロック図である。
【図2】スコープ先端部の内部構成を概略的に示した図である。
【図3】走査パターンを示した図である。
【図4】マッピングによる画素信号の配列を示した図である。
【図5】システムコントロール回路によって実行される画像補正処理を示したフローチャートである。
【図6】リマッピングデータを示した図である。
【図7】リマッピング対象エリアを示した図である。
【図8】走査タイミングチャートを示した図である。
【図9】観察画像を示した図である。
【発明を実施するための形態】
【0021】
以下では、図面を参照して本実施形態である走査型内視鏡装置について説明する。
【0022】
図1は、本実施形態である走査型内視鏡装置のブロック図である。図2は、スコープ先端部の内部構成を概略的に示した図である。図3は、走査パターンを示した図である。
【0023】
走査型内視鏡装置は、スコープ10とプロセッサ30とを備え、スコープ10の内部には、照明用のシングルモード型光ファイバ(以下、走査型光ファイバという)12と観察対象からの反射光を伝送するイメージファイバ(ここでは図示せず)が設けられている。スコープ10は、プロセッサ接続部10Sを介してプロセッサ30と着脱自在に接続可能であり、スコープ挿入部10Mが体内に挿入される。また、プロセッサ30にはモニタ60が接続される。
【0024】
プロセッサ30には、R,G,Bの光をそれぞれ発光するレーザー光源20R、20G、20Bが設けられ、レーザードライバ22によってそれぞれ駆動される。レーザー光源20R、20G、20BからR,G,Bが同時発光し、走査型光ファイバ12の端部が接続される結合部23に光が入射する。結合部23は、光学レンズ、ハーフミラー群から構成されており、R,G,Bの光を混合する。R,G,Bの混合した光(白色光)は、走査型光ファイバ12を通ってスコープ先端部10Tから射出し、これによって観察対象が照明される。
【0025】
スコープ先端部10Tには、スコープ先端部10Tから射出される照明光を螺旋状に走査させるスキャナデバイス(以下、SFEスキャナという)16が設けられており、プロセッサ30内のピエゾ駆動回路46から送られてくる駆動信号に基づいて動作する。図2に示すように、SFEスキャナ16は、スコープ先端部10Tのハウジング10H内部に装着されており、走査型光ファイバ12は、チューブ状アクチュエータ18の軸に挿通される形で保持されている。
【0026】
筒状固定部材15によって固定されたアクチュエータ18は、ピエゾ素子によって構成された圧電素子であり、走査型光ファイバ12の先端部12Tを二次元的に共振させる。すなわち、直交する2方向に沿って所定の共振モードでファイバ先端部12Tを共振させる。アクチュエータ18によってカンチレバー状に支持されるファイバ先端部12Tは、その先端面12Sが周期的に螺旋運動するように振動する。
【0027】
ファイバ先端部12Tの先端面12Sから射出した照明光は、レンズ群19を通って観察部位Sに到達する。ファイバ先端部12Tが螺旋状に駆動するため、観察対象エリアにおける照明光の軌跡PTは、螺旋状の走査線になる(図3参照)。走査線PTの径方向間隔が密になるように走査することで、観察対象全体が(中心から周囲に向けて順に)照射される。
【0028】
観察対象において反射した光は、ハウジング10Hの周囲に延びているイメージファイバ17に入射し、プロセッサ30へ導かれる。イメージファイバ17を通った反射光は、光学レンズ、ハーフミラー群から構成される光分離部24に入射し、R,G,Bの光に分離される。R,G,Bの光はそれぞれフォトセンサ26R、26G、26Bに入射し、フォトセンサ26R、26G、26Bでは、光電変換によってR,G,Bに応じた画素信号が生成される。螺旋走査期間は、所定の時間間隔(ここでは、1/30秒間隔)に定められており、1フレーム分の画素信号がその走査周期(フレーム周期)に合わせて読み出される。
【0029】
R,G,Bの画素信号は、A/D変換器28R、28G、28Bにおいてデジタル信号に変換された後、初期信号処理回路32へ送られてR,G,B信号毎に信号処理される。初期信号処理回路32では、順次送られてくる一連のR,G,Bデジタル画素信号と照明光の走査位置とをマッピング、すなわち対応づけることにより、時系列的に取得される画素信号の画素位置が特定され、1フレーム分のデジタル画素信号が2次元画像データとして取得される。リマッピング回路34では、後述するように、観察画像の中心部エリアに対してマッピングが修正される。
