説明

座標位置決め装置を用いて得られる測定値の誤差の補正

測定プローブ(18)を有する座標位置決め装置を操作する方法が記載される。方法は、一連の公称同一の部品の内の第一の部品(24)を選択する工程であって、少なくとも、第一の部品(24)の一つ以上の構造と関連する第一の基準幾何学的特性は知られている工程を含む。また、第一の部品(24)の一つ以上の構造を測定するために、座標位置決め装置を用い、そこから、第一の基準幾何学的特性に対応する、第一の測定幾何学的特性を決定する工程が実行される。それから、第一の基準幾何学的特性と第一測定幾何学的特性との間の差異を記述する、第一の特性補正値が決定される。座標位置決め装置は、それから、一連の公称同一の部品の内の一つ以上の他の部品の一つ以上の構造を測定するために用いられ、各々の他の部品に対して、第一の基準幾何学的特性に対応する、他の測定幾何学的特性が決定される。それから、第一の特性補正値が、各々の他の測定幾何学的特性に適用される。対応する座標位置決め装置が、また、記載される。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、測定プローブを含む座標位置決め装置を用いて得られる測定値の誤差を補正するための改良された装置および方法に関する。
【背景技術】
【0002】
座標計測装置(CMM)のような、座標位置決め装置、および、数値制御された工作機械は、良く知られており、工業的な検査工程において広く使用されている。特に、部品(例えば、加工対象品)が所望の許容誤差内で製造されたかどうかを確かめるため、部品の表面の複数の点の位置を測定するための座標位置決め装置を用いることが知られている。どんな座標位置決め装置によっても得られた測定値は、通常、あるレベルの不確実性を有するであろうし、多くの異なる較正技術が、部品の表面の点の位置が正確に測定され得る、その正確さを改良するために、長年の間、発展させられてきた。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】米国特許第5426861号明細書
【発明の概要】
【発明が解決しようとする課題】
【0004】
特許文献1は、清潔で、温度制御された環境に維持された実験室のCMMで達成され得る正確さが、工場の床のCMMの測定精度を改良するために使用される、誤差補正技術の一例を記述する。特に、基準部品が、第一に、実験室ベースのCMMによって測定され、および、生産環境に配置された第二のCMMによって、また、測定される。第一のCMMは、したがって、高度の正確さをもって測定値を得ることができ、一方、第二のCMMは、温度変化等により測定誤りの傾向にある。第一および第二のCMMで得られた表面測定値の比較は、逐一の誤差マップが作成されることを可能にする。第二のCMMは、その後、基準部品と公称同一である製造部品の表面の点を測定するために使用され、測定された表面の点の位置は、誤差マップを用いて補正される。第二CMMを用いて得られた、基準部品と公称同一である、製造部品の表面位置測定値は、それから、誤差マップを用いて補正され得る。例えば、特許文献1に記載されているような逐一の補正処理は、各々の測定点のための登録を含む、巨大な誤差マップの作成を必要とする。本発明は、位置補正をもたらす、そのような誤差マップの創出およびその後のマップの使用は、典型的には、実行するのに困難であることを見出した。例えば、特許文献1に記載された技術は、異なる装置で得られた測定点が、逐一の誤差マップを確立するために比較されることを可能にするため、第一および第二のCMMにインストールされる、同一の、または、少なくとも非常に似ている、測定制御ソフトウェアを必要とする。
【課題を解決するための手段】
【0005】
本発明の第一の態様によれば、測定プローブを有する座標位置決め装置を作動させる方法が提供され、方法は、任意の適切な順序で、以下の、
(i)一連の公称同一部品の中の第一の部品であって、該第一の部品の一つ以上の構造と関連する少なくとも第一の基準幾何学的特性が知られている上記第一の部品を選ぶこと、
(ii)上記第一の部品の上記一つ以上の構造を測定するために上記座標位置決め装置を用い、そこから、上記第一の基準幾何学的特性に対応する第一の測定幾何学的特性を決定すること、
(iii)上記第一の基準幾何学的特性と上記第一の測定幾何学的特性との差異を記述する、第一の特性補正値を決定すること、
(iv)上記一連の公称同一部品の一つ以上の他の部品の上記一つ以上の構造を測定するために上記座標位置決め装置を用い、そして、各々の他の部品のために、上記第一の基準幾何学的特性に対応する、更なる測定幾何学的特性を決定すること、および、
(v)各々の測定幾何学的特性に対して上記第一の特性補正値を適用すること、の工程を含む。
【0006】
本発明は、したがって、測定プローブを含む座標位置決め装置を用いて、一連の部品を測定する際に発生する、測定誤差を補正するための方法を含む。方法の工程(i)において、一つ以上の構造を有する、一連の公称同一部品の中の第一の部品が選択され、例えば、第一の部品は、一つ以上の構造(例えば、穴、突起等)が機械加工された金属の加工対象物であり得る。第一の部品の一つ以上の構造と関連する第一の基準幾何学的特性は知られている(例えば、設計データから、または異なる測定装置を用いる第一の部品の測定から)。第一の基準幾何学的特性は、例えば、単一の構造(例えば、円筒状穴の直径または真円度)と関連する幾何学的特性、または、複数の構造(例えば、表面のような、2つの構造の傾斜度、平行度または直角度)間の関係を記述する幾何学的特性を含み得る。
