説明

動圧軸受装置

【課題】 高い軸受性能を備え、かつ低コストでコンパクトな動圧軸受装置を提供する。
【解決手段】 動圧軸受装置1は、ラジアル軸受隙間に流体動圧を発生させるラジアル動圧発生部と、スラスト軸受隙間に流体動圧を発生させるスラスト動圧発生部とを備える。スラスト軸受隙間は、軸受スリーブ8の上側端面8bとディスクハブ3の下側端面3a1との間に形成され、その外径側領域8fをシール空間Sにつなげると共に、内径側領域8eをラジアル軸受隙間の上端につなげている。ラジアル軸受隙間の下端は、油循環路14を介してスラスト軸受隙間の外径側領域8fにつながっている。さらに、スラスト動圧発生部は、スラスト軸受隙間の外径側領域8fから内径側領域8eへ潤滑油を流動させる形状である。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、動圧軸受装置に関するものである。動圧軸受装置は、情報機器、例えばHDD等の磁気ディスク装置、CD−ROM、CD−R/RW、DVD−ROM/RAM等の光ディスク装置、MD、MO等の光磁気ディスク装置等のスピンドルモータ用、レーザビームプリンタ(LBP)のポリゴンスキャナモータ、プロジェクタのカラーホイール、あるいは電気機器、例えば軸流ファンなどの小型モータ用の軸受装置として好適である。
【背景技術】
【0002】
上記各種モータには、高回転精度の他、高速化、低コスト化、低騒音化などが求められている。これらの要求性能を決定付ける構成要素の一つに当該モータのスピンドルを支持する軸受があり、近年では、この種の軸受として、上記要求性能に優れた特性を有する動圧軸受装置の使用が検討され、あるいは実際に使用されている。
【0003】
例えば、HDD等のスピンドルモータに用いられる動圧軸受装置では、ラジアル軸受隙間およびスラスト軸受隙間を充満する潤滑流体(例えば、潤滑油)に生じる動圧作用で、軸部材をラジアル方向に非接触支持するラジアル軸受部と、スラスト方向に非接触支持するスラスト軸受部とが設けられる。
【0004】
この種の動圧軸受装置には、潤滑油の漏れを防止するためのシール空間が設けられている。ところが、軸部材の回転中には、動圧溝による動圧作用で軸部材をスラスト方向で非接触支持するスラスト軸受部の流体圧力と、シール空間での流体圧力との間に差を生じ、これが軸受性能に悪影響を与える場合がある。スラスト軸受部の流体圧力が、大気圧にほぼ等しいシール空間の流体圧力に比べて極端に高くなったり、逆に負圧になったりしないように、軸受スリーブの外周面あるいはハウジングの内周面に潤滑油が流れる溝(循環溝)を設けたものが知られている。(例えば、特許文献1参照)
【特許文献1】特開2003−322145号公報
【発明の開示】
【発明が解決しようとする課題】
【0005】
上記特許文献1では、ラジアル軸受隙間を満たす潤滑油に流体動圧を発生させる動圧発生部(ラジアル動圧発生部)として、例えばヘリングボーン形状に配列された複数の動圧溝が軸受スリーブの内周面に形成されている。また、スラスト軸受隙間を満たす潤滑油に流体動圧を発生させる動圧発生部(スラスト動圧発生部)として、例えばスパイラル形状に配列された複数の動圧溝が軸受スリーブの端面および蓋部材の端面に形成されている。
【0006】
ところで、ラジアル動圧発生部に形成されたヘリングボーン形状の動圧溝は、軸方向に潤滑油を流動させるためのポンピング機能を有している。特許文献1に示す形態の動圧軸受装置では、この動圧溝によるポンピング機能によってスラスト軸受部に押し込まれた潤滑油を、上記循環溝を通じてシール空間へ向けて循環させ、軸受装置内部の流体圧力が調整されている。しかしながら、この種の動圧溝は、複雑な形状であるため加工コストが高騰する。
【0007】