【0030】
リマッピングによって観察画像データが生成されると、画像処理回路36では、デジタル画素信号に対してホワイトバランス調整などの画像信号処理が施され、映像信号が生成される。映像信号はエンコーダ38を介してモニタ60に送られる。これにより、観察画像がモニタ60に表示される。
【0031】
CPU、ROM、RAMを含むシステムコントロール回路40は、プロセッサ30の動作を制御し、初期信号処理回路32、タイミングコントローラ42、レーザードライバ22など各回路へ制御信号を出力する。タイミングコントローラ34は、同期信号をフォトセンサ26R、26G、26B、レーザードライバ22、スキャナ制御回路44等に出力し、ファイバ先端部17Aの螺旋状運動と発光タイミング、画像処理タイミングを同期させる。
【0032】
スコープ先端部10Tには、スコープ先端部10T付近の温度を調節するための温度調節器56が設けられている。温度調節器56は、サーミスタなどによる温度センサ57を備え、図2に示すように、ファイバ先端部12Tとアクチュエータ18の接合部分KSの近いハウジング10H内面に設置される。一方、スコープ10のプロセッサ接続部10Sには、外気温度を検出する温度センサ54が設けられている(図1)。温度情報メモリ52には、外気温度およびスコープ先端部温度に応じたリマッピングデータあらかじめ格納されている。
【0033】
図4は、マッピングによる画素信号の配列を示した図である。
【0034】
スコープ先端部10Tに設けられたアクチュエータ18は、上述したように管状ピエゾ素子によって構成されている。スコープ先端部10Tの温度が上がると、ピエゾ素子のヒステリシス特性等に起因してその動作特性が変化し、ファイバ先端部12Tは正確な螺旋運動にならない。特に、観察画像の中心部エリア内を走査している間、スムーズにファイバ先端部12Tは2次元振動しない。
【0035】
そのため、1フレーム期間のうちで中心エリア内を走査する期間、照明光が本来の螺旋状走査ラインから外れ、目的とする位置に照明光が到達しない。マッピング処理を行う初期信号処理回路32では、螺旋走査に応じて時系列で取得される一連の画像信号をラスタデータに変換し、各画素信号(画素データ)を走査位置に対応したアドレスに格納する。しかしながら、走査ラインに乱れが生じると、走査位置と画素信号の対応関係が異なってしまい、本来の走査位置(照明位置)のアドレスとは異なるアドレスに画素データが格納される。
【0036】
図4には、螺旋走査ラインに応じて時系列で得られる一連の画素信号をラスタデータとして並べた画素信号を示している。アクチュエータ18が正常に駆動する場合、画素信号(画素データ)Pxは、定められた走査位置Xに応じたアドレスAijに格納される。しかしながら、走査ラインが膨らむ方向に外れた場合、走査位置XXに応じた画素信号PxxがアドレスAijに格納される。
【0037】
このようなマッピング処理における走査位置と画素信号の対応付けが正確に行われないため、観察画像に歪みが生じる。そこで本実施形態では、画像データをリマッピング、すなわちマッピングを再構成することにより、画像の歪みを解消する。以下、画像歪みの補正処理について説明する。
【0038】
図5は、システムコントロール回路によって実行される画像補正処理を示したフローチャートである。
【0039】
ステップS101では、プロセッサ接続部10Sに設けられた温度センサ54、およびスコープ先端部10Tに設けられた温度センサ57によって、外気温度およびスコープ先端部の温度がそれぞれ計測される。例えば、内視鏡装置の設置された手術室の温度が約25度で維持されている場合、温度センサ54、57によって検出される温度は約25度である。システムコントロール回路40は、温度調節器56に設けられたヒータで加熱するように温度調節器56に送る駆動電流を増加させ、スコープ先端部10Tの温度を体内温度に近い温度まで上げておく。
【0040】
ステップS102では、温度センサ54によって検出されるスコープ先端部温度が閾値温度を超えているか否かが判断される。ここでの閾値温度は、スコープ10が体内に挿入されたときにスコープ先端部10Tが達する境界温度を表し、検出温度が閾値温度を超えるとスコープ10が体内に挿入されたとみなす。ただし、このような自動検出の代わりに、体内挿入に合わせてオペレータが補正処理開始のスイッチ操作などを行ってもよい。