【0007】
第一の部品は、座標位置決め装置を用いて測定される一連の公称同一部品の内のまさに一つの部品である。一連の第一および他の部品は、同一であるように意図されるけれども、その製造に含まれる種々の製造誤差により物理的に同一である必要はない。一連の第一および他の部品は、例えば、各々が、公称同一の方法によって(例えば、同一の切断プログラムを実行する工作機械によって)製造されたかもしれない。しかしながら、ここで使用される用語「第一の部品」は、製造生産工程において最初に製造された部品のみに言及せず、用語「第一の部品」は、単に、一連の部品の選択された一つに言及していることが留意されるべきである。また、例えば、取るに足らない様式で、一連の次の部品と少し異なることは、一連の部品における第一の部品としてあり得、例えば、第一の部品は、一連の他の部品に存在し得る、重要でない構造を含まないかも知れない。
【0008】
本発明の方法は、また、第一の部品の一つ以上の構造を測定するために座標位置決め装置を用い、そこから、第一の基準幾何学的特性に対応する第一の測定幾何学的特性を決定する工程(ii)を含む。そのような測定工程は、便利には、第一の部品の一つ以上の構造の各々の表面上の複数の点の位置を測定するために座標位置決め装置を用いることを含む。特に、座標位置決め装置は、好ましくは、第一の部品の表面上の複数の点が測定されることが可能となるよう、第一の部品に対して測定プローブを移動させるように配置される。もし、測定プローブが偏位可能なスタイラスを有するアナログ式の測定プローブを含むなら、工程(ii)は、第一の部品の表面上の経路に沿って測定プローブのスタイラス先端を走査させ、スタイラスの偏位データと座標位置決め装置の動作範囲内の測定プローブの位置を記述するデータの双方を収集する、座標位置決め装置を含み得る。機械座標系における第一の部品の表面の複数の点の位置は、それから、公知の方法で、スタイラスの偏位データおよびプローブの位置データを組み合わせることにより、生成され得る。
【0009】
工程(ii)で得られる第一の測定幾何学的特性は、単に単一のデータ点(すなわち、第一の部品の表面の単一の位置)ではなく、第一の部品の一つ以上の構造と関連する幾何学的特性であり、これは、以下により詳細に説明されることが、再び、留意されるべきである。そのような幾何学的特性は、好ましくは、第一の部品の一つ以上の構造の各々の表面上の複数の点の測定位置を用いて確立される。工程(ii)は、それゆえ、有利には、第一の測定幾何学的特性を確立するために、座標位置決め装置によって計測された複数の点を、関数に適合させることを含む。換言すると、第一の測定幾何学的特性は、座標位置決め装置を用いて得られる複数の位置データ点から、数学的に得られ得る。第一の基準幾何学的特性に対応する、第一の部品の第一の測定幾何学的特性は、したがって、好ましくは、座標位置決め装置によって測定される第一の部品の表面上の複数の点から決定される。
【0010】
本発明の方法は、また、第一の基準幾何学的特性と第一の測定幾何学的特性との間の差異を記述する第一の特性補正値を決定する工程(iii)を実行することを含む。このことは、例えば、第一の特性補正値を得るために、第一の測定幾何学的特性を、対応する第一の基準幾何学的特性と比較することを含み得る。換言すると、座標位置決め装置を用いて測定される第一の部品の測定幾何学的特性は、その対応する基準幾何学的特性と比較される。対応する測定および基準幾何学的特性間の差異を記述する、第一の特性補正値は、それから、計算される。工程(iii)で決定された差異は、対応する測定および基準幾何学的特性間の全部の差異の全て、または、単に一部を記述し得る。この工程は、例えば、座標位置決め装置によって測定された穴の半径を、公称の穴の半径と比較し、半径の補正値を確立することを含み得る。再び、第一の特性補正値は、幾何学的特性における差異を記述し、第一の部品の表面上の個々の点の位置における偏差値ではないことが留意されるべきである。
【0011】
本発明は、また、一連の公称同一の部品の一つ以上の他の部品の一つ以上の構造を測定するために、座標位置決め装置を用いる工程(iv)を実行することを含む。各々の他の部品に対して、他の測定幾何学的特性が、そのような測定値から決定され、各々の他の測定幾何学的特性は、また、第一基準幾何学的特性と対応する。本発明の方法の工程(v)は、それから、各々の他の測定幾何学的特性に、第一の特性補正値を適用することを含む。例えば、工程(v)は、第一の特性補正値を用いて、各々の他の測定幾何学的特性を補正し、それによって、各々の他の部品に対して、第一の誤差補正測定幾何学的特性を提供することを含み得る。換言すると、補正された測定幾何学的特性が、第一の測定幾何学的特性をその対応する第一の基準幾何学的特性を比較することによって決定される、第一の特性補正値から、一連の各々の他の部品に対して生成される。
【0012】
