説明

放射線トモシンセシス撮影装置

【課題】放射線トモシンセシス撮影装置において、散乱放射線の影響の排除を行うとともに、放射線源の利用効率を向上させる。
【解決手段】被写体に向けて放射線を射出する多数の放射線源1aを有し、各放射線源1aから射出されて被写体を透過した放射線が被写体の投影像の一部分を形成するように多数の放射線源が分散配置された放射線照射部1を設け、各放射線源1aが、ファンビームの放射線を射出するものであるとともに、そのファンビームの広がり角が大きい方の面が多数の放射線源1aの配列方向と交差し、互いに平行に並ぶように配置する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、被写体の断層像を撮影する放射線トモシンセシス撮影装置に関するものである。
【背景技術】
【0002】
従来、回折格子によりタルボ効果を生じさせ、さらにもう一枚の回折格子を併用してモアレ縞を生成するタルボ干渉計をX線分野に適用することが研究されている(たとえば、特許文献1および特許文献2参照)。
【0003】
そして、特許文献1および特許文献2には、X線源、2つの回折格子およびX線画像検出器を備えたX線撮影装置が提案されているが、2つの回折格子とX線画像検出器はいずれも平面基板上に形成されている。
【0004】
ここで、上記のようなX線撮影装置において、たとえば、放射光のような平行光を用いる場合には特に問題は生じないが、医療診断用途などにおいては、通常、ビームの方向が大幅に拡がるX線源が用いられ、回折格子の中心部分においてはX線は問題なく通過するが、中心部分以外の部分においてはX線が斜め方向から入射するため、X線が回折部材により遮断されて回折格子を通過できない問題が生じる。たとえば、特許文献3においては、金属製の幅2μm以上10μm以下、厚み25μm以上100μm以下のX線吸収部材を2μm以上10μm以下の等間隔で配列した振幅型回折格子が提案されているが、このような回折格子を用いた場合、上記のような問題が生じると考えられる。したがって、医療診断用途での大サイズのX線位相イメージングは困難であった。
【0005】
そこで、特許文献4においては、回折格子の条帯が、ビームの光路中に陰を形成しないように構成されたX線撮影装置が提案されている。
【0006】
また、特許文献5は、位相格子の格子線に対して平行に向いた多数の縦長の検出条帯からなる検出素子を備えたX線撮影装置が記載されており、このX線撮影装置によれば、各ビームで単に一回の測定を実行するだけで位相画像を取得することができ、必要な測定回数を減らすことができる。また、特許文献6には、特許文献5と同様に位相画像を取得するX線撮影装置であって、シンチレーション条帯を備えたX線撮影装置が提案されている。
【0007】
一方、たとえば、特許文献7および特許文献8においては、多数のX線源を空間的に分散配置したX線照射部を備えた放射線撮影装置が提案されており、各X線源から射出されたX線の照射によって撮影された画像を組み合わせることによって、散乱X線の影響を排除したX線イメージングが可能なX線撮影装置が提案されている。
【特許文献1】米国特許第5812629号公報
【特許文献2】国際公開WO2004/058070号公報
【特許文献3】特開2006−259264号公報
【特許文献4】特開2007−206075号公報
【特許文献5】特開2007−203063号公報
【特許文献6】特開2007−203062号公報
【特許文献7】米国特許出願公開第2007/0133747号明細書
【特許文献8】特開2007−14761号公報
【発明の開示】
【発明が解決しようとする課題】
【0008】
ここで、たとえば、特許文献7および特許文献8に記載の分散型X線源を特許文献1から特許文献6に記載のX線撮影装置に用いた場合には、各X線源から射出されるビームの照射範囲を狭くすることができるため、上述したような、回折格子の周辺部においてビームが通過できないという問題は回避することができる。
【0009】
しかしながら、上記のような狭い照射範囲のビームを射出するX線源として、たとえば、ペンシルビームを射出するようなX線源を用いたのでは、大サイズの放射線位相イメージングを行う場合には、そのサイズに応じた多数のX線源を用いる必要があり、X線源の利用効率が非常に悪いものとなってしまう。また、そのような多数のX線源を設けた場合、発熱量も膨大になるので、X線源を冷却する大規模な構成が必要となりコストアップにもなる。
【0010】
本発明は、上記の事情に鑑み、散乱放射線の影響の排除を行うことができるとともに、放射線源の利用効率を向上させることができる放射線トモシンセシス撮影装置を提供することを目的とする。
【課題を解決するための手段】
【0011】
本発明の放射線トモシンセシス撮影装置は、被写体に向けて放射線を射出する多数の放射線源を有し、各放射線源から射出されて被写体を透過した放射線が被写体の投影像の一部分を形成するように多数の放射線源が分散配置された放射線照射部と、放射線照射部の各放射線源から射出された放射線を検出する放射線画像検出器と、放射線照射部より被写体に対して互いに異なる位置から放射線を照射することによって放射線画像検出器により検出された検出情報に基づいて被写体の断層像を生成する断層像生成部とを備え、各放射線源が、ファンビームの放射線を射出するものであるとともに、そのファンビームの広がり角が大きい方の面が多数の放射線源の配列方向と交差し、互いに平行に並ぶように配置されていることを特徴とする。
【0012】
また、上記本発明の放射線トモシンセシス撮影装置においては、ファンビームの広がり角が大きい方の面の広がり角を、上記面に垂直な方向についてのファンビームの広がり角の10倍以上とすることができる。
【0013】
また、放射線照射部を、多数の放射線源を線上に配置したものとし、放射線照射部を放射線画像検出器の検出面と対向する面に沿って移動させる移動機構を設け、断層像生成部を、放射線照射部の移動によって被写体に対して互いに異なる位置から放射線を照射することによって放射線画像検出器により検出された検出情報に基づいて被写体の断層像を生成するものとすることができる。
【0014】
また、放射線照射部を、多数の放射線源を直線上に配置したものとし、移動機構を、放射線照射部を上記直線に直交する方向に移動させるものとすることができる。
【0015】
また、放射線照射部を、多数の放射線源を2次元的に配置したものとし、放射線源を順次切り替えることによって被写体に対して互いに異なる位置から放射線を照射するものとすることができる。
【0016】
また、放射線照射部における多数の放射線源から射出された放射線が照射され、その照射によりタルボ干渉またはタルボ・ロー干渉を生じさせるように構成された第1の回折格子と、第1の回折格子により回折された放射線を回折する第2の回折格子とをさらに設け、第1の回折格子を、第1の回折格子を構成する回折部材の延伸方向がファンビームの広がり角が大きい方の面の広がり方向と同じになるように配置するとともに、第2の回折格子が、第2の回折格子を構成する回折部材の延伸方向がファンビームの広がり角が大きい方の面の広がり方向と同じになるように配置し、放射線画像検出器を、第2の回折格子により回折された放射線を検出するものとすることができる。
【0017】
また、第1の回折格子の回折部材の延伸方向に直交する方向の多数の放射線源の間隔が放射線源から第1の回折格子までの距離に比べて小さくなるように多数の放射線源と第1の回折格子とを配置し、多数の放射線源を、互いに隣接する放射線源から射出された放射線の被写体の位置における照射範囲が隙間なく重なるように放射線を射出するものであるとともに、各放射線源から射出された放射線の第1の回折格子の位置における照射範囲の辺縁において第1の回折格子の回折特性に実質的に影響を与えないような角度で放射線を射出するものとすることできる。
【0018】
また、放射線照射部における多数の放射線源から射出された放射線が照射され、その照射によりタルボ干渉またはタルボ・ロー干渉を生じさせるように構成された回折格子をさらに設け、放射線画像検出器として、回折格子により回折された放射線の周期情報を検出する周期情報撮像放射線画像検出器を用い、回折格子を、回折格子を構成する回折部材の延伸方向がファンビームの広がり角が大きい方の面の広がり方向と同じになるように配置するとともに、周期情報撮像放射線画像検出器を、周期情報撮像放射線画像検出器が有する周期構造部材の延伸方向がファンビームの広がり角が大きい方の面の広がり方向と同じになるように配置することができる。
【0019】
また、回折格子の回折部材の延伸方向に直交する方向の多数の放射線源の間隔を放射線源から回折格子までの距離に比べて小さくなるように多数の放射線源と回折格子とを配置し、多数の放射線源を、互いに隣接する放射線源から射出された放射線の被写体の位置における照射範囲が隙間なく重なるように放射線を射出するものとするとともに、各放射線源から射出された放射線の回折格子の位置における照射範囲の辺縁において回折格子の回折特性に実質的に影響を与えないような角度で放射線を射出するものとすることができる。
【0020】
また、放射線照射部を、ファンビームの広がり角が大きい方の面に垂直な方向について配置された多数の放射線源のうちの一部の放射線源群とその一部以外の放射線源群とを順次切り替えて各放射線源群から放射線を射出させるものとし、各放射線源群に属する放射線源を、その放射線源から同時に射出された放射線の放射線画像検出器の位置における照射範囲が離れるように放射線を射出するものとすることができる。
【発明の効果】
【0021】
本発明の放射線トモシンセシス撮影装置によれば、被写体に向けて放射線を射出する多数の放射線源を有し、各放射線源から射出されて被写体を透過した放射線が被写体の投影像の一部分を形成するように多数の放射線源が分散配置された放射線照射部を用い、各放射線源をファンビームの放射線を射出するものとするとともに、そのファンビームの広がり角が大きい方の面が多数の放射線源の配列方向と交差し、互いに平行に並ぶように配置するようにしたので、散乱放射線の影響の排除を行うことができるとともに、放射線源の利用効率を向上させることができる。