また、特許文献1に示す動圧軸受装置では、二箇所に形成されたスラスト軸受部で軸部材がスラスト方向に非接触支持されるが、スラスト動圧発生部を二箇所に形成する必要があるため、これによっても加工コストが高騰する。また、この種の動圧軸受装置では、油漏れを防止するためのシール空間が必要となるが、特許文献1に示す軸受装置では、このシール空間がスラスト軸受隙間と軸方向に並べて配置されているため、この点が軸受装置の軸方向寸法を増大させる要因となる。
【0008】
近年、動圧軸受装置が組込まれる情報機器においては、急速な高性能化が図られている一方で急速に低価格化、コンパクト化も進行しており、動圧軸受装置に対するこの種の要求は益々厳しさを増しているが、上記構造の動圧軸受装置ではこの種の要求に応えるのが困難である。
【課題を解決するための手段】
【0009】
以上の問題点を解決するため、本発明で提供する動圧軸受装置は、ラジアル軸受隙間と、ラジアル軸受隙間に面し、ラジアル軸受隙間を満たす潤滑油に動圧作用を発生させるラジアル動圧発生部と、スラスト軸受隙間と、スラスト軸受隙間に面し、スラスト軸受隙間を満たす潤滑油に動圧作用を発生させるスラスト動圧発生部とを備えるものであって、スラスト軸受隙間の外径側を、外気に開放した油面を有するシール空間につなげると共に、油循環路を介してラジアル軸受隙間の一端とつなげ、スラスト軸受隙間の内径側をラジアル軸受隙間の他端とつなげ、スラスト動圧発生部を、スラスト軸受隙間の外径側から内径側へ潤滑油が流動する形状に形成したことを特徴とするものである。
【0010】
上記本発明の構成によれば、スラスト軸受隙間に満たされた潤滑油がスラスト動圧発生部のポンピング作用により内径側に押し込まれる。内径側に押し込まれた潤滑油は、スラスト軸受隙間から、その内径側につながったラジアル軸受隙間、さらにはラジアル軸受隙間につながった油循環路を経てスラスト軸受隙間の外径側に戻る。そのため、軸受装置の内部空間に満たされた潤滑油は、スラスト軸受隙間→ラジアル軸受隙間→油循環路→スラスト軸受隙間からなる経路を辿って定常的に循環する。この時、シール空間につながったスラスト軸受隙間の外径側では潤滑油の圧力が大気圧に略等しくなるが、スラスト軸受隙間の内径側では、スラスト動圧発生部の外径側から内径側へのポンピング作用により、潤滑油の圧力が大気圧よりも高まる。スラスト軸受隙間の下流側では、粘性抵抗によって潤滑油の圧力が徐々に低下するが、スラスト軸受隙間に戻るまで潤滑油の流路が密閉状態にあるから、圧力はなお大気圧よりも高い状態を維持する。これにより、軸受装置内の各部における負圧の発生が防止されるので、負圧発生を原因とする気泡の生成や振動の発生を抑え、さらには動圧軸受装置の回転性能を高精度に管理することができる。
【0011】
この場合、油循環路の断面積を潤滑油の流れ方向で変動させれば、粘性抵抗による圧力降下量を適宜調整することが可能となり、負圧発生をより確実に防止することが可能となる。
【0012】
スラスト動圧発生部の形状は、外径側から内径側に潤滑油を流動させる機能(ポンプイン機能)を有するものであれば特に問わず、代表例としてスパイラル型に配列した動圧溝を挙げることができる。この他、例えばへリングボーン形状の動圧溝のようにポンプイン機能とポンプアウト機能とを併有するものであっても、ポンプアウト機能による外径側への流れよりもポンプイン機能による内径側への流れが支配的となるのであれば、スラスト軸受隙間の全体では外径側から内径側へ潤滑油が流動するので、この種の動圧発生部を採用することも可能となる。
【0013】
また、本発明の構成では、スラスト動圧発生部は一箇所のみに形成されるので、軸方向二箇所にスラスト動圧発生部を形成する場合に比べ、その加工コストを低減することができる。さらにシール空間をスラスト軸受隙間の外径側に配置することができるので、両者を軸方向に並べて配置する場合に比べて、軸受装置の軸方向寸法をコンパクト化することができる。
【0014】