座標位置決め装置によって得られる表面位置測定値の逐一補正を実行する従来技術とは異なり、本発明の方法は、第一の部品の一つ以上の構造の第一の幾何学的特性の第一の補正値を生成する。そのような第一の補正値は、座標位置決め装置で得られる、第一の部品に公称同一の部品の、測定幾何学的特性を、その後に補正するために用いられ得る。本発明の方法は、したがって、巨大な逐一誤差補正マップを生成し、記憶する必要性を回避し、部品の構造または複数の構造の測定幾何学的特性におけるいかなる誤差に対しても補償するための幾何学的補正値を生成する。そのような幾何学的補正値の使用は、また、逐一の表面補正を実行するために巨大な誤差マップを用いるときに発生し得る、いくつかのデータ点整列の困難性を減少させる。本発明の方法は、したがって、部品の測定幾何学的特性が、公知の逐一補正技術より、簡単で、かつ、便利な方法で、座標位置決め装置を用いて、正確に見出されることを可能にする。本発明は、生産環境において作動し、それゆえに、しばしば、再較正を必要とする(例えば、環境における温度変化等による)、座標位置決め装置と共に使用するのに特に好適である。
【0013】
第一の部品の一つ以上の構造に関連する第一の基準幾何学的特性は、公称の基準幾何学的特性を含み得る。そのような公称の基準幾何学的特性は、第一の部品と関連する設計データ(例えば、CADモデル)から便利には得られ得る。例えば、工程(i)は、第一の基準幾何学的特性を提供するため、第一の部品と関連する設計データを選択または加工することを含み得る。そのような実施例において、工程(iii)は、それから、特性補正値を得るため、工程(i)の公称の基準幾何学的特性を、工程(ii)の測定幾何学的特性と比較することを含み得る。
【0014】
有利には、工程(i)は、第一の部品を測定するため、基準座標位置決め装置を用いる工程を含む。第一の基準幾何学的特性は、その結果、基準座標位置決め装置によって得られた、第一の部品の測定値から得られる、計測基準幾何学的特性を含み得る。換言すると、基準座標位置決め装置から得られる基準測定値は、第一の部品の一つ以上の構造と関連する少なくとも一つの測定基準幾何学的特性を決定するために便利に用いられる。
【0015】
有利には、基準座標位置決め装置は、本発明の方法を実行する座標位置決め装置とは異なる装置である。便利には、基準座標位置決め装置は、予め較正された座標位置決め装置を含む。このCMMは、適切な国内または国際規格に較正された、標準の橋型CMMのような、連続装置であり得る。基準座標位置決め装置は、方法の工程(ii)において得られる測定値が得られる座標位置決め装置と、遠く離れて配置され得る。第一の部品を測定するために基準座標位置決め装置を用いる工程、および/または、その第一の部品の第一の基準幾何学的特性を決定する工程は、要求に応じ、工程(ii)の前または後に実行され得る。
【0016】
有利には、第一の部品の一つ以上の構造は、第一の構造を含む。第一の構造のみの幾何学的特性を記述する、少なくとも一つの基準幾何学的特性が、その結果、提供される。そのような実施例において、第一の基準幾何学的特性は、便利には、第一の構造の大きさ(例えば、半径)、形、真っ直ぐさ、平坦性、真円度および円筒度の少なくとも一つを記述する。例えば、第一の基準幾何学的特性は、穴の形での第一の構造の半径を記述し得る。
【0017】
第一の部品は、複数の構造を含み得る。便利には、第一の部品の一つ以上の構造は、少なくとも、第一の構造および第二の構造を含み得る。そのような実施例において、第一の基準幾何学的特性は、第一の構造と第二の構造の間の関係を記述し得る。有利には、第一の基準幾何学的特性は、第二の構造に対する第一の構造の、平行度、垂直度、傾斜度、位置、同心度、同軸度、対称度、円形振れ度、または、全体振れ度の少なくとも一つを含み得る。第一の部品は、また、方法の途中に測定され得るか測定され得ない、一つ以上の他の構造または幾何学的特性を含み得ることが留意されるべきである。
【0018】
第一の部品は、好ましくは、機械加工部品を含む。第一の部品は、金属切削、型成形、鋳造、鍛造、エッチング等によって形成され得る。第一の部品は、金属、合金、複合材料、プラスチック等を含み得る。一例として、第一の部品は、エンジンブロックを含み得る。第一の部品の第一の基準/測定幾何学的特性は、その部品の主要な製造パラメータに関するのが好ましい。換言すると、本発明の方法は、好ましくは、機械加工部品が所望の許容誤差内で製造されたかどうかをチェックするために用いられる。許容誤差を定義するために用いられ得る幾何学的特性の例は、英国規格308(ISBN 0 580 33204 7)に概説され、その内容は、参照としてここに組み込まれる。
【0019】
工程(iii)で決定される第一の特性補正値は、測定幾何学的特性と、関連する(公称または測定)基準幾何学的特性との間の、スカラーの差を含み得る。有利には、第一の特性補正値は、測定幾何学的特性と、関連する基準幾何学的特性との間の、ベクトルの差を含む。換言すると、第一の特性補正値は、大きさと方向の両方を含むことが好ましい。例えば、特性補正値は、半径の誤差の大きさ(例えば、国際単位系または任意の単位系における)に加え、半径の誤差の方向(例えば、測定された半径は、公称半径より小さいかどうかまたは大きいかどうか)を含み得る。
【0020】
方法は、第一の部品の第一の基準幾何学的特性のみを用い得る。有利には、第一の部品の一つ以上の構造に関連する少なくとも一つの追加基準幾何学的特性が知られる。各々の追加基準幾何学的特性は、第一の部品の同一の、または、異なる構造に関連し得る。方法の工程(ii)は、したがって、また、少なくとも一つの追加基準幾何学的特性に対応する少なくとも一つの追加測定幾何学的特性を決定することを含み得る。各々の追加測定幾何学的特性は、第一の測定幾何学的特性を決定するために、また使用される測定点から、および/または、座標系位置決め装置を用いて得られる第一の部品の追加の測定値から、計算され得る。
【0021】