【0022】
また、放射線照射部を、多数の放射線源を線上に配置したものとし、放射線照射部を放射線画像検出器の検出面と対向する面に沿って移動させる移動機構を設け、断層像生成部を、放射線照射部の移動によって被写体に対して互いに異なる位置から放射線を照射することによって放射線画像検出器により検出された検出情報に基づいて被写体の断層像を生成するようにした場合には、さらに放射線源の利用効率を向上させることができるとともに、放射線源からの発熱量を少なく抑えることができる。
【0023】
また、放射線照射部を、多数の放射線源を2次元的に配置したものとし、放射線源を順次切り替えることによって被写体に対して互いに異なる位置から放射線を照射するものとした場合には、移動機構などを設けることなく、より簡易な構成で断層像を生成するための検出情報を取得することができる。
【0024】
また、放射線照射部における多数の放射線源から射出された放射線が照射され、その照射によりタルボ干渉またはタルボ・ロー干渉を生じさせるように構成された第1の回折格子と、第1の回折格子により回折された放射線を回折する第2の回折格子とをさらに設け、第1の回折格子を、第1の回折格子を構成する回折部材の延伸方向がファンビームの広がり角が大きい方の面の広がり方向と同じになるように配置するとともに、第2の回折格子が、第2の回折格子を構成する回折部材の延伸方向がファンビームの広がり角が大きい方の面の広がり方向と同じになるように配置するようにした場合には、放射線源の利用効率を向上させることができるとともに、ビームが回折格子の周辺部で遮断されるのを回避することができる。
【0025】
また、第1の回折格子の回折部材の延伸方向に直交する方向の多数の放射線源の間隔が放射線源から第1の回折格子までの距離に比べて小さくなるように多数の放射線源と第1の回折格子とを配置し、多数の放射線源を、互いに隣接する放射線源から射出された放射線の被写体の位置における照射範囲が隙間なく重なるように放射線を射出するものであるとともに、各放射線源から射出された放射線の第1の回折格子の位置における照射範囲の辺縁において第1の回折格子の回折特性に実質的に影響を与えないような角度で放射線を射出するものとした場合には、隙間なく、かつ適切な位相画像を取得することができる。
【0026】
また、放射線照射部における多数の放射線源から射出された放射線が照射され、その照射によりタルボ干渉またはタルボ・ロー干渉を生じさせるように構成された回折格子をさらに設け、放射線画像検出器として、回折格子により回折された放射線の周期情報を検出する周期情報撮像放射線画像検出器を用い、回折格子を、回折格子を構成する回折部材の延伸方向がファンビームの広がり角が大きい方の面の広がり方向と同じになるように配置するとともに、周期情報撮像放射線画像検出器を、周期情報撮像放射線画像検出器が有する周期構造部材の延伸方向がファンビームの広がり角が大きい方の面の広がり方向と同じになるように配置するようにした場合には、放射線源の利用効率を向上させることができるとともに、ビームが回折格子または周期情報撮像放射線画像検出器の周辺部で遮断されるのを回避することができる。
【0027】
また、回折格子の回折部材の延伸方向に直交する方向の多数の放射線源の間隔を放射線源から回折格子までの距離に比べて小さくなるように多数の放射線源と回折格子とを配置し、多数の放射線源を、互いに隣接する放射線源から射出された放射線の被写体の位置における照射範囲が隙間なく重なるように放射線を射出するものとするとともに、各放射線源から射出された放射線の回折格子の位置における照射範囲の辺縁において回折格子の回折特性に実質的に影響を与えないような角度で放射線を射出するものとした場合には、隙間なく、かつ適切な位相画像を取得することができる。
【0028】
また、放射線照射部を、ファンビームの広がり角が大きい方の面に垂直な方向について配置された多数の放射線源のうちの一部の放射線源群とその一部以外の放射線源群とを順次切り替えて各放射線源群から放射線を射出させるものとし、各放射線源群に属する放射線源を、同時に放射線源から射出された放射線の放射線画像検出器の位置における照射範囲が離れるように放射線を射出するものとした場合には、放射線源から射出された放射線の直進成分のみを検出することによって散乱線の影響を低減することができる。
【発明を実施するための最良の形態】
【0029】
以下、図面を参照して本発明の放射線トモシンセシス撮影装置の第1の実施形態について説明する。図1に第1の実施形態の放射線トモシンセシス撮影装置の概略構成を表す斜視図を示す。図2に図1に示す放射線トモシンセシス撮影装置の側面図(Z−Y断面図)を示す。図2の紙面厚さ方向が図1のX方向である。
【0030】
放射線トモシンセシス撮影装置は、図1および図2に示すように、放射線を被写体10に向かって照射する放射線照射部1と、放射線照射部1を図1のY方向に移動させる移動機構2と、放射線照射部1から射出され、被写体10を透過した放射線を検出する放射線画像検出器3と、放射線照射部1より被写体10に対して互いに異なる位置から放射線を照射することによって放射線画像検出器3により検出された検出情報に基づいて被写体10の断層像を生成する断層像生成部4とを備えている。
【0031】
放射線照射部1は、図1に示すように、放射線を射出する多数の放射線源1aが、放射線画像検出器3の検出面に対向する面に沿って、X方向に直線上に一列に配列されたものである。
【0032】
そして、各放射線源1aから射出された放射線は、被写体を透過した後、放射線画像検出器3により検出されるが、各放射線源1aは、各放射線源1aから射出されて被写体を透過した放射線が、被写体の投影像の一部分を形成するように分散配置されている。
【0033】
そして、放射線照射部1は、移動機構2により図2に示す位置Aから位置Bまで移動させられ、各放射線源1aから射出された放射線により形成される被写体の部分的な投影像の結合により被写体の一部または全体の投影像が形成される。
【0034】
そして、各放射線源1aは、ファンビームの放射線を射出するものであるとともに、そのファンビームの広がり角が大きい方の面が、放射線源1aの配列方向(図1のX方向)と交差し、互いに平行に並ぶように配置されている。すなわち、各放射線源1aは、図1のY方向についての広がり角の方がX方向についての広がり角よりも広いファンビームを出力するものである。
【0035】
そして、各放射線源1aから射出されるファンビームは、その広がり角の大きい方の面の広がり角が、その面に垂直な方向についてのファンビームの広がり角の10倍以上のものであることが望ましい。すなわち、図3Aおよび図3Bに示すように、各放射線源1aから射出されるファンビームのY方向についての広がり角θ1が、X方向についての広がり角θ2の10倍以上であることが望ましい。
【0036】
また、図4に示すように、隣接する放射線源から射出されるファンビームの照射範囲が被写体10において重なるような構成とすることが望ましい。そして、その場合には、たとえば、隣接する放射線源1a1、放射線源1a2、放射線源1a3、放射線源1a4を順次切り替えてファンビームを射出させるようにすればよい。すなわち、同時に放射線源から射出されるファンビームの照射範囲が放射線画像検出器3において十分離れるようにするとともに、全ての放射線源から射出されたファンビームの照射範囲が被写体において隙間がないように設定する構成であれば如何なる構成を採用してもよい。
【0037】
放射線源1aの具体的な例としては、たとえば、通常の熱陰極電子源を用いたX線源だけではなく、冷陰極電子源を有するX線源、プラズマX線源、電子加速器を用いたX線源、などを利用することができる。
【0038】
なお、本発明は、放射線照射部1を上記以外の構成とすることもできるが、その構成については後で詳述する。
【0039】
放射線画像検出器3は、直接変換型および間接変換型のフラットパネル検出器,イメージングプレート,増感スクリーンとフィルムの組合せ,など従来の放射線画像撮影装置に使われているものと同様でよいので、詳細な説明は省略する。
【0040】
断層像生成部4は、放射線照射部1の移動に伴って放射線画像検出器3によって順次検出された多数の放射線画像を表す画像信号に基づいて、被写体の断層像を生成するものである。断層像の生成方法としては、放射線照射部1により被写体10に対して互いに異なる位置から放射線を照射することによって得られた多数の放射線画像を表す画像信号を所望の被写体の断面位置に応じてシフトし、それらを加算することによって生成する、いわゆるshift and add方法を用いるようにすればよい。各画像信号のシフト量を制御することによって、図2に示すような断面1および断面2に対応する断層像をそれぞれ生成することができる。
【0041】
次に、本実施形態の放射線トモシンセシス撮影装置の作用について説明する。
【0042】
まず、図2に示すように、放射線照射部1と放射線画像検出器3との間に、被写体10が配置される。そして、放射線照射部1が移動機構2によりY方向について移動させられるとともに、放射線照射部1の各放射線源1aから放射線画像検出器3および被写体10に向けて同時に放射線が射出される。
【0043】
そして、放射線照射部1の移動に応じて放射線画像検出器3によって放射線画像が順次検出され、その放射線画像を表す画像信号が断層像生成部4に出力される。
【0044】
そして、断層像生成部4は、放射線照射部1が位置Aから位置Bまで移動する間に取得した多数の放射線画像を表す画像信号に対して、所望の被写体の断面位置に応じてシフト処理を施し、そのシフト処理の施された画像信号を加算することによって、上記断面位置に応じた断層像を生成する。
【0045】