本発明の構成によれば、上述したようにスラスト動圧発生部が有するポンピング能力で軸受装置内部を充満する潤滑油を循環させることができる。したがって、ラジアル動圧発生部は、ラジアル軸受部で軸方向に潤滑油を流動させない形状に形成することができる。
【0015】
これに該当するラジアル動圧発生部としては、例えば円周方向に、複数の軸方向溝を配したステップ面、複数の円弧面を有する多円弧面、もしくは調和波形面を有する波状面等を挙げることができる。例示したこれらの形状は、軸方向で同一の断面形状をなすので、従来用いられていた傾斜状の動圧溝(例えばヘリングボーン形状に配列した動圧溝)と比べて低コストに加工することができる。なお、これらのラジアル動圧発生部は、軸部材の外周面または軸受スリーブの内周面のうち、少なくとも何れか一方に形成される。
【0016】
以上の構成を有する動圧軸受装置は、動圧軸受装置と、ロータマグネットと、ロータマグネットとの間で電磁力を生じるステータコイルとを有するモータ、例えば情報機器用のスピンドルモータ等に好ましく用いることができる。
【発明の効果】
【0017】
以上のように、本発明によれば、高い軸受性能を備え、かつ低コストでコンパクトな動圧軸受装置を提供することができる。
【発明を実施するための最良の形態】
【0018】
以下、本発明の実施形態を図面に基づいて説明する。
【0019】
図1は、本発明の一実施形態に係る動圧軸受装置1を組込んだ情報機器用スピンドルモータの一構成例を概念的に示している。この情報機器用スピンドルモータは、HDD等のディスク駆動装置に用いられるもので、軸部材2を回転自在に非接触支持する動圧軸受装置1と、軸部材2に装着されたディスクハブ3と、例えば半径方向のギャップを介して対向させたステータコイル4およびロータマグネット5と、動圧軸受装置1を固定するブラケット6とを備えている。ステータコイル4はブラケット6の外周に取り付けられ、ロータマグネット5は、ディスクハブ3の内周に取り付けられている。ブラケット6の内周に動圧軸受装置1のハウジング7が装着されている。ステータコイル4に通電すると、ステータコイル4とロータマグネット5との間に発生する電磁力でロータマグネット5が回転し、それに伴ってディスクハブ3および軸部材2が一部材(回転部材)となって一体回転する。
【0020】
ディスクハブ3は、円盤部3aと、円盤部3aの外周に設けられた円筒状の第二円筒部3cと、第二円筒部3cよりも内径側に位置し同じく円筒状の第一円筒部3bとからなる。第二円筒部3cの内径側には、ステータコイル4と対向するロータマグネット5の取付け部3dが設けられ、当該取付け部3dにロータマグネット5が、例えば接着固定されている。
【0021】
図2は、本発明の構成を有する動圧軸受装置1の拡大断面図である。この動圧軸受装置1は、有底筒状のハウジング7と、ハウジング7の内周に固定された軸受スリーブ8と、軸受スリーブ8の内周に挿入された軸部材2とを主要な構成部材として含む。なお、以下では、説明の便宜上、ハウジング7の開口側を上側、これと軸方向反対側を下側として説明を行う。
【0022】
軸部材2は、例えばステンレス鋼等の金属材料で軸状に形成される。本実施形態において、軸部材2の外周面2aは、凹凸のない平滑な円筒面状に、また下側端面2bも凹凸のない平滑な平坦面状に形成されている。
【0023】
軸部材2には、適宜の手段で上述のディスクハブ3が固定され、互いに固定された軸部材2とディスクハブ3とで回転部材9が形成される。このとき、軸部材2をインサート部品としてディスクハブ3を射出成形(インサート成形)すれば、ディスクハブ3の成形および軸部材2へのディスクハブ3の取付けを同時に行うことができ、軸部材2とディスクハブ3とを高精度かつ低コストに一体化することができる。射出成形の材料としては、樹脂材料、金属材料、あるいはセラミック等を使用することができる。なお、ディスクハブ3を軸部材2とは別体に形成した後、軸部材2に圧入や圧入接着等することにより回転部材9を構成してもよい。