そのような具体例において、工程(iii)は、有利には、各々の追加基準幾何学的特性と関連する追加測定幾何学的特性との間の差異を記述する、少なくとも一つの追加特性補正値を決定することを含み得る。工程(iv)は、その結果、一連の公称同一の部品の内の一つ以上の他の部品を、また測定するために座標位置決め装置を用いること、各々の追加基準幾何学的特性に対応する測定幾何学的特性を決定することを含み得る。工程(v)において、適切な追加特性補正値は、各々の他の部品の各々の測定幾何学的特性に適用され得る。
【0022】
本発明の方法は、どのタイプの座標位置決め装置においても実行され得る。座標位置決め装置は、測定に専用される座標測定装置、または、測定と作業の両方に用いられ得る工作機械を含み得る。好ましくは、座標位置決め装置は、平行運動座標位置決め装置を含む。平行座標位置決め装置は、複数の伸長可能な支柱によって、移動可能プラットフォームに結合されたベースプラットフォームを含み得る。支柱の伸長は、並行して、移動可能プラットフォームの所望の動作(例えば、x、yおよびz方向における)を生成する。このことは、複数の(例えば、三つの)互いに直交する直線軸に沿った直線運動が、直線スライドを装荷することによって順番に達成される、従来の連続または橋型の座標位置決め装置と対比させられるべきである。方法は、そのような装置で得られる測定値は繰り返しが可能であるが、装置が正確にエラーマップを作成することは困難であるので、特に、平行運動座標位置決め装置に適用されると有利である。本発明は、したがって、正確な初期のエラーマッピングのための装置の測定ボリュームの必要性を克服し、代わりに、一連の部品の測定幾何学的特性を補正するため、少なくとも一つの特性補正値を用いる。
【0023】
座標位置決め装置は、どの公知のタイプの測定プローブをも含み得る。測定プローブは、非接触プローブ(例えば、光学式、誘導式、容量式など)であり得る。有利には、座標位置決め装置の測定プローブは、偏位可能なスタイラスを有する接触式測定プローブを含む。方法の工程(ii)は、それゆえ、偏位可能なスタイラスの先端が部品の表面上の複数の点と接触するように、測定プローブを移動させることを、便利には、含み得る。接触式測定プローブは、スタイラスが偏位されるとトリガー信号を発生する接触トリガープローブであり得る。有利には、接触式測定プローブは、その局所座標系におけるスタイラスの偏位の測定値を提供する、走査型またはアナログ測定プローブである。好ましくは、測定プローブは、英国グロスターシャ州ワットン−アンダー−エッジのレニショウによって製造されている、SP25プローブである。
【0024】
本発明の第二の態様によれば、座標位置決め装置は、測定プローブと制御装置を含み、上記制御装置は、一つ以上の構造を有する、一連の公称同一の部品の内の第一の部品のための誤差補正技術を実行するようプログラムされており、上記制御装置は、上記第一の部品の上記一つ以上の構造と関連する少なくとも第一の基準幾何学的特性を記憶し、上記制御装置によって実行される上記誤差補正技術は、
上記第一の部品の上記一つ以上の構造を測定するために上記測定プローブを用い、上記第一の部品の第一の測定幾何学的特性をそこから計算する工程であって、上記第一の測定幾何学的特性は、上記第一の基準幾何学的特性に対応している工程、および、
上記第一の基準幾何学的特性を上記第一の測定幾何学的特性と対比し、第一の特性補正値を計算する工程、を含み、
上記制御装置は、上記第一の部品と公称同一である一つ以上の他の部品の測定幾何学的特性を補正するために上記第一の特性補正値を記憶することを特徴としている。
【0025】
また、測定プローブを含む座標位置決め装置のための測定誤差を決定するための方法がここに説明され、該方法は、
(i)一連の部品の内の第一の部品を選択する工程であって、上記第一の部品は、一つ以上の構造を有し、上記一つ以上の構造に関連する少なくとも一つの基準幾何学的特性が知られている工程、
(ii)上記第一の部品の上記一つ以上の構造の各々の表面上の複数の点の位置を測定するために上記座標位置決め装置を用い、そこから、上記第一の部品の少なくとも一つの測定幾何学的特性を決定する工程であって、上記少なくとも一つの測定幾何学的特性は、上記少なくとも一つの基準幾何学的特性と対応している工程、および、
(iii)工程(i)の上記少なくとも一つの基準幾何学的特性と、工程(ii)の上記少なくとも一つの測定幾何学的特性を比較し、それにより、少なくとも一つの特性補正値を得る工程を含む。
【0026】
座標位置決め装置のための誤差補正方法が、また、ここに提示され、方法は、
(a)上述の手法において、第一の部品のために計算された少なくとも一つの特性補正値を選択する工程であって、上記第一の部品が、一つ以上の構造を含み、上記一つ以上の構造の少なくとも一つの基準幾何学的特性が知られている工程、
(b)上記第一の部品と公称同一である第二の部品の一つ以上の構造の各々の表面上の複数の点の位置を測定するために座標位置決め装置を用い、そこから、上記少なくとも一つの基準幾何学的特性に対応する、上記第二の部品の少なくとも一つの測定幾何学的特性を決定する工程、および、
(c)工程(b)で測定された上記少なくとも一つの測定幾何学的特性を、工程(a)の上記少なくとも一つの特性補正値を用いて補正し、それにより、上記第二の部品ための少なくとも一つの誤差補正測定幾何学的特性を提供する工程、を含む。
【0027】