また、上記第1の実施形態の放射線トモシンセシス撮影装置においては、多数の放射線源1aを一列に並べて放射線照射部1を構成するようにしたが、一列に限らず、Y方向について複数列設けるようにしてもよい。ただし、この場合、各放射線源から同時射出される放射線の放射線画像検出器3の位置における照射範囲が十分離れるように、放射線源を順次切り替えて放射線を射出させることが望ましい。
【0046】
また、上記第1の実施形態においては、放射線照射部1を移動機構2により移動させることによって断層像を生成するための多数の画像信号を取得するようにしたが、これに限らず、移動機構を設けることなく、たとえば、図5に示すように、放射線源1aを放射線画像検出器3の検出面に対向する面に沿って2次元的に配置し、放射線源1aの列1bをY方向について順次切り替えることによって被写体に対して互いに異なる位置から放射線を照射するものとしてもよい。なお、放射線源1aの列の数は、断層像を取得するに十分な数だけ設けるようにすればよい。
【0047】
また、上記第1の実施形態の放射線トモシンセシス撮影装置においては、放射線照射部1の各放射線源1aから射出される放射線の照射方向は変化しないものとしたが、図6に示すように、放射線照射部1のA−B間の位置に応じて放射線源とコリメータ(図6では図示省略)の相対的位置を変化させることにより、放射線照射部1の各放射線源1aから射出される放射線の照射方向が被写体の方向となるように変化させるようにしてもよい。このように照射方向を変化させることにより、各放射線源1aから射出される放射線の角度の幅を広くすることができ、上記第1の実施形態よりも断面にピントが良く合った断層像を生成することができる。
【0048】
また、上記第1の実施形態の放射線トモシンセシス撮影装置においては、放射線源1aをX方向について直線上に配置するようにしたが、必ずしも直線上でなくてもよく、たとえば、図7に示すように、X−Z面上において円弧上に配置するようにしてもよい。
【0049】
また、上記第1の実施形態の放射線トモシンセシス撮影装置においては、放射線照射部1が移動して放射線を照射する範囲の全面に亘って放射線画像検出器3を配置するようにしたが、これに限らず、たとえば、放射線照射部1から射出される放射線の照射範囲と同程度の大きさの放射線画像検出器を設け、放射線照射部1の移動に伴って放射線画像検出器も移動させることによって、各位置において放射線照射部1により照射される放射線を放射線画像検出器により順次検出するようにしてもよい。
【0050】
次に、本発明の放射線トモシンセシス撮影装置の第2の実施形態について説明する。図8に第2の実施形態の放射線トモシンセシス撮影装置の概略構成を表す斜視図を示す。図9に図8に示す放射線トモシンセシス撮影装置の上面図(X−Z断面図)を示す。図9の紙面厚さ方向が図8のY方向である。
【0051】
第2の実施形態の放射線トモシンセシス撮影装置は、図8および図9に示すように、第1の実施形態の放射線トモシンセシス撮影装置に加えて、さらに、放射線照射部1から射出された放射線が照射され、その照射によりタルボ干渉またはタルボ・ロー干渉を生じさせるように構成された第1の回折格子20と、第1の回折格子20により回折された放射線を回折する第2の回折格子30と、第1および第2の回折格子20,30とをそれぞれの面に沿って回折部材と直交する方向(図8のX方向)に移動させる回折格子移動機構51と、放射線画像検出器3により検出された画像信号に基づいて位相画像を生成する位相画像生成部61とを備えている。
【0052】
放射線照射部1は、上記第1の実施形態と同様に、多数の放射線源1aが、放射線画像検出器3の検出面に対向する面に沿ってX方向に直線上に一列に配列されたものである。
【0053】
放射線照射部1の各放射線源1aは、上記第1の実施形態と同様のファンビームを射出するものである。そして、さらに第1の回折格子20に放射線を照射したとき、タルボ効果を発生させうるだけの空間的干渉性を有するものとする。また、上記第1の実施形態においては、放射線照射部1を構成する放射線源1aとして、通常の熱陰極電子源を用いたX線源だけでなく、冷陰極電子源を有するX線源、プラズマX線源、電子加速器を用いたX線源、などを利用するようにしたが、第2の実施形態の放射線照射部1の構成はこれに以下のような条件が加わる。たとえば、図10に示すように、放射線照射部16を、電子を放出する多数の電子放出部16bを備えた冷陰極電子源16aと、金属ターゲット16cと、スリット部材からなり金属ターゲット16cから発せられた放射線を透過するマルチスリット16dとから構成するようにしてもよい。
【0054】
電子源16aとしては、たとえば、FED(Field Emission Display)やSED(Surface-conduction Electron-emitter Display)における電子源を利用するようにしてもよい。
【0055】
また、マルチスリット16dは、各電子放出部16bから放出された電子の衝突により金属ターゲット16cから射出されたX線から特定の発生位置のX線を取り出すものであり、そのスリットの延伸方向がY方向(図10の紙面厚さ方向)となるように配置される。このマルチスリット16dの間隔はタルボ・ロー干渉条件により決められる。そして、コリメータ(図示せず)を通過した放射線が上述した第1の実施形態における各放射線源1aから射出されるファンビームと同じものとなるように構成されている。
【0056】
また、図10に示す放射線照射部16においては、金属ターゲット16cをY方向(図10の紙面厚さ方向)に平行に配列された金属ワイヤで構成し、マルチスリット16dを設けないようにしてもよい。この金属ワイヤの間隔はタルボ・ロー干渉条件により決められる。なお、この場合、上記金属ワイヤから射出される放射線がコリメータ(図示せず)により上述した第1の実施形態における各放射線源1aから射出されるファンビームと同じものとなるように構成されている。
【0057】
また、図10に示す放射線照射部16において、冷陰極電子源16aをY方向(図10の紙面厚さ方向)に平行にストライプ状に配列された線状の冷陰極電子源で構成し、マルチスリット16dを設けないようにしてもよい。このストライプの間隔はタルボ・ロー干渉条件により決められる。なお、この場合、ストライプ状の各冷陰極電子源から放出された電子の衝突により金属ターゲット16cから射出される放射線がコリメータ(図示せず)上述した第1の実施形態における各放射線源1aから射出されるファンビームと同じものとなるように構成されている。
【0058】
そして、放射線照射部1の多数の放射線源1aは、互いに隣接する放射線源1aから射出された放射線の被写体10の位置における照射範囲が隙間なく重なるように放射線を射出するものであるとともに、各放射線源1aから射出された放射線の第1の回折格子20の位置における照射範囲の辺縁において、第1の回折格子の回折特性に実質的に影響を与えないような角度で放射線を射出するものであることが望ましい。上記角度の条件については、後で詳述する。
【0059】
第1の回折格子20は、放射線画像検出器3の検出面に平行な面に沿って形成されており、図11に示すように、基板21と、基板21に設けられた複数の回折部材22とを備えている。複数の回折部材22は、いずれも一方向(図11中紙面の厚さ方向)に延びる線状形状で形成されている。複数の回折部材22どうしの間隔(つまり、回折格子の周期)Pは、この実施形態では一定とされている。回折部材22の素材としては、たとえば、金を用いることができる。また、回折部材22としては、照射される放射線に対して約80°〜100°(理想的には90°)の位相変調を与える、いわゆる位相型回折格子を構成するものであることが望ましい。通常の医療診断用のX線エネルギー領域において必要な金の厚さは1μm〜数μm程度になる。
【0060】
第2の回折格子30は、放射線画像検出器3の検出面に平行な平面に沿って形成されており、図12に示すように、第1の回折格子20と同様に、基板31と、基板31に設けられた複数の回折部材32とを備えている。複数の回折部材22は、いずれも一方向(図12中紙面の厚さ方向)に延びる線状形状で形成されている。複数の回折部材32どうしの間隔(つまり、回折格子の周期)Pは、この実施形態では一定とされている。複数の回折部材32の素材としては、たとえば、金を用いることができる。第2の回折格子30は、第1の回折格子20により回折された放射線を回折することにより、画像コントラストを形成する構成となっている。第2の回折格子30については、回折部材32をより厚くした振幅型回折格子であることが望ましいが、第1の回折格子20と同様に構成することもできる。振幅型回折格子とするには、回折部材が放射線を十分に吸収する必要がある。通常の医療診断用のX線エネルギー領域において必要な金の厚さは10μm〜数10μm程度になる。
【0061】
なお、放射線源1aから第1の回折格子20までの距離Lと第1の回折格子20におけるピッチPとの比を、放射線源1aから第2の回折格子30までの距離L+Zと第2の回折格子30におけるピッチPの比にほぼ等しく設定することができる。
【0062】
また、第1の回折格子20と第2の回折格子30は、それらを構成する回折部材22,32の延伸方向が、各放射線源1aから射出されるファンビームの広がり角が大きい方の面の広がり方向と同じになるように配置されている。すなわち、第1の回折格子20と第2の回折格子30は、それらを構成する回折部材22,32の延伸方向が、放射線照射部1の移動方向(Y方向)と同じになるように配置されている。
【0063】
放射線画像検出器3は、上記第1の実施形態と同様である。
【0064】
そして、第2の実施形態の放射線トモシンセシス撮影装置においては、放射線源1a、第1の回折格子20および第2の回折格子30によってタルボ干渉計が構成される。その条件について以下に説明する。
【0065】
まず、可干渉距離lは、次のようになる。
【数1】