【0041】
検出温度が閾値を超えている場合、スコープ10が体内に挿入されたと判断し、温度センサ54、57によってスコープ先端部10Tの温度および外気温度が計測される(S103)。スコープ先端部10Tの温度は体内温度とほぼ等しくなるが、温度調節器56によってスコープ先端部10Tの温度は体内温度よりも若干高めの温度(約38度)になるように調整される。
【0042】
図6は、リマッピングデータを示した図である。図6に示すように、スコープ先端部温度、外気温度の各組み合わせに応じてリマッピングデータが温度情報メモリ52にあらかじめ格納されている。一連のリマッピングデータRDiは、マッピング修正の必要がある画素位置を外気温度、スコープ先端温度の組み合わせと対応づけたアドレスデータであり、リマッピング回路34では、このデータに基づいて画素データの位置変換処理を行う。
【0043】
ここでは、外気温度とスコープ先端部温度の様々な組み合わせに対するリマッピングデータRDiが用意されており、それぞれ画素位置変換のアドレスデータが異なる。これは、外気温度とスコープ先端部温度によってアクチュエータ18の駆動特性が、外気温度およびスコープ先端部温度によって異なるためである。本実施形態では、あらかじめ各温度の組み合わせによるアクチュエータ18の駆動特性、すなわち画像の歪みを検出し、その歪みから画素位置修正用のリマッピングデータを作成している。
【0044】
内視鏡作業中、スコープ先端部10Tの温度が体内温度付近である一方、スコープ10の被験者口元付近における温度は外気温度に近い。アクチュエータ18の駆動用配線18P(図2参照)は、プロセッサ30からスコープ先端部10Tまで延びているが、熱伝導性の高い駆動用配線18Pなどの影響によって外気温度がスコープ先端部10Tまで伝わるため、スコープ先端部10Tからプロセッサ30に向けて温度勾配が生じる。
【0045】
また、温度調節器56の熱作用によってもアクチュエータ18の動作環境温度は変化する。そのため、アクチュエータ18の駆動時における実際の温度は、温度センサ57によって検出されるスコープ先端部温度と必ずしも一致せず、外気温度などに影響される。
【0046】
上述したように、アクチュエータ18の駆動乱れによってファイバ先端部12Tの振動が乱れる。この乱れは、僅かな温度環境変化によって変化し、走査ラインもそれに従って変化する。これは、ピエゾ素子であるアクチュエータ18の動作特性(ヒステリシス特性など)が、微妙な温度変化に応じて変わるためである。
【0047】
ファイバ先端部12Tの動きが動作環境温度にセンシティブであるため、画像の歪み具合も僅かな温度変化によって異なるものとなる。したがって、単にスコープ先端部10Tの温度を検出しただけでは、正確なリマッピングを行うことが出来ない。例えば、スコープ先端部10Tの温度が37度であったとしても、外気温度が異なるとアクチュエータ18の動作特性も変化する。
【0048】
本実施形態では、外気温度およびスコープ先端部温度の組み合わせそれぞれに応じた走査ラインの軌跡を事前に調べ、検出される外気温度、スコープ先端部温度に応じたリマッピングを行う。具体的には、外気温度、スコープ先端部温度を少しずつ変化させながらファイバ先端部の走査を実行させ、走査ラインの乱れ、すなわち本来の走査位置とのずれを調べる。そして、実際の走査位置と本来の走査位置の対応関係を取り入れたリマッピングデータを作成し、一度マッピングされた画像データの中で対象となる画素について画素位置変換する。
【0049】
図7は、リマッピング対象エリアを示した図である。動作温度に起因する走査ラインの乱れは、走査開始直後に集中する。その理由は、ファイバ先端部12Tを螺旋運動させるとき、走査開始直後は急激に動作を伴って滑らかな初期駆動が困難であり、また、走査ラインの径方向間隔が短いためである。
【0050】
リマッピング対象エリアは、画像歪みの生じやすい中心部エリアに定められている。走査ラインの乱れはスコープ先端部温度、外気温度によって異なるため、リマッピング対象エリアもこれら温度によって相違する。例えば、観察画像の径をrとする全体エリアEAに対し、スコープ先端部温度が比較的高温である場合にはr/2の径をもつエリアEA0を対象にしてリマッピング、すなわち画素位置変換処理を行う。一方、比較的低温である場合、r/3、あるいはr/4の中心部エリアをリマッピング対象とする。