【0024】
ハウジング7は、金属材料あるいは樹脂材料で有底筒状に形成される。図示例のハウジング7は、側部7bと、側部7bの下端開口を封口する底部7cとからなり、側部7bと底部7cとは一体に形成されている。
【0025】
ハウジング7を構成する側部7bの上側端面7dは、ディスクハブ3を構成する第一円筒部3bよりも内径側の円盤部3aの下側端面3a1と軸方向に対向し、この下側端面3a1との間に円環状の軸方向空間Pを形成する。この軸方向空間Pは、後述するスラスト軸受隙間の軸方向幅よりも大きくすることができる。また、側部7bの外周上端に設けられたテーパ面7eはディスクハブ3の第一円筒部3bの内周面3b1と半径方向に対向し、この内周面3b1との間に上方ほど半径方向寸法を漸次縮小させたテーパ状のシール空間Sを形成する。シール空間Sでは軸受装置の内部に注油された潤滑油が毛細管力によって保持される。シール空間Sには、軸受装置の運転中および停止中を問わず、外気に開放した油面が常時存在する。シール空間Sは軸方向空間Pの外径部につながっている。
【0026】
ディスクハブ3の第一円筒部3bの下端内周には、軸部材2(回転部材9)の軸方向上方への相対変位時、ハウジング7と軸方向で係合して回転部材9の抜け止めを図る抜け止め部材10が取り付けられている。
【0027】
ハウジング7の内周には軸受スリーブ8が、例えば圧入、接着等適宜の手段により固定される。この軸受スリーブ8は、焼結金属からなる多孔質体、例えば銅を主成分とする焼結金属に潤滑油を含浸させた含油焼結金属の多孔質体を用いて後述する方法で円筒状に形成される。この他、中実の金属材料、例えば黄銅等の軟質金属材料で軸受スリーブ8を形成することもできる。
【0028】
軸受スリーブ8の内周面8aには、ラジアル軸受隙間に面するラジアル軸受面Aが形成される。このラジアル軸受面Aは軸方向に離隔した二箇所に形成され、両ラジアル軸受面Aには、ラジアル軸受隙間に流体動圧を発生させるラジアル動圧発生部として、例えば、図3に示すような複数の軸方向溝15を配したステップ面が形成される。軸方向溝15は、加工の容易性と等方剛性のバランスを考慮すると、図示例のように、円周方向等間隔に3箇所形成するのが望ましいが、3箇所に限らず2箇所、または4箇所以上形成することもできる。なお、ラジアル動圧発生部は、軸部材2の外周面2aに形成することもできる。また、図示例では理解の容易化のために軸方向溝15の深さを誇張して描いているが、実際には数μm程度である。
【0029】
また、軸受スリーブ8の上側端面8bの全体または一部環状領域には、スラスト軸受隙間に面するスラスト軸受面Bが形成される。このスラスト軸受面Bには、スラスト軸受隙間に流体動圧を発生させるスラスト動圧発生部として、例えばスパイラル形状に配した複数の動圧溝8b1がポンプイン機能を奏するように形成される。なお、スラスト動圧発生部は、ディスクハブ3の下側端面3a1に形成することもできる。
【0030】
上記軸受スリーブ8は、例えば、サイジング→回転サイジング→ラジアル軸受面(ラジアル動圧発生部)成形加工を経て形成される。サイジング工程では、焼結金属素材の外周面を円筒状のダイに圧入すると共に、内周面にサイジングピン(断面真円形状)を圧入することで焼結金属素材の外周面と内周面のサイジングが行われる。回転サイジング工程では、断面略多角形のサイジングピン(断面真円形状のピンの外周面を部分的に平坦加工して、円周等配位置に円弧部分を残したもの)を焼結金属素材の内周面に圧入し、これを回転させることで内周面のサイジングが行われる。軸受面成形工程では、上記のようなサイジング加工を施した焼結金属素材の内周面に、軸受スリーブ8の内周面形状に対応した形状の成形型(コアロッド)を挿入し、外部からダイや上下パンチ等で加圧することによって、ラジアル軸受面Aの軸方向溝15とそれ以外の領域とが同時成形される。
【0031】