測定プローブと制御装置を含む座標位置決め装置が提供されることが、また、記載され、上記制御装置は、一つ以上の構造を有する、一連の公称同一の部品の内の一部品のための誤差補正を実行するためにプログラムされており、上記制御装置は、上記部品の上記一つ以上の構造と関連する少なくとも一つの基準幾何学的特性を記憶し、上記制御装置により実行される上記誤差補正技術は、上記部品の上記一つ以上の構造の各々の表面上の複数の点の位置を測定するために上記測定プローブを用いる工程、そこから、上記部品の少なくとも一つの測定幾何学的特性を計算する工程であって、上記少なくとも一つの測定幾何学的特性は、上記少なくとも一つの基準幾何学的特性に対応する工程、および、上記少なくとも一つの基準幾何学的特性を、上記少なくとも一つの測定幾何学的特性と比較し、少なくとも一つの特性補正値を計算する工程を含む。有利には、制御装置は、上記第一の部品と公称同一である一つ以上の他の部品の測定幾何学的特性を補正するための上記少なくとも一つの特性補正値を記憶する。
【0028】
本発明は、次に、実施例としてのみで、添付図面を参照して、説明されるであろう。
【図面の簡単な説明】
【0029】
【図1】本発明の座標位置決め装置の具体例を示す図である。
【図2】図1の装置の平行位置決め機構を詳細に示す図である。
【図3a】複数の構造を含む、計測される部品の一例を示し、それらの構造の幾何学的特性を示す図である。
【図3b】複数の構造を含む、計測される部品の一例を示し、それらの構造の幾何学的特性を示す図である。
【図4】連続(基準)座標計測装置を示す図である。
【図5a】BS308に従う図面に、どのように、種々の幾何学的特性が表され得るかを示す図である。
【図5b】BS308に従う図面に、どのように、種々の幾何学的特性が表され得るかを示す図である。
【図5c】BS308に従う図面に、どのように、種々の幾何学的特性が表され得るかを示す図である。
【発明を実施するための形態】
【0030】
図1を参照すると、本発明に従って作動可能な、平行座標位置決め装置が示される。装置は、複数の支持支柱6によって、上方またはベースプラットフォーム4に固定されたベッド2を含む。支持支柱6は、ベースプラットフォーム4がベッド2に対して固定された位置に保持されるのを確実にするために、十分に剛体である。ベースプラットフォーム4は、また、拘束平行位置決め機構10によって、移動可能プラットフォーム8に取付けられる。明確にするために、平行位置決め機構10に関する詳細は、図1から省略され、機構は、図2に、詳細に示される。ベースプラットフォーム4、移動可能プラットフォーム8、および、平行位置決め機構10は、したがって、3つの軸(X、Y、Z)に沿った移動可能プラットフォーム8の並進運動を制御する、拘束平行位置決め装置を形成する。
【0031】
移動可能プラットフォーム8は、偏位可能なスタイラス20を有する測定プローブ18を持っている。測定プローブ18によって測定される部品24が、また、装置のベッド2上に置かれて示される。コンピュータ制御装置22が、装置の作動を制御するために、特に、移動可能プラットフォーム8の動作の制御、および、測定プローブ18からの測定データの受信のために、設けられる。
【0032】
測定プローブ18は、英国グロスターシャ州ワットン−アンダー−エッジの本願出願人により販売されている、SP25プローブであり得る。SP25測定プローブは、いわゆる、その局所座標系におけるスタイラス先端の偏位の計測値を出力する走査型プローブまたはアナログプローブである。プローブ18は、移動させられるので(すなわち、移動可能プラットフォーム8の移動によって)、スタイラス先端は、部品24の表面上の軌道をたどる。制御装置22は、測定プローブ18からのスタイラス先端の偏位データ、および、測定プローブの位置に関する平行座標位置決め装置からのデータを受信する。これらは、部品の表面上の複数の点の位置が、装置の座標系(すなわち、固定点または装置の原点に対する)において検出されるのを可能にするように組み合わされる。
【0033】
目下の実施例は、アナログ測定プローブを示すけれども、スタイラスが偏位されるときはいつでも、トリガー信号を出力する、いわゆるタッチトリガープローブを用いる測定を選択することが、また、可能であろう。もし、そのようなタッチトリガープローブが用いられるなら、スタイラスは、部品の表面上の複数の異なる点と接触するように運転されるであろう。トリガー信号が発せられるときの測定プローブの位置に関するデータは、それから、表面接触点の位置を確立するために用いられ得る。測定プローブ18は、接触式プローブであるが、非接触式(例えば、光学、誘導、容量等)測定プローブを、代わりに用いることが、また、可能であろうことが、また、留意されるべきである。
【0034】
図2を参照すると、図1の装置において用いられる拘束平行位置決め機構が、図2に示される拘束平行位置決め機構の図解が、図1の図と比較して逆にされていること(すなわち、逆さま)に留意して、次に、より詳細に説明されるであろう。
【0035】