【0066】
ただし、
λ:放射線の波長(通常は中心波長)
a:回折部材にほぼ直交する方向における放射線源1aの開口径
L:放射線源1a(放射線照射部においてスリットを用いる場合はスリットの位置)から第1の回折格子20までの距離(図9参照)
:第1の回折格子20から第2の回折格子30までの距離(図9参照)
:第2の回折格子30から放射線画像検出器3までの距離(図9参照)
である。
【0067】
また、第1の回折格子20と第2の回折格子30との距離Zは、第1の回折格子20が位相型回折格子であることを前提にすれば、次の条件をほぼ満たさなければならない。
【数2】

【0068】
ただし、mは整数、Pは上述した回折部材の周期である。
【数3】

【0069】
ただし、mは0か正の整数、λは放射線の波長である。
【0070】
回折格子移動機構51は、上述したように第1および第2の回折格子20,30をX方向に移動させるものであるが、たとえば、第1の回折部材のピッチPの1/n(nは2以上の整数)ずつ動かして、それぞれの位置で放射線画像の撮影を行なうことによりn種類の位相成分の画像信号を取得することができる。たとえば、4種類の位相成分または6種類の位相成分に対応する画像信号を取得するように第1および第2の回折格子20,30を移動させるようにすることが望ましい。
【0071】
次に、本実施形態の放射線トモシンセシス撮影装置の作用について説明する。
【0072】
まず、図8に示すように、放射線照射部1と第1の回折格子20との間に、被写体10が配置される。次に、放射線照射部1の各放射線源1aから第1の回折格子20に向けて同時に放射線が射出され、第1の回折格子20に照射される。すると、照射された放射線は、第1の回折格子20を通過する。このとき、第1の回折格子20では、タルボ効果を生じる。
【0073】
ここで、タルボ効果とは、平面波が回折格子を通過したとき、位相型回折格子の場合、式(2)で与えられる距離において回折格子の自己像を形成することである。上記の場合、被写体10による放射線の位相のずれがあるので、第1の回折格子20に入射する放射線の波面が歪んでいる。したがって、第1の回折格子20の自己像はそれに依存して変形している。続いて、放射線は、第2の回折格子30を通過する。その結果、上記の変形した第1の回折格子20の自己像と第2の回折格子30との重ね合わせにより、放射線に画像コントラストを生成することができる。画像コントラストは、一般にモアレ縞となっており、放射線画像検出器3により検出することができる。生成されたモアレ縞は、被写体10により変調を受けている。その変調量は、被写体10による屈折効果によって放射線が曲げられた角度に比例している。したがって、放射線画像検出器3により検出されたモアレ縞を解析することにより、被写体10およびその内部の構造を検出することができる。
【0074】
そして、上記のようにして第1および第2の回折格子20,30が所定の位置にあるときの位相成分に対応する画像信号が放射線画像検出器3により検出される。そして、回折格子移動機構51により第1および第2の回折格子20,30がX方向について第1の回折部材のピッチPの1/n(nは2以上の整数)ずつ動かされる。そして、それぞれの位置で放射線画像検出器3により位相成分に対応する画像信号が検出される。
【0075】
そして、上記のようにして検出された画像信号は位相画像生成部61に入力される。そして、位相画像生成部61は、各放射線源1aから射出された放射線の照射範囲に対応する放射線画像検出器3の検出範囲毎についてそれぞれ検出された複数の位相成分の画像信号に基づいて、各検出範囲毎について部分位相画像を生成する。つまり、1つの放射線源1aに対応する部分位相画像を生成する。そして、その部分位相画像を合成して1画面全体の位相画像を取得する。なお、1画面全体の位相画像の生成方法については、上記のような方法に限らず、放射線画像検出器3の各検出範囲によって検査された所定の位相成分の画像信号に基づいて、1画面分の所定の位相成分の画像信号を生成し、各位相成分の1画面分の画像信号に基づいて位相画像を生成するようにしてもよい。
【0076】
そして、次に、放射線照射部1が、上記第1の実施形態と同様に、Y方向に移動させられ、所定の各位置において、放射線照射部1の各放射線源1aから放射線が射出されるとともに、第1および第2の回折格子20,30の移動が行われ、放射線照射部1の各位置毎の位相画像が順次生成される。
【0077】
そして、位相画像生成部61において生成された複数の位相画像を表す画像信号が断層像生成部4に入力される。そして、断層像生成部4は、上記第1の実施形態と同様にして、入力された複数の画像信号に対して、所望の被写体の断面位置に応じてシフト処理を施し、そのシフト処理の施された画像信号を加算することによって、上記断面位置に応じた断層像を生成する。
【0078】
ここで、上述したように、放射線源1aから射出される放射線は、被写体10の位置における照射範囲が隙間なく重なるようにするとともに、放射線の第1の回折格子20および第2の回折格子30の位置における照射範囲の辺縁において、第1の回折格子20および第2の回折格子30の回折特性に実質的に影響を与えないような角度で放射線を射出するものであることが望ましい。以下のその角度について検討する。なお、ここでは、上記角度の許容範囲を第1の回折格子20の位置ずれに換算して検討するものとする。
【0079】
まず、放射線源1aから射出される放射線の中心軸Cと第1の回折格子2との交点Qから回折部材に直交する方向に距離xだけ離れた場所(r,x)における回折部材の必要なピッチをΔxとすると、Δxは下式(4)のように表わすことができる(図13参照。図13は、図8に示す放射線トモシンセシス撮影装置の上面図であり、紙面厚さ方向が図8のY方向に相当する。)
【数4】

【0080】
ただし、rは放射線源1a(放射線照射部において後述するスリットを用いる場合はスリットの位置)からまでの距離であり、rΔθは放射線ビームの中心軸Cと第1の回折格子20との交点Qにおける回折部材のピッチである。
【0081】
そして、x/r=tanθであるので、これを式(4)に代入すると、Δxは下式(5)で表わすことができる。
【数5】

【0082】
したがって、(r,x)におけるピッチと交点QにおけるピッチrΔθとの比は下式(6)で表わすことができる。
【数6】

【0083】
そして、上式(6)に基づいてθとΔx/rΔθとの関係を求めると、下表のようになる。
【表1】

【0084】
ここで、第1の回折格子20の回折部材のピッチPを8μm、回折部材の幅を3μmとし、放射線画像検出器3の1画素の幅を約120μmとすると、第1の回折格子20の位相がピッチの1/12程度以上ずれると別の位相成分の信号が同じ画素に混入することになって好ましくないと考えられる。放射線ビームが中心軸CからX方向(回折部材に直交する方向)に広がることを考慮すると、1画素内の回折部材の位置ずれを8/12×1/2=8/24=0.333μm以下に抑えることが好ましい。
【0085】
中心軸C上での回折部材のピッチを8μmとすると、放射線ビームの辺縁における1画素内の両端にある回折部材の中心間はΔx/rΔθ×8×4だけ離れていることになる。
【0086】
したがって、Δx/rΔθ×8×4−32<0.333を満たせばよいことになる。
【0087】
よって、Δx/rΔθ<1.010となる。
【0088】
したがって、上表1より、放射線ビームのX方向片側の広がり角θを5°以下に抑えればよい。
【0089】
たとえば、r=1000mmとすると、2×1000×tan5°=175mmとなるので、1つの放射線源1aから射出される放射線ビームの第1の回折格子20上におけるX方向の幅が175mm以下となるようにすればよい。
【0090】
また、上記説明では、放射線画像検出器3の1画素の幅が約120μmの場合を検討したが、1画素の幅が約80μmの場合について検討する。なお、回折部材のピッチと幅については上記と同様である。
【0091】
この場合には、第1の回折格子20の位相がピッチの1/8程度以上ずれると別の位相成分の信号が同じ画素に混入することになって好ましくないと考えられる。放射線ビームが中心軸CからX方向に広がることを考慮すると、1画素内の回折部材の位置ずれを8/8×1/2=8/16=0.5μm以下に抑えることが好ましい。
【0092】
中心軸C上での回折部材のピッチを8μmとすると、放射線ビームの辺縁における1画素内の両端にある回折部材の中心間はΔx/rΔθ×8×4だけ離れていることになる。
【0093】
したがって、Δx/rΔθ×8×4−32<0.5を満たせばよいことになる。
【0094】
よって、Δx/rΔθ<1.016となる。
【0095】
したがって、上表1より、放射線ビームのX方向片側の広がり角θを6°以下に抑えればよい。
【0096】
たとえば、r=1000mmとすると、2×1000×tan6°=210mmとなるので、1つの放射線源1aから射出される放射線ビームの第1の回折格子20上におけるX方向の幅が210mm以下となるようにすればよい。
【0097】
なお、上記の検討結果より、回折部材のピッチは放射線ビームの広がり角θの制約に依存しないことがわかる。
【0098】
また、上記説明においては、被写体10が放射線照射部1と第1の回折格子20との間に位置する場合を説明したが、被写体10が第1の回折格子20と第2の回折格子30との間に位置する場合であっても、第2の回折格子30の位置に生成される第1の回折格子20の自己像が被写体10により変形する。したがって、この場合でも、放射線画像検出器3により被写体10に起因して変調された位相成分の画像信号を検出することができる。すなわち、本実施形態の放射線トモシンセシス撮影装置においては、被写体10を放射線照射部1と第1の回折格子20との間に配置してもよいし、第1の回折格子20と第2の回折格子30との間に配置するようにしてもよい。
【0099】
また、上記第2の実施形態においても、放射線照射部1の構成として、上記第1の実施形態において説明した種々の構成を採用することができる。ただし、図10に示すようなマルチスリット16dを備えたものを採用する場合には、そのマルチスリットと第1の回折格子20と第2の回折格子30の回折部材22,32とが平行になるようにする必要がある。また、コリメータを透過した放射線の被写体10の位置における照射範囲が隙間なく重なるようになるとともに、コリメータを透過した放射線が第1の回折格子20の位置における照射範囲の辺縁において、第1の回折格子20の回折特性に実質的に影響を与えないような角度となるように放射線の照射範囲を制限するものであることが望ましい。
【0100】
また、図10に示す放射線照射部16において、金属ターゲット16cを金属ワイヤで構成する場合には、その金属ワイヤと第1および第2の回折格子20,30の回折部材22,32とが平行になるようにする必要がある。
【0101】
また、図10に示す放射線照射部16において、冷陰極電子源16aを線状の冷陰極電子源で構成する場合には、その線状の冷陰極電子源と第1および第2の回折格子20,30の回折部材22,32とが平行になるようにする必要がある。
【0102】
なお、放射線照射部として図10に示す構成および上述したその変形例の構成を用いた場合には、タルボ・ロー干渉計を構成するものとなる。
【0103】
次に、本発明の放射線トモシンセシス撮影装置の第3の実施形態について説明する。図14に第3の実施形態の放射線トモシンセシス撮影装置の概略構成を示す。図15に図14に示す放射線トモシンセシス撮影装置の上面図(X−Z断面図)を示す。図15の紙面厚さ方向が図14のY方向である。
【0104】
第3の実施形態の放射線トモシンセシス撮影装置は、第2の実施形態の放射線トモシンセシス撮影装置における放射線画像検出器3の代わりに周期情報撮像放射線画像検出器45を用いるようにし、第2の回折格子30を設けないようにしたものである。
【0105】
第2の実施形態の放射線トモシンセシス撮影装置は、図14に示すように、放射線を被写体10に向かって照射する放射線照射部1と、被写体10を透過した放射線が照射され、その照射によりタルボ干渉またはタルボ-・ロー干渉を生じさせるように構成された回折格子25と、回折格子25により回折された放射線の周期情報を検出する周期情報撮像放射線画像検出器45と、回折格子25および周期情報撮像放射線画像検出器45をそれぞれの面に沿って検出器45の有する線状電極に直交する方向(図14のX方向)に移動させる回折格子移動機構55と、周期情報撮像放射線画像検出器45により検出された画像信号に基づいて位相画像を取得する位相画像生成部65と、位相画像生成部65において生成された位相画像に基づいて断層像を生成する断層像生成部4とを備えている。
【0106】
放射線照射部1は、上記第1の実施形態および第2の実施形態で説明した構成と同様である。
【0107】
回折格子25は、上記第2の実施形態の放射線トモシンセシス撮影装置における第1の回折格子と同様の構成である。
【0108】
第3の実施形態の放射線位相画像撮影装置は、回折格子25と周期情報撮像放射線画像検出器45によりタルボ干渉計を構成するものであるが、その条件を説明する。まず、可干渉距離lは、次のようになる。
【数7】

【0109】
ただし、
λ:放射線の波長(通常は中心波長)
a:回折部材にほぼ直交する方向における放射線源の開口径
L:放射線源(放射線照射部においてスリットを用いる場合はスリットの位置)から回折格子25までの距離(図15参照)
:回折格子25から周期情報撮像放射線画像検出器45までの距離(図15参照)
である。
【0110】
また、回折格子25から周期情報撮像放射線画像検出器45までの距離Zは、回折格子25が位相型回折格子であることを前提にすれば、次の条件をほぼ満たさなければならない。
【数8】