加圧後、ダイおよび上下パンチが開放されると、焼結金属素材にスプリングバックが生じ、コアロッドと焼結金属素材間に微小隙間が形成される。このとき、本実施形態にかかるラジアル軸受面Aの軸方向溝15は、コアロッドと軸方向の係合関係を有さないので、溝形状の崩れ等を心配することなく、容易にコアロッドを軸方向に抜き取ることが可能となる。また、この際別途コアロッドや焼結金属素材(軸受スリーブ8)を加熱する必要もない。本実施形態では、焼結金属素材を加圧する上パンチの端面に、スラスト軸受面Bの形状に対応した型を形成しておくことで、加圧と同時にスラスト軸受面Bが形成される。なお、本実施形態において、特にラジアル軸受面Aは簡易な形状(ステップ面)で形成されているので、切削や転造等の機械加工で形成することも容易に可能である。
【0032】
上記構成の動圧軸受装置1において、軸受スリーブ8の内周面8aに離隔形成されたラジアル軸受面Aは、それぞれ軸部材2の外周面2aとラジアル軸受隙間を介して対向する。軸受スリーブ8と軸部材2とが相対回転すると(本実施形態では軸部材2が回転する)、ラジアル軸受面Aに形成された複数のステップ面の作用によって各ラジアル軸受隙間に潤滑油の動圧作用が発生し、その圧力によって回転部材9がラジアル方向に回転自在に非接触支持される。これにより、回転部材9をラジアル方向に回転自在に非接触支持する第1のラジアル軸受部R1と第2のラジアル軸受部R2とが形成される。
【0033】
また、回転部材9が回転すると、軸受スリーブ8の上側端面8bに形成されたスラスト軸受面Bは、回転部材9を構成するディスクハブ3の下側端面3a1とスラスト軸受隙間を介して対向する。これに伴い、スラスト軸受面Bに形成した動圧溝8b1によって、スラスト軸受隙間に潤滑油の動圧作用が発生し、その圧力によって回転部材9がスラスト方向に回転自在に非接触支持される。これにより、回転部材9をスラスト方向に回転自在に非接触支持するスラスト軸受部Tが形成される。なお、スラスト軸受隙間の内径側は、ラジアル軸受隙間の上端と連通状態にある。
【0034】
回転部材9の回転中、軸受スリーブ8の内周面8aのうち、二つのラジアル軸受面Aの間の領域とこれに対向する軸部材2の外周面2aとの間の隙間が真円軸受として機能すると、この隙間で負圧が発生し易くなる。この問題は、図2に示すように、軸受面間領域と対向する軸部材2の外周面2aに逃げ部2cを形成し、当該隙間の幅を真円軸受として機能し得ない程度に拡大させれば回避することができる。逃げ部2cを軸受スリーブ8の内周面8aに形成しても同様の効果が得られる。なお、軸受スリーブ8の内周面8aの軸方向全長にわたって一つのラジアル軸受面Aを形成する場合には、この種の逃げ部2cは不要となる。
【0035】
本実施形態では、ハウジング7の内周面7b1に、軸受スリーブ8の両端面を連通させる軸方向の油循環路としての軸方向溝12が形成される。軸方向溝12は、一または複数本形成することができる。
【0036】
ハウジング7に軸受スリーブ8を圧入固定する場合、軸受スリーブ8の外周のうち、軸方向溝12に対向する部分とこれ以外の部分との間における弾性変形量の差により、軸受スリーブの内周が循環溝の数(N個)に応じた数(N個)の円弧形状に僅かに変形するおそれがある。変形後の形状が三角形状になることで楕円状や四角形状よりも剛性面で有利であることから、循環溝12は円周方向の三箇所(望ましくは円周方向に等配した三箇所)に形成するのがよい。なお、軸受スリーブをハウジングの内周に圧入せずに例えば接着固定する場合には、かかる観点から循環溝の数を制限する必要はない。また、この軸方向溝12は、軸受スリーブ8の外周面8dに形成してもよい。
【0037】
また、軸受スリーブ8の下側端面8cとハウジング7の内底面7c1との間には径方向の油循環路が形成される。本実施形態では、軸受スリーブ8の下側端面8cとハウジング7の内底面7c1は当接しておらず、両者間には底隙間11が形成されており、当該底隙間11が半径方向の油循環路を構成する。