拘束平行位置決め機構は、複数の支柱によって移動可能プラットフォームまたはステージ8に装荷されるベースプラットフォーム4を含む。特に、ベースプラットフォーム4および移動可能プラットフォーム8は、三本の駆動式伸縮支柱によって結合され、その端部は、それぞれ、ピボット継手によってプラットフォームに接続される。各々の駆動式伸縮支柱40は、その長さを増大または減少させるためのモータ42、および、その長さを測定するための位置エンコーダ(モータハウジング内に入っており、そのため、図2において不図示である)を有する。三つの非回転装置44が、また、ベースプラットフォーム4と移動可能プラットフォーム8との間の、三回転自由度を拘束するために設けられ、非回転装置は、受動的であり、モータまたは他の種類のアクチュエータを含まないことが留意されるべきである。装置の駆動式伸縮支柱40の伸長は、したがって、ベースプラットフォーム4と移動可能プラットフォーム8との間の並進(非回転)移動のみをもたらす。換言すると、移動可能プラットフォーム8は、固定されたベースプラットフォーム4に対して、間隙を介して移動され得、そのような移動は、X、YおよびZ軸に沿った移動の観点から説明され得る。図1に示された制御装置22は、したがって、測定プローブ18を移動させるために駆動式伸縮支柱40を伸長または後退させる種々のモータを作動させ、移動可能プラットフォームの、および、それ故に、測定プローブの位置が決定され得る、支柱の伸長に関する位置エンコーダからのフィードバックを、また、受信する。
【0036】
次いで、また、図3aおよび3bを参照すると、上述の平行座標位置決め装置のベッド2上に置かれた部品24が、より詳細に示される。特に、図3aは、部品24の切断、側面図であり、図3bは、部品24の平面図である。
【0037】
部品24は、基準面54に対し、x−z平面において角度θ傾斜した中心軸52を有する、実質的に円筒状の穴50を含むことが理解され得る。部品24は、したがって、第一構造(穴50)および第二構造(基準面54)を含むことが考慮され得る。部品24は、また、第一および第二構造と関連する、ある幾何学的性質を有する。例えば、部品24の一つ以上の幾何学的特性は、穴の半径r、穴の中心軸が基準面に対して傾斜させられる角度θ、または、基準面から穴の中心までの間隔aを含む。したがって、第一および第二構造と関連する幾何学的特性は、単一の構造、または、複数の構造の幾何学的特性を含み得るが、装置の座標系において測定される部品の表面における単一の点の位置は、その部品の幾何学的特性ではないことが留意されるべきである。
【0038】
本発明の方法の第一の工程において、部品24は、図1および2を参照して上述される平行座標位置決め装置のベッド2上に置かれる。この実施例において、一つ以上の基準幾何学的特性は、円筒状の穴の公称半径r、および、基準面に対する穴の中心軸の公称傾斜角θを含む。これらの基準幾何学的特性が、事前に測定されるか(例えば、以下により詳細に説明される較正されたCMMを用いて)、部品24の設計データ(例えば、CAD/CAMデータ)から得られる。
【0039】
部品24が、平行座標位置決め装置に置かれると、測定プローブ18は、部品24の表面が走査されることを可能にする経路に沿って移動させられる。走査経路は、特に、第一および第二構造50および54の領域内で、部品24の一つ以上の測定された幾何学的特性が検出され得る、部品24の複数の点の位置が、収集されることを可能にする。例えば、複数の測定点は、穴の内表面で収集され得、穴の半径rが、数値(例えば、最少二乗和)近似処理を用いて決定されることを可能にする。穴の中心軸は、また、そのような近似処理を用いて機械座標系において決定され得る。基準面で取得された複数の計測値は、機械座標における基準面の位置を検出するために用いられ得る。基準面に対する中心軸の傾斜角θは、それから、決定され得る。
【0040】
計測される幾何学的特性が検出されたら、それらは、関連の基準幾何学的特性と比較され、特性補正値が決定される。例えば、基準穴半径が、測定された穴半径と比較され、穴半径補正値が決定される。同様に、傾斜角θ(すなわち、穴の軸と基準面との傾斜度)の基準および測定値が、傾斜角補正値を確立するために比較される。この方法を用いて決定される特性補正値は、したがって、平行座標位置決め装置を用いて測定される幾何学的特性が、関連する基準幾何学的特性に合致するようにマップされるか修正されることを可能にすることが理解され得る。このことは、達成するには実際に難しい、平行座標位置決め装置をエラーマップする必要性を回避し、それでも、正確な幾何学的特性が装置を用いて決定されることを可能にする。
【0041】
特性補正値を決定する上述の方法は、一連の公称同一部品の最初の部品で、好ましくは実行される。特性補正値は、それから、最初の部品と公称同一である他の部品において、座標位置決め装置を用いて取得された計測値から決定される測定幾何学的特性を補正するために用いられ得る。換言すると、特性補正値は、座標位置決め装置を用いて計測される一連の同一部品の最初の部品に対して決定され得、そのような特性補正値は、その後に計測される一連の他の部品の幾何学的特性を補正するために用いられ得る。
【0042】
一連の他の部品の計測は、好ましくは、平行座標位置決め装置の同じ領域において行うが、本発明は、平行座標位置決め装置によって取得された測定値の逐一の補正を実行する必要性を除去する。代わりに、部品の表面で測定される複数の点から検出される、測定された幾何学的特性(例えば、本実施例における半径rおよび傾斜角θ)が、補正される。この方法は、逐一の補正よりも実行するのがより簡単であることが発見されたが、一方では、また、必要な正確さに補正される補正値を提供する。
【0043】
図4を参照すると、部品の基準幾何学的特性を計測するための連続座標計測装置102が示される。CMM102は、対象(例えば、上述の部品24のような部品)が置かれ得るベースまたはテーブル104、および、ベース104に関してxおよびy方向に沿って移動可能な構台106を含む。構台106は、構台106に関してz方向に沿って移動可能なクイル108を含む。位置エンコーダが、x、yおよびz方向でのクイルの位置を計測するために、CMM102の各々の軸上に配置される。CMM移動の三軸(x、y、z)は、連続方式に形成されていることが理解され得る。