【0111】
ただし、mは0か正の整数、λは放射線の波長である。
【0112】
なお、回折格子25が振幅型回折格子である場合の条件は次のようになる。
【数9】

【0113】
ただし、mは0か正の整数、λは放射線の波長である。
【0114】
次に、本実施形態の放射線トモシンセシス撮影装置における周期情報撮像放射線画像検出器45の構成について詳細に説明する。図16は周期情報撮像放射線画像検出器45の一部断面図である。
【0115】
周期情報撮像放射線画像検出器45は、図16に示すように、アクティブマトリクス基板70と、このアクティブマトリクス基板70上に積層され、アクティブマトリクス基板70上の略全面に形成された半導体層60と、上部電極50とを備えている。
【0116】
半導体層60は、電磁波導電性を有するものであり、放射線が照射されると内部に電荷を発生するものである。半導体層60としては、たとえば、セレンを主成分とする膜厚10〜1500μmの非晶質Se膜を用いることができるが、それに限定されることなく、PbI、HgI、Cd(Zn)Te、Bi12TiO20、Bi12SiO20、Bi12GeO20などでもよい。上記半導体層60は、アクティブマトリクス基板70上に真空蒸着法などによって形成される。
【0117】
上部電極50は、Au、Alなどの低抵抗の導電材料で形成され、照射された放射線を透過する厚さで形成されている。なお、上部電極50と半導体層60の間に、電極からの電荷注入を防止する一方で発生した電荷のうち注入されるのとは反対の極性の電荷が上部電極50に到達できるようにするための電荷輸送層や、非晶質Seの結晶化を防止するための結晶化防止層などの中間層を設けることができる。
【0118】
アクティブマトリクス基板70は、図16に示すように、被写体の放射線画像を構成する画素に対応する電荷収集電極とスイッチ素子などを含む単位素子72が、ガラス基板71上に2次元状に多数配列されたものである。
【0119】
ここで、周期情報撮像放射線画像検出器45における各画素単位あるいはサブ画素ごとの構造の詳細について以下に説明する。なお、本実施形態でサブ画素とは、配列周期の位相が互いに逆位相となるように交互に配列された2つの線状電極群の組のことをいう。図17は周期情報撮像放射線画像検出器45の平面図、図18は図17に示す周期情報撮像放射線画像検出器45の6−6線断面図、図19は図17に示す周期情報撮像放射線画像検出器45の7−7線断面図である。
【0120】
周期情報撮像放射線画像検出器45は、半導体層60において発生した電荷を収集する第1の線状電極群81aと第2の線状電極群81bとから構成される電荷収集電極と、第1の線状電極群81aによって収集された電荷を蓄積する第1の蓄積容量41aと、第2の線状電極群81bによって収集された電荷を蓄積する第2の蓄積容量41bと、第1の蓄積容量41aに蓄積された電荷を読み出すための第1のTFTスイッチ42aと、第2の蓄積容量41bに蓄積された電荷を読み出すための第2のTFTスイッチ42bとを備えている。
【0121】
図20に、4画素に対応する単位素子72の第1の線状電極群81aと第2の線状電極群81bとの模式図を示す。第1の線状電極群81aと第2の線状電極群81bとは、ともに多数の線状電極をピッチPで周期的に配列したものである。そして、第1の線状電極群81aの線状電極間に、第2の線状電極群81bの線状電極が配置されるように形成され、第1の線状電極群81aの線状電極の配列周期の位相と第2の線状電極群81bの線状電極の配列周期の位相とがπ(180°= ピッチの半分に相当)だけずれるように形成されている。また、図20に示すように、第1の線状電極群81aの線状電極どうしは接続されており、第2の線状電極群81bの線状電極どうしも接続されている。なお、線状電極間の接続線が電極として機能しないように、接続線を線状電極とは異なる面に配置する方が望ましいが、接続線の幅が狭ければ実質的な影響を問題にならないレベルに抑えることができる。
【0122】
そして、第1の線状電極群81aの線状電極の配列ピッチPと、第2の線状電極群81bの線状電極の配列ピッチPは、2μm以上15μm以下とされる。なお、第1の線状電極群81aの各線状電極の幅と第2の線状電極群81bの各線状電極の幅は、1μm以上14μm以下である。
【0123】
なお、放射線源1aから回折格子25までの距離Lと回折格子25におけるピッチPとの比を、放射線源1aから周期情報撮像放射線画像検出器45までの距離L+Zと周期情報撮像放射線画像検出器45における線状電極のピッチPの比にほぼ等しく設定することができる。
【0124】
また、第1の線状電極群81aと第2の線状電極群81bとは、たとえば、非晶質透明導電酸化膜から形成するようにすればよい。
【0125】
また、第1の線状電極群81aおよび第2の線状電極群81bと半導体層60との間に電極からの電荷注入を防止する一方で、半導体層60で発生した電荷を第1の線状電極群81aおよび第2の線状電極群81bで収集するための電荷輸送層や非晶質Seの結晶化を防止する結晶化防止層などの中間層を設けても良い。
【0126】
第1の蓄積容量41aは、接続電極83aとゲート絶縁膜85と電荷蓄積容量電極84とから構成され、ゲート絶縁膜85が誘電体として作用し、接続電極83aと電荷蓄積容量電極84との間に電荷が蓄積される。また、第2の蓄積容量41bは、接続電極83bとゲート絶縁膜85と電荷蓄積容量電極84とから構成され、ゲート絶縁膜85が誘電体として作用し、接続電極83bと電荷蓄積容量電極84との間に電荷が蓄積される。
【0127】
第1のTFT42aは、後述する走査配線73から延伸して形成されたゲート電極43aと、接続電極83aから延伸して形成されたドレイン電極43bと、後述するデータ配線74から延伸して形成されたソース電極43cと、ゲート絶縁膜85と、半導体膜88aなどから構成されている。また、第2のTFT42bは、走査配線73から延伸して形成されたゲート電極44aと、接続電極83bから延伸して形成されたドレイン電極44bと、データ配線74から延伸して形成されたソース電極44cと、ゲート絶縁膜85と、半導体膜88bなどから構成されている。ゲート絶縁膜85は、たとえば、SiNや、SiOなどから形成される。また、半導体膜88a,88bは、第1および第2のTFTスイッチ42a,42bのチャネル部であり、データ配線74と接続電極83a,83bとを結ぶ電流の通路である。
【0128】
そして、絶縁保護膜87が、第1の蓄積容量41aと第2の蓄積容量41b、第1のTFTスイッチ42aと第2のTFTスイッチ42b、およびデータ配線74などを覆うように形成されている。絶縁保護膜87には、第1の線状電極群81aと接続電極83aの接続部分および第2の線状電極群81bと接続電極83bの接続部分において、コンタクトホール86が形成されている。
【0129】
そして、絶縁保護膜87の上面に層間絶縁膜82が形成されており、層間絶縁膜82には、コンタクトホール86が貫通しており、そのコンタクトホール86を介して第1の線状電極群81aと接続電極83aとが接続され、第2の線状電極群81bと接続電極83bとが接続されている。層間絶縁膜82は、有機絶縁膜であり、第1および第2のTFTスイッチ42a,42bの電気的な絶縁分離を図っている。有機絶縁膜の材料としては、たとえば、アクリル樹脂を用いることができる。
【0130】
走査配線73およびデータ配線74は、図17に示すように、格子状に配列された電極配線であり、その交点近傍に第1のTFTスイッチ42aおよび第2のTFTスイッチ42bが形成されている。そして、第1のTFTスイッチ42aと第2のTFTスイッチ42bとには、それぞれ別の走査配線73が接続されており、第1のTFTスイッチ42aと第2のTFTスイッチ42bとは別個にON/OFF制御されるように構成されている。
【0131】
そして、データ配線74の終端には、データ配線74に流れ出した信号電荷を検出するアンプからなる読出回路(図示省略)が接続され、走査配線73には、第1のTFTスイッチ42aおよび第2のTFTスイッチ42bをそれぞれ独立にON/OFF制御するための制御信号を出力するゲートドライバ(図示省略)が接続されている。
【0132】
回折格子移動機構55は、上述したように回折格子25および周期情報撮像放射線画像検出器45をX方向に移動させるものであるが、たとえば、周期情報撮像放射線画像検出器45の線状電極の配列ピッチPの1/n(nは2以上の整数)ずつ動かして、それぞれの位置で放射線画像の撮影を行なうことによりn種類の位相成分の画像信号を取得することができる。たとえば、4種類の位相成分または6種類の位相成分の画像信号を取得するように周期情報撮像放射線画像検出器45を移動させることが望ましいが、本実施形態のように、電荷収集電極を第1の線状電極群81aと第2の線状電極群81bとから構成する場合には、配列ピッチPの1/2だけ動かすことにより4種類の位相成分に対応する画像信号を取得することができ、配列ピッチPの1/3ずつ動かすことにより6種類の位相成分に対応する画像信号を取得することができる。なお、2種類の位相成分に対応する画像信号で位相画像を構成する場合には、回折格子移動機構55は設ける必要はない。
【0133】
次に、上記実施形態の放射線トモシンセシス撮影装置による周期情報撮像放射線画像検出器への放射線画像の記録および読取りの作用について説明する。
【0134】
まず、放射線照射部1と回折格子25との間に被写体10が配置される(図14参照)。なお、本実施形態の放射線トモシンセシス撮影装置においては、放射線照射部1と回折格子25との間に被写体10を配置するようにしたが、回折格子25と周期情報撮像放射線画像検出器45との間に配置するようにしてもよい。その場合、被写体から周期情報撮像放射線画像検出器45までの距離が近くなるとともに、拡大率が小さくなるので既存の放射線撮影室内に設置し易くなる。
【0135】
そして、次に、放射線照射部1の各放射線源1aから回折格子25に向けて同時に放射線が射出される。そして、回折格子25に照射された放射線は、回折格子25を通過するが、このとき、回折格子25ではタルボ効果を生じる。ここで、タルボ効果とは、平面波が回折格子を通過したとき、位相型回折格子の場合、上述した距離Zで与えられる距離において回折格子の自己像を形成することをいう。上記の場合、被写体10による放射線の位相のずれがあるので、回折格子25に入射する放射線の波面が歪んでいる。したがって、回折格子25の自己像はそれに依存して変形している。
【0136】