【0051】
図5のステップS104では、温度情報メモリ52に格納された一連のリマッピングデータの中から、検出された外気温度、スコープ先端部温度に対応するリマッピングデータが決定される。リマッピングデータが決定されると、システムコントロール回路40がリマッピング回路34を制御し、リマッピングデータに基づいたリマッピング処理が実行される。
【0052】
図8は、走査タイミングチャートを示した図である。ここでは、マッピングにより生成された2次元画像データのうち走査開始から1/2フレーム期間までのデータについて、画素変換を行う。観察画像の画素位置と走査位置はメモリアドレスによって対応づけられており、リマッピングデータに基づいて画素変換対象のアドレスが特定される。これにより、本来あるべきアドレス位置に画素データが格納され、画像歪みが補正される。
【0053】
1/2フレーム期間経過後の走査エリアは、リマッピングの対象外エリアであるため、特にリマッピング処理することなく、画素データがそのまま同じ画素位置に対応づけられる。なお、図8では、1/2フレーム期間のエリアをリマッピング対象にしているが、検出される温度に応じて1/3、1/4フレーム期間に相当するエリアを対象にしてリマッピング処理が行われる。
【0054】
図5のステップS106では、走査開始から1フレーム期間が経過しているか否かが判断される。1フレーム期間が経過すると、ステップS103に戻り、外気温度、スコープ先端部温度を検出する。そして、繰り返しステップS103〜S106を実行し、1フレーム周期でリマッピング処理を行う。
【0055】
図9は、観察画像を示した図である。画像補正処理を行っていない観察画像QSの中心付近には歪みが生じている。画像補正処理を実行することによって、歪みのない画像QS’が表示される。
【0056】
このように本実施形態によれば、走査型内視鏡装置において、SFEスキャナ16のアクチュエータ18が光ファイバ先端部12Tを螺旋状に駆動させ、所定のフレームレート(1/30秒間隔)で照明光を螺旋走査させる。初期信号処理回路32では、フォトセンサ26R、26G、26Bから出力される一連の画素信号に対してマッピング処理が行われ、その後リマッピング処理がリマッピング回路34によって実行される。これにより、ラスタデータとして2次元画像データが生成される。
【0057】
そしてリマッピングのときには、温度センサ54、57によって検出される外気温度、スコープ先端部温度に応じたリマッピングデータが一連のリマッピングデータの中から選択、読み出され、システムコントロール回路40の制御の下で画素変換(画素位置修正)が行われる。ファイバ先端部12Tの螺旋駆動の乱れに起因する画素位置ずれを補償することにより、乱れのない高画質の観察画像がモニタに表示される。
【0058】
スコープ先端部温度と外気温度両方を検出することによって、アクチュエータ18の動作環境温度を正確に把握することができ、温度勾配によってスコープ先端部温度と実際のアクチュエータ18の動作環境温度が異なっていても、適切なリマッピング処理を行うことができる。
【0059】
一方、スコープ先端部温度と外気温度を1フレーム周期毎に検出しながらリマッピング処理を行うことにより、温度調整器56に設けられたヒータの熱、あるいは外気温度の変化等によって内視鏡作業中にアクチュエータ18の動作特性に変化が生じても、迅速に対応して適切なリマッピング処理を行うことができる。
【0060】
リマッピング対象エリアとして、r/4、r/3、r/2の径をもつ中心部エリアを挙げているが、それ以外の領域であってもよく、径がr/2のエリア内であればよい。
【0061】
温度センサ57は、できるだけ螺旋走査の乱れが生じる部分の温度を検出するため、アクチュエータ18とファイバ先端部12Tの接合部付近に設置されているが、スコープ先端部のそれ以外の場所であってアクチュエータ18近くに設置してもよい。また、外気温度を検出する温度センサ54は、スコープの温度勾配を精度よく検出するためスコープのプロセッサ接続部に設けられているが、スコープの操作部、あるいは、プロセッサの筐体部分に設けてもよい。