【0044】
クイル108は、レニショーPH10モータ駆動プローブヘッドのような、インデキシングプローブヘッド110を支持する。CMM102は、基準計測装置と見なされ得る。インデキシングプローブヘッド110は、クイル108に取付けられる基部取付部分と、偏位可能なスタイラス114を有する走査プローブ112を支持するプローブ取付部分を含む。レニショーSP25プローブを含み得る、走査プローブ112は、いわゆるニュートラルまたは休止位置から離れた、スタイラス114のいかなる偏位をも測定する内部トランスデューサを含む。スタイラス114のどんな偏位も、したがって、その局所(プローブ)座標(a、b、c)系において、走査プローブ112によって測定される。複雑な対象を走査ための能力を改良するために、インデキシングプローブヘッド110は、走査プローブ112が、直交する軸A1および軸A2の周りで、クイルに対して回転させられるのを、また、複数のインデックス位置のいずれか一つで固定されるのを可能にする。レニショーPH10プローブヘッドの場合において、プローブは、720の異なるインデックス位置の何れか一つでインデックスされ得る。制御装置116は、CMMの作動を制御する。
【0045】
連続式CMM102は、公知の方法で、例えば、トレース可能な較正標準を用いて、較正される。CMMは、また、測定の正確さを最大にするため、清潔な、温度が制御された環境に、好ましくは配置される。このことは、高レベルの測定の正確さでもって、対象の表面の点が、装置座標系において測定されることを可能にする。
【0046】
本発明は、したがって、図1〜図3を参照して上述された部品24のような、部品の表面上の複数の点を測定するための連続式CMM102を用いる工程を含み得る。部品の一つ以上の基準幾何学的特性(例えば、半径rおよび傾斜角θ)が、それから、引き出され得る。これらの測定された基準幾何学的値は、参照(真)値として選択され、それらの同じ幾何学的特性が、上述の平行CMMを用いて測定される。
【0047】
図3aおよび3bび示された幾何学的特性の例は、単に、説明に役立つものである。図5a〜5c(「BS308、第三部、1990年」によって描かれている)は、おのおのが複数の構造を含む部品の更なる例を示し、複数の構造間の関係を説明する、少なくとも一つの幾何学的特性が定義され得る。
【0048】
図5aは、幾何学的特性の一例として傾斜度を示す。図形に示された傾斜表面は、基準面Aに対して60度の傾斜度として定義される。図形は、また、この傾斜度が、いかに、0.1度の許容誤差内で達成されるべきかを特定する。
【0049】
図5bは、幾何学的特性の一例として相対位置を示す。図形は、いかにして、識別される穴の中心が、基準面Aから30mmに、および、基準面Bから60mmに位置されるべきかを示す。図形は、また、いかにして、これらの距離が、0.1mm以内で正確でなければならないかを特定する。
【0050】
図5cは、幾何学的特性の一例として、平行度を示す。図形は、また、いかにして、穴の壁が、0.1度以内で、基準面Aに平行でなければならないかを示す。
【0051】
図5a〜5cは、単に、いかにして、幾何学的特性および許容誤差が設計図面または類似のものにおいて、図形として典型的に表現されるかの、いくつかの例である。そのような幾何学的特性の更に多くの例が、上記で参照したBS308文書の第三部の第1章に記述されており、そのような例は、ここにおいて、参照として組み込まれる。
【0052】
上記の具体例は、本発明の単なる実施例であることが、また、記憶されねばならない。特に、本発明の方法は、上述の平行座標位置決め装置のみならず、連続座標位置決め装置を補正するのに用いられ得ることに留意するのが重要である。さらに、部品の基準幾何学的特性は、多くの異なった方法で決定され得る。部品の測定された基準幾何学的特性を得るために、基準の(例えば、較正された)CMMの使用は有利ではあるが、それは、決して、部品の要求される基準幾何学的特性が高レベルの正確さで検出され得る唯一の方法ではない。部品の一つ以上の構造の公称基準幾何学的特性は、また、例えば設計データから得られ得る。
【0053】
複数の異なって導き出された幾何学的特性の間の特性補正値を得ることがまた可能であろう。例えば、連続(基準)座標位置決め装置と平行座標位置決め装置によって測定される幾何学的特性間の差異を記述する特性補正値を得ることに加え、連続(基準)座標位置決め装置によって測定された幾何学的特性と関連した公称幾何学的特性との間の差異を記述する特性補正値を得ることが、また、可能であろう。この方法で、平行座標位置決め装置によって測定される幾何学的特性は、連続(基準)座標位置決め装置によって測定された幾何学的特性を用いて得られる、測定基準幾何学的特性との比較を可能にするように補正され得、さらに、設計データから得られる公称基準幾何学的特性との比較のために補正され得る。

【特許請求の範囲】
【請求項1】
測定プローブを有する座標位置決め装置を作動させる方法であって、該方法は、任意の適切な順序で、以下の、
(i)一連の公称同一部品の内の第一の部品であって、該第一の部品の一つ以上の構造と関連する少なくとも第一の基準幾何学的特性が知られている上記第一の部品を選ぶ工程、
(ii)上記第一の部品の上記一つ以上の構造を測定するために上記座標位置決め装置を用い、そこから、上記第一の基準幾何学的特性に対応する第一の測定幾何学的特性を決定する工程、