そして、電圧源によって周期情報撮像放射線画像検出器45の上部電極50に正の電圧を印加した状態において、上記のようにして回折格子25のタルボ効果によって形成された自己像を担持した放射線が、周期情報撮像放射線画像検出器45の上部電極50側から照射される。なお、本実施形態の放射線トモシンセシス撮影装置においては、周期情報撮像放射線画像検出器45は、上部電極50が放射線照射部1側を向くように配置されているとともに、アクティブマトリクス基板70の第1および第2の線状電極群81a,81bの各線状電極の長さ方向が、回折格子25の回折部材22の長さ方向とが同じ方向になるように配置されている。
【0137】
そして、周期情報撮像放射線画像検出器45に照射された放射線は、上部電極50を透過し、半導体層60に照射される。そして、その放射線の照射によって半導体層60において電荷対が発生し、そのうち負の電荷は上部電極50に帯電した正の電荷と結合して消滅し、正の電荷は各単位素子72の第1および第2の線状電極群81a,81bに収集され、第1および第2の蓄積容量41a,41bに蓄積される。
【0138】
ここで、本放射線トモシンセシス撮影装置の周期情報撮像放射線画像検出器45においては、半導体層60において発生した電荷を収集する電荷収集電極が、第1の線状電極群81aと第2の線状電極群81bとから構成されている。したがって、上記のようにして上部電極50に電圧を印加すると、図21の点線矢印で示すように、半導体層60内に、第1および第2の線状電極群81a,81bの各線状電極に向かってほぼ平行な、すなわち上部電極50の面にほぼ垂直な電界が形成される。半導体層60内に発生した電荷はその電界に沿って拡散することなく各線状電極に収集されるので、第1および第2の線状電極群81a,81bは、実質的に振幅型回折格子とその後に設置された検出器の組合せと同等の機能を果たすことになる。したがって、第1の蓄積容量41aには、上記変形した回折格子25の自己像と第1の線状電極群81aによって形成される実質的な回折格子との重ね合わせにより生成された画像コントラストを表す電荷が蓄積され、第2の蓄積容量41bには、上記変形した回折格子25の自己像と第2の線状電極群81bによって形成される実質的な回折格子との重ね合わせにより生成された画像コントラストを表す電荷が蓄積される。上記画像コントラストは、一般にモアレ縞となっている。そして、第1の線状電極群81aと第2の線状電極群81bとは、上述したように互いにπだけ位相がずれているので、互いにπだけ位相がずれた2種類の位相成分に対応する信号が周期情報撮像放射線画像検出器45により検出される。
【0139】
そして、次に、図示省略したゲートドライバから第1のTFTスイッチ42aに接続された各走査配線73に第1のTFTスイッチ42aをONするための制御信号が順次出力される。そして、ゲートドライバから出力された制御信号に応じて第1のTFTスイッチ42aがONし、各単位素子72の第1の蓄積容量41aからデータ配線74に蓄積電荷が読み出される。そして、データ配線74に流れ出した電荷信号は、図示省略した読出回路のチャージアンプにより第1の位相成分に対応する画像信号として検出される。
【0140】
ついで、図示省略したゲートドライバから第2のTFTスイッチ42bに接続された各走査配線73に第2のTFTスイッチ42bをONするための制御信号が順次出力される。そして、ゲートドライバから出力された制御信号に応じて第2のTFTスイッチ42bがONし、各単位素子72の第2の蓄積容量41bからデータ配線74に蓄積電荷が読み出される。そして、データ配線74に流れ出した電荷信号は、図示省略した読出回路のチャージアンプにより第2の位相成分に対応する画像信号として検出される。
【0141】
そして、回折格子移動機構55による回折格子25および周期情報撮像放射線画像検出器45の移動にともなって、上述した周期情報撮像放射線画像検出器45への記録と画像信号の読取りがそれぞれ所定の位置について行なわれ、それぞれ所定の位置毎について第1および第2の位相成分に対応する画像信号が検出される。
【0142】
そして、上記のようにして検出された画像信号は位相画像生成部65に入力される。そして、位相画像生成部65は、各放射線源1aから射出された放射線の照射範囲に対応する周期情報撮像放射線画像検出器45の検出範囲毎についてそれぞれ検出された複数の位相成分の画像信号に基づいて、各検出範囲毎について部分位相画像を生成する。つまり、1つの放射線源1aに対応する部分位相画像を生成する。そして、その部分位相画像を合成して1画面全体の位相画像を取得する。
【0143】
そして、次に、放射線照射部1が、上記第1の実施形態と同様に、Y方向に移動させられ、所定の各位置において、放射線照射部1の各放射線源1aから放射線が射出されるとともに、回折格子25および周期情報撮像放射線画像検出器45の移動が行われ、放射線照射部1の各位置毎の位相画像が順次生成される。
【0144】
そして、位相画像生成部65において生成された複数の位相画像を表す画像信号が断層像生成部4に入力される。そして、断層像生成部4は、上記第1の実施形態と同様にして、入力された複数の画像信号に対して、所望の被写体の断面位置に応じてシフト処理を施し、そのシフト処理の施された画像信号を加算することによって、上記断面位置に応じた断層像を生成する。
【0145】
次に、上記第3の実施形態の放射線トモシンセシス撮影装置における周期情報撮像放射線画像検出器45の変形例について説明する。
【0146】
図20に示した周期情報撮像放射線画像検出器40の第1の線状電極群81aおよび第2の線状電極群81bに加えて、図22に示すように、各単位素子72の第1および第2の線状電極群81a,81bからなる電荷収集電極を囲むように、格子状に定電位線状電極90を設けるようにしてもよい。電荷収集電極間に隙間があると電界が曲げられ、線状電極がない部分からも電荷が集まり、位相成分のコンタミが起こる。そこで、上述したように定電位が印加される定電位線状電極90を設けることによって、電界を安定させることができ、上記のようなコンタミの発生を防止することができる。定電位線状電極90には、周囲の電荷収集電極との間の電位差が大きくならないような電位が印加される。つまり、電荷収集電極とほぼ同電位の電位とされ、具体的には、接地またはそれに近い電位とされる。なお、上記のように定電位線状電極90を設ける場合には、第1の線状電極群81aと第2の線状電極群81bは、図22に示すように構成および配置することが望ましい。
【0147】
また、上記実施形態の周期情報撮像放射線画像検出器45においては、各単位素子72に、電荷収集電極として、互いにπだけ位相のずれた第1の線状電極群81aと第2の線状電極群81bとを設けるようにしたが、電荷収集電極の形状としてはこれに限らない。
【0148】
たとえば、図23に示すように、線状電極をピッチPで多数配列した第1〜第6の線状電極群101〜106を、各線状電極群の線状電極の配列周期の位相がπ/3ずつずれるように配置するようにしてもよい。具体的には、第1の線状電極群101の位相を0とすると、第2の線状電極群102の位相はπ/3、第3の線状電極群103の位相は2π/3、第4の線状電極群104の位相はπ、第5の線状電極群105の位相は4π/3、第6の線状電極群106の位相は5π/3となるように配置するようにしてもよい。
【0149】
図23に示すように電荷収集電極を構成し、第1〜第6の線状電極群101〜106によって収集された電荷を各線状電極群毎に読み出すようにすることによって、一度の放射線画像の撮影により、互いに位相の異なる6種類の位相成分に対応する画像信号を取得することができる。したがって、回折格子移動機構55を設ける必要がない。
【0150】
また、図24に示すように、1つの単位素子72に対応する画素を複数(ここでは、3つ)のサブ画素に区分し、このサブ画素毎に、互いに位相の異なる線状電極群を配置するようにしてもよい。なお、本実施形態においては、上記サブ画素は、上述したように配列周期の位相が互いに逆位相となるように交互に配列された2つの線状電極群の組を意味している。
【0151】
具体的には、図24に示す変形例では、サブ画素SP1に、線状電極がピッチPで配列された第1の線状電極群111と第2の線状電極群112とを互いに位相がπだけずれるように配置し、サブ画素SP2に、線状電極がピッチPで配列された第3の線状電極群113と第4の線状電極群114とを互いに位相がπだけずれるように配置し、サブ画素SP3に、線状電極がピッチPで配列された第5の線状電極群115と第6の線状電極群116とを互いに位相がπだけずれるように配置している。そして、サブ画素SP1とサブ画素SP2の隣接する線状電極群が(7/6)・Pだけ離れるように配置し、サブ画素SP2とサブ画素SP3の隣接する線状電極群が(7/6)・Pだけ離れるように配置することによってサブ画素間で位相が4π/3ずれるように配置している。図24に示すように1画素の中に線状電極群を配置することによって、第1の線状電極群111の位相を0とすると、第2の線状電極群112の位相はπ、第3の線状電極群113の位相は4π/3、第4の線状電極群114の位相はπ/3、第5の線状電極群115の位相は2π/3、第6の線状電極群116の位相は5π/3となる。なお、線状電極群117と線状電極群118は、隣接画素の線状電極群である。
【0152】
図24に示すように電荷収集電極を構成し、第1〜第6の線状電極群111〜116によって収集された電荷を各線状電極群毎に読み出すようにすることによって、一度の放射線画像の撮影により、互いに異なる6種類の位相成分に対応する画像信号を取得することができる。図23に示す電荷収集電極の構成でも6種類の位相成分に対応する画像信号を取得することができるが、図24に示すように電荷収集電極を構成することによって、線状電極の幅を図23の場合に比べて広くすることができる。図24に示す構成とすると空間分解能は低下するが、線状電極の接続も容易である。
【0153】
ここで、上述したように、放射線源1aから射出される放射線は、被写体10の位置における照射範囲が隙間なく重なるようにするとともに、放射線の回折格子25および周期情報撮像放射線画像検出器40の位置における照射範囲の辺縁において、回折格子25および周期情報撮像放射線画像検出器45の線状電極群の回折特性に実質的に影響を与えないような角度で放射線を射出するものであることが望ましい。以下のその角度について検討する。なお、ここでは、上記角度の許容範囲を周期情報撮像放射線画像検出器45の線状電極群の位置ずれに換算して検討するものとする。
【0154】
まず、放射線源1aから射出される放射線の中心軸Cと周期情報撮像放射線画像検出器45との交点Qから回折部材に直交する方向に距離xだけ離れた場所(r,x)における回折部材の必要なピッチをΔxとすると、Δxは下式(10)のように表わすことができる(図25参照。図25は、図14に示す放射線位相画像撮影装置の上面図であり、紙面厚さ方向が図14のY方向に相当する。)
【数10】