【0038】
以上の構成により、軸方向溝12と底隙間11とからなる油循環路14が形成され、ラジアル軸受隙間の下端は、潤滑油で満たされた前記油循環路14を介して、スラスト軸受隙間の外径側領域8f(スラスト軸受隙間と軸方向空間Pの境界部)と連通状態となる。
【0039】
上記構成の動圧軸受装置1では、軸方向空間Pが大気圧に保たれたシール空間Sと径方向につながっているので、スラスト軸受隙間の外径側領域8fにおける潤滑油の油圧は大気圧と略等しくなる。本実施形態では、スラスト軸受面Bに、スラスト動圧発生部としてスパイラル形状の動圧溝8b1が形成されているので、回転部材9が回転すると、スラスト軸受面Bが有する内径側へのポンピング能力により、スラスト軸受隙間の内径側領域8e(スラスト軸受隙間とラジアル軸受隙間の境界部)における潤滑油の油圧は大気圧より大きくなる。このようにして圧力を高められた潤滑油は、ラジアル軸受隙間から底隙間11、さらに底隙間11から軸方向溝12を通じて大気圧に等しいスラスト軸受隙間の外径側領域8fへ向かって流動する。つまり、動圧軸受装置1の運転中には、潤滑油がスラスト軸受隙間→ラジアル軸受隙間→油循環路14(底隙間11→軸方向溝12)→スラスト軸受隙間という経路を辿って定常的に循環する。これにより、軸受内部における潤滑油の油圧は、常時大気圧以上に保たれる。したがって、本発明によれば、軸受装置の内部空間における負圧の発生が防止され、これにより回転性能を高精度に管理することができる。
【0040】
また、本発明の動圧軸受装置1では、スラスト動圧発生部(スラスト軸受部T)は、一箇所のみに形成されるので、従来のように二箇所にスラスト動圧発生部を形成する場合と比べて、加工コストを低減することができる。
【0041】
また本発明の構成を有する動圧軸受装置1では、スラスト動圧発生部が有するポンピング能力により潤滑油が軸受装置内を循環するため、ラジアル動圧発生部に軸方向のポンピング能力は必要とされない。したがって、ラジアル動圧発生部はポンピング能力を有さない形状、例えば上記にて例示したステップ面で形成することができる。ステップ面は、ヘリングボーン形状の動圧溝を形成するよりも容易に形成することができるので、ラジアル動圧発生部を低コストに加工することができる。
【0042】
なお、以上の説明では、ラジアル動圧発生部として、図3に示すようなステップ面を形成した場合について説明したが、例えば図5に示すようなステップ面を形成することもできる。図5に示すステップ面は、円周方向等間隔に設けられた軸方向溝15に加え、各軸方向溝15の円周方向一端で溝深さを深くした分離溝16を形成したものである。例えば、図3に示すようなステップ面でラジアル動圧発生部を形成した場合には、各軸方向溝15における円周方向の一部領域で局所的な負圧が発生する場合があるが、分離溝16を形成することにより、かかる負圧の発生を防止することができる。なお、分離溝16の深さは、負圧の発生を確実に防止する観点から言えば、軸方向溝15の深さの10倍程度に形成するのが望ましい。
【0043】
以上、本発明の構成を有する動圧軸受装置1の一実施形態を説明したが、本発明は、この実施形態に限定されるものではなく、例えば図6に示すような動圧軸受装置1においても好ましく用いることができる。なお、以下の説明では、図2に示す実施形態と同一機能を有する部材および要素には共通の参照番号を付して重複説明を省略する。
【0044】