(iii)上記第一の基準幾何学的特性と上記第一の測定幾何学的特性との差異を記述する、第一の特性補正値を決定する工程、
(iv)上記一連の公称同一部品の一つ以上の他の部品の上記一つ以上の構造を測定するために上記座標位置決め装置を用い、そして、各々の他の部品のために、上記第一の基準幾何学的特性に対応する、他の測定幾何学的特性を決定する工程、および、
(v)各々の他の測定幾何学的特性に対して上記第一の特性補正値を適用する工程、を含むことを特徴とする方法。
【請求項2】
請求項1の方法であって、上記第一の部品の上記一つ以上の構造が、第一の構造および第二の構造を含み、上記第一の基準幾何学的特性は、上記第一の構造と上記第二の構造の間の関係を記述することを特徴とする方法。
【請求項3】
請求項2の方法であって、上記第一の基準幾何学的特性は、上記第二の構造に対する上記第一の構造の、平行度、垂直度、傾斜度、位置、同心度、同軸度、対称度、円形振れ度、または、全体振れ度の少なくとも一つを含むことを特徴とする方法。
【請求項4】
請求項1の方法であって、上記第一の部品の上記一つ以上の構造は、第一の構造を含み、上記第一の基準幾何学的特性は、上記第一の構造のみの幾何学的特性を記述することを特徴とする方法。
【請求項5】
請求項4の方法であって、上記第一の基準幾何学的特性は、上記第一の構造の大きさ、形、真っ直ぐさ、平坦性、真円度および円筒度の少なくとも一つを記述することを特徴とする方法。
【請求項6】
請求項1〜5のいずれか一つの方法であって、上記第一の基準幾何学的特性は、上記第一の部品と関連する設計データから得られる公称の幾何学的特性を含むことを特徴とする方法。
【請求項7】
請求項1〜5のいずれか一つの方法であって、工程(i)は、上記第一の部品を測定するために、基準座標位置決め装置を用いる工程を含み、上記第一の基準幾何学的特性は、上記基準座標位置決め装置を用いて得られる上記第一の部品の測定値から得られる測定基準幾何学的特性を含むことを特徴とする方法。
【請求項8】
請求項7の方法であって、上記基準座標位置決め装置は、予め較正された、橋型の座標位置決め装置を含むことを特徴とする方法。
【請求項9】
請求項1〜8のいずれか一つの方法であって、工程(ii)は、上記第一の部品の上記一つ以上の構造の各々の表面の複数の点の位置を測定するために、上記座標位置決め装置を用いることを含むことを特徴とする方法。
【請求項10】
請求項9の方法であって、工程(ii)は、上記第一の測定幾何学的特性を確立するために、上記座標位置決め装置によって測定された上記複数の点を、関数に近似させることを含むことを特徴とする方法。
【請求項11】
請求項1〜10のいずれか一つの方法であって、工程(iii)で決定される上記第一の特性補正値が、上記第一の測定幾何学的特性と上記第一の基準幾何学的特性との間のベクトルの差を含むことを特徴とする方法。
【請求項12】
請求項1〜11のいずれか一つの方法であって、上記座標位置決め装置は、平行移動座標位置決め装置を含むことを特徴とする方法。
【請求項13】
請求項1〜12のいずれか一つの方法であって、上記第一の部品の一つ以上の構造と関連する少なくとも一つの追加基準幾何学的特性が知られていることを特徴とする方法。
【請求項14】
請求項1〜13のいずれか一つの方法であって、上記座標位置決め装置の上記測定プローブは、偏位可能なスタイラスを有する、接触式測定プローブを含むことを特徴とする方法。
【請求項15】
測定プローブと制御装置を含む座標位置決め装置であって、上記制御装置は、一つ以上の構造を有する、一連の公称同一の部品の内の第一の部品のための誤差補正技術を実行するようプログラムされており、上記制御装置は、上記第一の部品の上記一つ以上の構造と関連する少なくとも第一の基準幾何学的特性を記憶し、上記制御装置によって実行される上記誤差補正技術は、
上記部品の上記一つ以上の構造を測定するために上記測定プローブを用い、上記第一の部品の第一の測定幾何学的特性をそこから計算する工程であって、上記第一の測定幾何学的特性は、上記第一の基準幾何学的特性に対応している工程、および、
上記第一の基準幾何学的特性を上記第一の測定幾何学的特性と対比し、第一の特性補正値を計算する工程、を含み、
上記制御装置は、上記第一の部品と公称同一である一つ以上の他の部品の測定幾何学的特性を補正するために上記第一の特性補正値を記憶することを特徴としている座標位置決め装置。

【図1】
image rotate

【図2】
image rotate

【図3a】
image rotate

【図3b】
image rotate

【図4】
image rotate

【図5a】
image rotate

【図5b】
image rotate

【図5c】
image rotate


【公表番号】特表2013−521488(P2013−521488A)
【公表日】平成25年6月10日(2013.6.10)
【国際特許分類】
【出願番号】特願2012−555477(P2012−555477)
【出願日】平成23年2月28日(2011.2.28)
【国際出願番号】PCT/GB2011/000274
【国際公開番号】WO2011/107729
【国際公開日】平成23年9月9日(2011.9.9)
【出願人】(391002306)レニショウ パブリック リミテッド カンパニー (166)
【氏名又は名称原語表記】RENISHAW PUBLIC LIMITED COMPANY
【Fターム(参考)】