【0155】
ただし、rは放射線源1a(放射線照射部において後述するスリットを用いる場合はスリットの位置)から周期情報撮像放射線画像検出器45までの距離であり、rΔθは放射線ビームの中心軸Cと周期情報撮像放射線画像検出器45との交点Qにおける線状電極のピッチである。
【0156】
そして、x/r=tanθであるので、これを式(10)に代入すると、Δxは下式(11)で表わすことができる。
【数11】

【0157】
したがって、(r,x)におけるピッチと交点QにおけるピッチrΔθとの比は下式(12)で表わすことができる。
【数12】

【0158】
そして、上式(12)に基づいてθとΔx/rΔθとの関係を求めると、下表のようになる。
【表2】

【0159】
ここで、周期情報撮像放射線画像検出器45の電荷収集電極を、図24に示すような構成とし、線状電極のピッチPを8μm、線状電極の線幅を3μmとすると、1位相成分に対応する信号を検出する線状電極群の幅は35μmとなり、1画素は約120μm幅になる。
【0160】
そして、各線状電極群の位相がピッチの1/12程度以上ずれると別の位相成分の信号が同じ画素に混入することになって好ましくないと考えられる。放射線ビームが中心軸CからX方向(線状電極に直交する方向)に広がることを考慮すると、1画素内の線状電極の位置ずれを8/12×1/2=8/24=0.333μm以下に抑えることが好ましい。
【0161】
中心軸C上での線状電極のピッチを8μmとすると、放射線ビームの辺縁における線状電極群の両端にある線状電極の中心間はΔx/rΔθ×8×4だけ離れていることになる。
【0162】
したがって、Δx/rΔθ×8×4−32<0.333を満たせばよいことになる。
【0163】
よって、Δx/rΔθ<1.010となる。
【0164】
したがって、上表2より、放射線ビームのX方向片側の広がり角θを5°以下に抑えればよい。
【0165】
たとえば、r=1000mmとすると、2×1000×tan5°=175mmとなるので、1つの放射線源1aから射出される放射線ビームの周期情報撮像放射線画像検出器40上におけるX方向の幅が175mm以下となるようにすればよい。
【0166】
また、上記説明では、電荷収集電極が、図24に示すように、3つのサブ画素に区分された構成の場合について検討したが、2つのサブ画素に区分し、そのサブ画素毎に、互いに位相がπだけずれた2つの線状電極群を配置する構成として場合について検討する。なお、1つの線状電極群に属する線状電極の本数は5本であり、線状電極のピッチと線状電極の幅とについては上記と同様である。
【0167】
この場合には、各線状電極群の位相がピッチの1/8程度以上ずれると別の位相成分の信号が同じ画素に混入することになって好ましくないと考えられる。放射線ビームが中心軸CからX方向(線状電極に直交する方向)に広がることを考慮すると、1画素内の線状電極の位置ずれを8/8×1/2=8/16=0.5μm以下に抑えることが好ましい。
【0168】
中心軸C上でのピッチを8μmとすると、放射線ビームの辺縁における線状電極群の両端にある線状電極の中心間はΔx/rΔθ×8×4だけ離れていることになる。
【0169】
したがって、Δx/rΔθ×8×4−32<0.5を満たせばよいことになる。
【0170】
よって、Δx/rΔθ<1.016となる。
【0171】
したがって、上表2より、放射線ビームのX方向片側の広がり角θを6°以下に抑えればよい。
【0172】
たとえば、r=1000mmとすると、2×1000×tan6°=210mmとなるので、1つの放射線源1aから射出される放射線ビームの周期情報撮像放射線画像検出器40上におけるX方向の幅が210mm以下となるようにすればよい。
【0173】
なお、上記の検討結果より、線状電極のピッチは放射線ビームの広がり角θの制約に依存しないことがわかる。
【0174】
また、図24に示した第1〜第6の線状電極群111〜116に加えて、図26に示すように、各単位素子72の第1〜第6の線状電極群111〜116からなる電荷収集電極を囲むように、格子状に定電位電極119を設けるようにしてもよい。この定電位電極119の作用効果は、図22における説明と同様である。定電位電極119にも、周囲の電荷収集電極との間の電位差が大きくならないような電位が印加される。つまり、電荷収集電極とほぼ同電位の電位とされ、具体的には、接地またはそれに近い電位とされる。なお、図26に示すように、定電位電極119を設ける場合には、線状電極に直交する方向に隣接する画素間の線状電極群、具体的には、線状電極群116と線状電極群117とのピッチは(10/6)・Pとされる。
【0175】
また、図26に示すように定電位電極119を各画素を囲むように設けるのではなく、図27に示すように定電位電極120を各サブ画素を囲むように設けるようにしてもよい。
【0176】
また、図28に示すように、1つの単位素子72に対応する画素を2つのサブ画素に区分し、このサブ画素毎に、互いに位相の異なる線状電極群を配置するようにしてもよい。具体的には、図28に示す変形例では、サブ画素SP1に、線状電極がピッチPで配列された第1の線状電極群131と第2の線状電極群132とを互いに位相がπだけずれるように配置し、サブ画素SP2に、線状電極がピッチPで配列された第3の線状電極群133と第4の線状電極群134とを互いに位相がπだけずれるように配置している。そして、サブ画素SP1とサブ画素SP2の隣接する線状電極群がピッチ5P/4だけ離れるように配置すると、第1の線状電極群131の位相を0とすると、第2の線状電極群132の位相はπ、第3の線状電極群133の位相は3π/2、第4の線状電極群134の位相はπ/2となり、第1〜第4の線状電極群はπ/2ずつ異なる位相に対応した線状電極群となる。なお、線状電極群135〜138は、隣接画素の線状電極群であり、線状電極群135が、第1の線状電極群131と同じ位相の信号を検出するものであり、線状電極群136が、第2の線状電極群132と同じ位相の信号を検出するものであり、線状電極群137が、第3の線状電極群133と同じ位相の信号を検出するものであり、線状電極群138が、第4の線状電極群134と同じ位相の信号を検出するものである。
【0177】
図28に示すように電荷収集電極を構成し、第1〜第4の線状電極群131〜134によって収集された電荷を各線状電極群毎に読み出すようにすることによって、一度の放射線画像の撮影により、4種類の位相成分に対応する画像信号を取得することができる。
【0178】
また、図24および図28では、1つの単位素子72に対応する画素を3つまたは2つのサブ画素に区分した場合を示したが、これに限らず、n個(n≧4)のサブ画素に区分してもよい。この場合、隣接するサブ画素における隣接する線状電極群のピッチを、(2n+1)P/2nにするとπ/nずつ異なる位相に対応した線状電極群とすることができる。
【0179】
2つ〜3つ程度のサブ画素に区分すれば4つ〜6つの位相成分のデータが一度の撮影で取得され、好ましい位相画像を形成することができる。サブ画素に分割しないで4つ〜6つの位相成分のデータを一度の撮影で得るためには、図23の構成が考えられるが、各線状電国の幅が狭くなり、製造上の問題が生じるおそれがある。一方、画素サイズを維持したままn≧4とすると、個々の線状電極群の線状電極の数が少なくなり、位相成分のデータとして精度が低下することになる。
【0180】
また、上記のように複数のサブ画素に区分する場合には、図24、図26〜図28に示すように、サブ画素内の線状電極群の組の線状電極の長さ方向についての幅を、線状電極群の組の長さ方向に直交する方向についての幅よりも大きくすることが望ましい。
【0181】
また、上述した変形例は、各単位素子72に複数の線状電極群を設けるようにした例であるが、たとえば、図29に示すように、各単位素子72に、線状電極がピッチPで配列された線状電極群121を1つだけ設けるようしてもよい。なお、図29は隣接する4つの単位素子72の線状電極群121を示している。なお、図29に示すように、単位素子72の電荷収集電極を1つの線状電極群によって構成するとともに、互いに位相の異なる複数種類の位相成分に対応する画像信号を取得する場合には、周期情報撮像放射線画像検出器45および回折格子25をそれぞれの面に沿って線状電極と直交する方向(図29の矢印A方向)に移動させる移動機構を設け、その移動機構による移動にともなって放射線画像の撮影を複数回行なうようにすればよい。たとえば、ピッチPの1/3ずつ動かして、それぞれの位置での放射線画像の撮影を行なうことにより3種類の位相成分に対応する画像信号が取得でき、また、ピッチPの1/6ずつ動かして、それぞれの位置で放射線画像の撮影を行なうことにより6種類の位相成分に対応する画像信号が取得できる。
【0182】
また、図29に示す線状電極群121からなる電荷収集電極に、さらに、図30に示すように、定電位線状電極122を設けるようにしてもよい。定電位線状電極122は、線状電極群121の各線状電極間に配置されるとともに、各単位素子72を囲むように格子状に配置されている。この定電位線状電極122の作用効果は、図22における説明と同様である。定電位線状電極122にも、周囲の電荷収集電極との間の電位差が大きくならないような電位が印加される。つまり、電荷収集電極とほぼ同電位の電位とされ、具体的には、接地またはそれに近い電位とされる。
【0183】
また、図20においては、各単位素子72に、互いに位相がπだけずれた第1の線状電極群81aと第2の線状電極群81bとを設ける場合について説明したが、これに限らず、たとえば、各単位素子72に位相が2π/3ずつずれた3つの線状電極群を設けるようにしてもよい。また、各単位素子72の電荷収集電極を、上記のように3つの線状電極群から構成するとともに、周期情報撮像放射線画像検出器および回折格子を、たとえば、ピッチPの1/2ずつ動かして、それぞれの位置で放射線画像の撮影を行なうことにより6種類の位相成分に対応する画像信号が取得できる。
【0184】
なお、上記第3の実施形態の放射線トモシンセシス撮影装置においては、TFTスイッチを備えた放射線画像検出器を用いるようにしたが、スイッチ素子としてはTFTだけでなく、CMOSやCCDなどを利用するようにしてもよい。
【0185】
また、上記第3の実施形態の放射線トモシンセシス撮影装置においては、放射線画像の記録時に正電圧が印加される周期情報撮像放射線画像検出器45を用いるようにしたが、これに限らず、放射線画像の記録時に負の電圧が印加されるTFT読取方式の放射線画像検出器を用いるようにしてもよい。
【0186】