図6は、他の実施形態に係る動圧軸受装置1を示している。この実施形態に係る動圧軸受装置1では、軸受スリーブ8の下側端面8cがハウジング7の内底面7c1に当接している。半径方向の循環経路を確保するため、軸受スリーブ8の下側端面8cには、一または複数の径方向溝13が形成されており、当該径方向溝13と軸方向溝12とで油循環路14が形成される。この実施形態でも、スラスト動圧発生部が有するポンピング能力により、スラスト軸受隙間→ラジアル軸受隙間→径方向溝13→軸方向溝12→スラスト軸受隙間という経路を辿って潤滑油が定常的に循環し、軸受装置の内部空間での負圧の発生を防止することができる。この場合、図2に示す構成に比べると、半径方向の油循環路14の断面積が小さくなるので、この部分での粘性抵抗による潤滑油の圧力降下量を増すことができる。
【0045】
なお、以上の説明では、ラジアル軸受部R1、R2として、軸受スリーブ8の内周面8aに、円周方向等間隔に複数の軸方向溝15を配したステップ面からなるラジアル動圧発生部を形成し流体動圧を発生させる場合を示したが、ラジアル動圧発生部としては、軸方向のポンピング機能を有さない他の形状、例えば複数の調和波形面からなる波状面や複数の円弧面からなる多円弧面を形成することもできる。
【0046】
図7は、軸受スリーブ8の内周面8aに、複数の調和波形面からなるラジアル動圧発生部を形成した場合を示すものである。軸受スリーブ8の内周に軸部材2を挿入すると、軸受スリーブ8の内周面に形成された調和波形面17と軸部材2の外周面2aとの間にラジアル軸受隙間が形成される。このとき調和波形面17で区画される各領域において、ラジアル軸受隙間は、円周方向の両方向に対して、それぞれくさび状に漸次縮小したくさび状隙間18となる。そのため、軸部材2と軸受スリーブ8とが相対回転すると、その相対回転の方向に応じて、ラジアル軸受隙間内の潤滑油がくさび状隙間18の最小隙間側に押し込まれて、その圧力が上昇する。このような潤滑油の動圧作用によって、軸部材2と軸受スリーブ8とがラジアル方向に非接触支持される。なお、くさび状隙間18の最小幅hは、偏心がない場合(軸心O)には次式によって近似的に表される。
【0047】
h=c+aw・cos(Nw・θ)
但し、上式において、c、aw、Nwは定数で、cは平均軸受半径隙間、awは波の振幅、θは円周方向の位相、Nwは波数を表す(但し、Nw≧2とする。本実施形態ではNw=3である)。なお、図示例では、軸部材2と軸受スリーブ8の軸心Oを同心としているが、軸部材2を軸心O’に偏心させて使用することもできる。
【0048】
図8は、軸受スリーブ8の内周面8aに、複数の円弧面(多円弧面)からなるラジアル動圧発生部を形成した場合の一例を示している。この図示例では、軸受スリーブ8の内周面8aのラジアル軸受面となる領域に、3つの円弧面19が形成されている(いわゆる3円弧軸受)。3つの円弧面19の曲率中心は、それぞれ、軸受スリーブ8(軸部材2)の軸中心Oから等距離オフセットされている。3つの円弧面19で区画される各領域において、ラジアル軸受隙間は、上記図7に示す形態と同様、円周方向の両方向に対して、それぞれくさび状に漸次縮小したくさび状隙間18である。なお、3つの円弧面19相互間の境界部に、分離溝を形成することもできる(図示省略)。
【0049】
図9は、軸受スリーブ8の内周面8aに、複数の円弧面(多円弧面)からなるラジアル動圧発生部を形成した場合の他の例を示している。この例においても、軸受スリーブ8の内周面8aのラジアル軸受面となる領域が、3つの円弧面19で構成されているが(いわゆる3円弧軸受)、3つの円弧面19で区画される各領域において、ラジアル軸受隙間は円周方向の一方向に対して、それぞれ楔状に漸次縮小したくさび状隙間18である。このような構成の軸受は、テーパ軸受と称されることもある。また、3つの円弧面18相互間の境界部には、分離溝16が形成されている。軸受スリーブ8と軸部材2とが所定方向に相対回転すると、ラジアル軸受隙間内の潤滑油がくさび状隙間18の最小隙間側に押し込まれて、その圧力が上昇する。このような潤滑油の動圧作用によって、軸受スリーブ8と軸部材2とがラジアル方向に非接触支持される。
【0050】