【0062】
ピエゾ素子以外の圧電素子、あるいはそれ以外のアクチュエータによってファイバ先端部を駆動してもよい。また、画像歪みの補正に関しては、リマッピングの代わりにアクチュエータの駆動を校正するようにしてもよい。例えば、螺旋走査が楕円状走査になってしまう場合、スキャナ制御回路がピエゾ素子のポジションを検知し、円状螺旋走査になるようにピエゾ素子の駆動を制御すればよい。
【符号の説明】
【0063】
10 スコープ
12 走査型光ファイバ
12T ファイバ先端部
16 SFEスキャナ(走査手段)
18 アクチュエータ(圧電素子、駆動部)
20R、20G、20B レーザー光源
26R、26G、26B フォトセンサ
30 プロセッサ
32 初期信号処理回路(画像形成手段)
34 リマッピング回路(画像形成手段)
40 システムコントロール回路(画像形成手段)
44 スキャナ制御回路
46 ピエゾ駆動回路
52 温度情報メモリ
54 温度センサ(第2の温度検出部)
56 温度調節器
57 温度センサ(第1の温度検出部)






【特許請求の範囲】
【請求項1】
光ファイバ先端部を駆動する駆動部を有し、照明光を観察対象に向けて走査させる走査手段と、
観察対象からの反射光を受光し、一連の画素信号を出力するフォトセンサと、
前記一連の画素信号を走査位置と対応づけることによって、観察画像を形成する画像形成手段と、
スコープ先端部温度を検出する第1の温度検出部と、
外気温度を検出する第2の温度検出部とを備え、
前記画像形成手段が、検出されるスコープ先端部温度および外気温度に応じた前記駆動部の駆動特性に基づいて、観察画像の歪みを補正することを特徴とする内視鏡装置。
【請求項2】
前記画像形成手段が、検出されるスコープ先端部温度および外気温度に応じて位置ずれのある画素位置を本来の位置に変換するリマッピング処理を実行することを特徴とする請求項1に記載の内視鏡装置。
【請求項3】
前記先端部温度および外気温度の組み合わせに応じた画素変換位置関係を示す一連のリマッピングデータがメモリにあらかじめ格納されており、
前記画像形成手段が、検出されるスコープ先端部温度および外気温度に応じたリマッピングデータに基づいてリマッピング処理を行うことを特徴とする請求項1に記載の内視鏡装置。
【請求項4】
前記画像形成手段が、1フレーム周期毎にスコープ先端部温度および外気温度を検出することを特徴とする請求項1に記載の内視鏡装置。
【請求項5】
前記第1の温度検出部が、スコープ先端部内部の前記駆動部の傍に設置されることを特徴とする請求項1に記載の内視鏡装置。
【請求項6】
前記第1の温度検出部が、前記駆動部と前記光ファイバ先端部の接合部付近に設置されることを特徴とする請求項5に記載の内視鏡装置。
【請求項7】
前記第2の温度検出部が、スコープのプロセッサ接続部に設けられることを特徴とする請求項1に記載の内視鏡装置。
【請求項8】
前記走査手段が、照明光を螺旋状に走査させることを特徴とする請求項1乃至7のいずれかに記載の内視鏡装置。
【請求項9】
前記駆動部が、圧電素子を有することを特徴とする請求項1乃至8のいずれかに記載の内視鏡装置。
【請求項10】
前記スコープ先端部に温度調節器が設けられることを特徴とする請求項1乃至9のいずれかに記載の内視鏡装置。
【請求項11】
光ファイバ先端部を駆動する駆動部を有し、照明光を観察対象に向けて走査させる走査型内視鏡装置の画像補正装置であって、
スコープ先端部に設けられるスコープ温度センサによってスコープ先端部温度を検出する先端部温度検出手段と、
スコープもしくはプロセッサに設けられる外気温度センサによって外気温度を検出する外気温度検出手段と、
検出されるスコープ先端部温度および外気温度に応じた前記駆動部の駆動特性に基づき、観察画像の歪みを補正する画像補正手段と
を備えたことを特徴とする画像補正装置。



【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2011−4929(P2011−4929A)
【公開日】平成23年1月13日(2011.1.13)
【国際特許分類】
【出願番号】特願2009−150876(P2009−150876)
【出願日】平成21年6月25日(2009.6.25)
【出願人】(000113263)HOYA株式会社 (3,820)
【Fターム(参考)】