図10は、軸受スリーブ8の内周面8aに、複数の円弧面(多円弧面)からなるラジアル動圧発生部を形成した場合の他の例を示している。この例では、図9に示す構成において、3つの円弧面19の最小隙間側の所定領域θが、それぞれ、軸受スリーブ8(軸部材2)の軸中心Oを曲率中心とする同心の円弧で構成されている。従って、各所定領域θにおいて、ラジアル軸受隙間(最小隙間)は一定になる。このような構成の軸受は、テーパ・フラット軸受と称されることもある。
【0051】
なお、図7〜図10では、3調和波形面、あるいは3円弧面で形成されたラジアル動圧発生部としているが、これに限らず、2または4以上の調和波形面および円弧面でラジアル動圧発生部を形成することもできる。
【0052】
また、以上の説明では、ラジアル軸受部を、ラジアル軸受部R1、R2のように軸方向2つに離隔して設けた構成を例示しているが、軸方向に亘って1つのラジアル軸受部を設けた構成とすることもできる。
【図面の簡単な説明】
【0053】
【図1】動圧軸受装置を組み込んだスピンドルモータを概念的に示す断面図である 。
【図2】本発明の構成を有する動圧軸受装置の断面図である。
【図3】ラジアル動圧発生部をステップ面で形成した形態を示す断面図である。
【図4】軸受スリーブの上側端面を示す図である。
【図5】ラジアル動圧発生部をステップ面で形成した他の形態を示す断面図である。
【図6】動圧軸受装置の他の形態を示す断面図である。
【図7】ラジアル動圧発生部を波状面で形成した形態を示す断面図である。
【図8】ラジアル動圧発生部を多円弧面で形成した形態を示す断面図である。
【図9】ラジアル動圧発生部を多円弧面で形成した他の形態を示す断面図である。
【図10】ラジアル動圧発生部を多円弧面で形成した他の形態を示す断面図である。
【符号の説明】
【0054】
1 動圧軸受装置
2 軸部材
3 ディスクハブ
4 ステータコイル
5 ロータマグネット
7 ハウジング
8 軸受スリーブ
9 回転部材
12 軸方向溝
13 半径方向溝
14 油循環路
15 軸方向溝
16 分離溝
17 調和波形面
18 くさび状隙間
19 円弧面
A ラジアル軸受面
B スラスト軸受面
R1、R2 ラジアル軸受部
T スラスト軸受部
P 軸方向空間
S シール空間

【特許請求の範囲】
【請求項1】
ラジアル軸受隙間と、ラジアル軸受隙間に面し、ラジアル軸受隙間を満たす潤滑油に動圧作用を発生させるラジアル動圧発生部と、スラスト軸受隙間と、スラスト軸受隙間に面し、スラスト軸受隙間を満たす潤滑油に動圧作用を発生させるスラスト動圧発生部とを備える動圧軸受装置において、
スラスト軸受隙間の外径側を、外気に開放した油面を有するシール空間につなげると共に、油循環路を介してラジアル軸受隙間の一端とつなげ、スラスト軸受隙間の内径側をラジアル軸受隙間の他端につなげ、スラスト動圧発生部を、スラスト軸受隙間の外径側から内径側へ潤滑油が流動する形状に形成したことを特徴とする動圧軸受装置。
【請求項2】
ラジアル動圧発生部を、ラジアル軸受隙間で軸方向に潤滑油を流動させない形状に形成した請求項1記載の動圧軸受装置。
【請求項3】
ラジアル動圧発生部が、円周方向に複数の軸方向溝を配したステップ面、複数の円弧面を有する多円弧面、もしくは複数の調和波形面を有する波状面の何れかに形成された請求項2記載の動圧軸受装置。
【請求項4】
請求項1〜3の何れかに記載の動圧軸受装置と、ロータマグネットと、ロータマグネットとの間で電磁力を生じるステータコイルとを有することを特徴とするモータ。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2006−329391(P2006−329391A)
【公開日】平成18年12月7日(2006.12.7)
【国際特許分類】
【出願番号】特願2005−157255(P2005−157255)
【出願日】平成17年5月30日(2005.5.30)
【出願人】(000102692)NTN株式会社 (9,006)
【Fターム(参考)】