次に、本発明の放射線トモシンセシス撮影装置の第4の実施形態について説明する。第4の実施形態の放射線トモシンセシス撮影装置は、第3の実施形態の放射線トモシンセシス撮影装置におけるTFT読取方式の周期情報撮像放射線画像検出器の代わりに、光読取方式の周期情報撮像放射線画像検出器を用いたものである。第4の実施形態の放射線トモシンセシス撮影装置は、第3の実施形態の放射線トモシンセシス撮影装置と周期情報撮像放射線画像検出器の構成のみが異なるものであるため、以下のその周期情報撮像放射縁画像検出器の構成について説明する。図31(A)は周期情報撮像放射線画像検出器の斜視図、図31(B)は図31(A)に示す周期情報撮像放射線画像検出器のXZ面断面図、図31(C)は図31(A)に示す周期情報撮像放射線画像検出器のXY面断面図である。
【0187】
第4の実施形態の放射線位相画像撮影装置における周期情報撮像放射線画像検出器200は、図31(A)〜(C)に示すように、放射線を透過する第1の電極層201、第1の電極層201を透過した放射線の照射を受けることにより電荷を発生する記録用光導電層202、記録用光導電層202において発生した電荷のうち一方の極性の電荷に対しては絶縁体として作用し、且つ他方の極性の電荷に対しては導電体として作用する電荷輸送層204、読取光の照射を受けることにより電荷を発生する読取用光導電層205、および第2の電極層206をこの順に積層してなるものである。記録用光導電層202と電荷輸送層204との界面近傍には、記録用光導電層202内で発生した電荷を蓄積する蓄電部203が形成される。なお、上記各層は、ガラス基板207上に第2の電極層206から順に形成されている。
【0188】
第1の電極層201としては、放射線を透過するものであればよく、たとえば、ネサ皮膜(SnO2)、ITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)、アモルファス状光透過性酸化膜であるIDIXO(Idemitsu Indium X-metal Oxide ;出光興産(株))などを50〜200nm厚にして用いることができ、また、100nm厚のAlやAuなども用いることもできる。
【0189】
第2の電極層206は、読取光を透過する複数の透明線状電極206aと読取光を遮光する複数の遮光線状電極206bとを有するものである。透明線状電極206aと遮光線状電極206bとは、周期情報撮像放射線画像検出器200の画像形成領域の一方の端部から他方の端部まで連続して直線状に延びるものである。そして、透明線状電極206aと遮光線状電極206bとは、図31(A),(B)に示すように、所定の間隔を空けて交互に平行に配列されている。
【0190】
透明線状電極206aは読取光を透過するとともに、導電性を有する材料から形成されている。たとえば、第1の電極層201と同様に、ITO、IZOやIDIXOを用いることができる。そして、その厚さは100〜200nm程度である。
【0191】
遮光線状電極206bは読取光を遮光するとともに、導電性を有する材料から形成されている。消去光は透過することが望ましいので、たとえば、上記の透明導電材料とカラーフィルターを組み合せて用いることができる。透明導電材料の厚さは100〜200nm程度である。
【0192】
そして、後述するように隣接する透明線状電極206aと遮光線状電極206bを1組として画像信号が読み出されるが、本実施形態の周期情報撮像放射線画像検出器200においては、図32に示すように、透明線状電極206aと遮光線状電極206bの組が、放射線画像を構成する1画素単位に対応する幅の中に20組配置されるように構成されている。つまり、1画素単位に対応する幅の中に第1の線状電極組211、第2の線状電極組212、第3の線状電極組213、第4の線状電極組214、・・・など第20の線状電極組までが配置されている。ここで、本発明においては、第4の実施形態の「画素単位」は線状電極と垂直方向の区分のみを意味するものとする。
【0193】
そして、図32に示すように、第1の線状電極組211と第3の線状電極組213との間隔と、第2の線状電極組212と第4の線状電極組214との間隔、など1組おきの間隔がそれぞれピッチPとなるように配置されている。このピッチPは2μm以上15μm以下に設定される。そして、第2n−1(nは1以上10以下の整数)の線状電極組から第1の線状電極群が構成され、第2n(nは1以上10以下の整数)の線状電極組から第2の線状電極群が構成される。
【0194】
そして、上述した1画素幅内の第1および第2の線状電極群が、線状電極の長さ方向に直交する方向に交互に繰り返して配置される。この場合、第1の線状電極群と第2の線状電極群とは、線状電極組の配列周期の位相がπだけずれるように配置される。なお、図示していないが、第1の線状電極群の透明線状電極206aどうしは導線などの接続線により物理的に接続されており、第2の線状電極群の透明線状電極206aどうしも導線などの接続線により物理的に接続されている。
【0195】
記録用光導電層202は、放射線の照射を受けることにより電荷を発生するものであればよく、放射線に対して比較的量子効率が高く、また暗抵抗が高いなどの点で優れているa−Seを主成分とするものを使用する。厚さは10μm以上1500μm以下が適切である。また、特にマンモグラフィ用途である場合には、150μm以上250μm以下であることが好ましく、一般撮影用途である場合には、500μm以上1200μm以下であることが好ましい。
【0196】
電荷輸送層204としては、たとえば、放射線画像の記録の際に第1の電極層201に帯電する電荷の移動度と、その逆極性となる電荷の移動度の差が大きい程良く(例えば10以上、望ましくは10以上)、たとえば、ポリN−ビニルカルバゾール(PVK)、N,N'−ジフェニル−N,N'−ビス(3−メチルフェニル)−〔1,1'−ビフェニル〕−4,4'−ジアミン(TPD)やディスコティック液晶等の有機系化合物、或いはTPDのポリマー(ポリカーボネート、ポリスチレン、PVK)分散物,Clを10〜200ppmドープしたa−Se、AsSe等の半導体物質が適当である。厚さは0.2〜2μm程度が適切である。
【0197】
読取用光導電層205としては、読取光の照射を受けることにより導電性を呈するものであればよく、たとえば、a−Se、Se−Te、Se−As−Te、無金属フタロシアニン、金属フタロシアニン、MgPc(Magnesium phtalocyanine),VoPc(phaseII of Vanadyl phthalocyanine)、CuPc(Cupper phtalocyanine)などのうち少なくとも1つを主成分とする光導電性物質が好適である。厚さは5〜20μm程度が適切である。
【0198】
次に、上記第3の実施形態の放射線画像装置の周期情報撮像放射線画像検出器への放射線画像の記録および読取りの作用について説明する。
【0199】
放射線照射部1からの放射線の射出から回折格子25による自己像の形成までは上記第3の実施形態の放射線位相画像撮影装置の作用と同様であるので説明を省略する。
【0200】
そして、図33(A)に示すように高圧電源300によって周期情報撮像放射線画像検出器200の第1の電極層201に負の電圧を印加した状態において、回折格子25のタルボ効果によって形成された自己像を担持した放射線が、周期情報撮像放射線画像検出器200の第1の電極層201側から照射される。
【0201】
そして、周期情報撮像放射線画像検出器200に照射された放射線は、第1の電極層201を透過し、記録用光導電層202に照射される。そして、その放射線の照射によって記録用光導電層202において電荷対が発生し、そのうち正の電荷は第1の電極層201に帯電した負の電荷と結合して消滅し、負の電荷は潜像電荷として記録用光導電層202と電荷輸送層204との界面に形成される蓄電部203に蓄積される(図33(B)参照)。
【0202】
ここで、本放射線トモシンセシス撮影装置の周期情報撮像放射線画像検出器200においては、記録用光導電層202において発生した電荷を蓄電部203に収集するために用いられる第2の電極層206が、透明線状電極206aと遮光線状電極206bとから構成されている。したがって、上記のようにして第1の電極層201に電圧を印加すると、記録用光導電層202内に、透明線状電極206aおよび遮光線状電極206bの各線状電極から第1の電極層201に向かってほぼ平行な、すなわち第1の電極層201の面にほぼ垂直な電界が形成される。記録用光導電層202内に発生した負電荷はその電界に沿って拡散することなく各線状電極方向に移動して蓄電部203に収集されるので、透明線状電極206aおよび遮光線状電極206bは、その後に設置された検出器の組合せと実質的に振幅型回折格子と同等の機能を果たすことになる。したがって、図32に示した第2n−1(nは1以上10以下の整数)の線状電極組からなる第1の線状電極群の上部の蓄電部203には、変形した回折格子25の自己像と上記第1の線状電極群によって形成される実質的な回折格子との重ね合わせにより生成された画像コントラストを表す電荷が蓄積され、図32に示した第2n(nは1以上10以下の整数)の線状電極組からなる第2の線状電極群の上部の蓄電部203には、変形した回折格子25の自己像と上記第2の線状電極群によって形成される実質的な回折格子との重ね合わせにより生成された画像コントラストを表す電荷が蓄積される。上記画像コントラストは、一般にモアレ縞となっている。そして、第1の線状電極群と第2の線状電極群とは、上述したように互いにπだけ位相がずれているので、互いにπだけ位相がずれた2種類の位相成分に対応する画像信号が周期情報撮像放射線画像検出器200により検出される。
【0203】
そして、次に、図34に示すように、第1の電極層201が接地された状態において、第2の電極層206側から読取光L1が照射され、読取光L1は透明線状電極206aを透過して読取用光導電層205に照射される。読取光L1の照射により読取用光導電層205において発生した正の電荷が蓄電部204における潜像電荷と結合するとともに、負の電荷が、遮光線状電極206bに接続されたチャージアンプ305を介して遮光線状電極206bに帯電した正の電荷と結合する。
【0204】
そして、読取用光導電層205において発生した負の電荷と遮光線状電極206bに帯電した正の電荷との結合によって、チャージアンプ305に電流が流れ、この電流が積分されて画像信号として検出される。
【0205】
このとき、図32に示す第1の線状電極組211と第3の線状電極組213からなる第1の線状電極群から流れ出した電荷はチャージアンプ305により第1の位相成分に対応する画像信号として検出される。一方、図32に示す第2の線状電極組212と第4の線状電極組214からなる第2の線状電極群から流れ出した電荷はチャージアンプ305により第2の位相成分に対応する画像信号として検出される。
【0206】
そして、回折格子移動機構55による回折格子25および周期情報撮像放射線画像検出器200の移動にともなって、上述した周期情報撮像放射線画像検出器40への記録と画像信号の読取りがそれぞれ所定の位置について行なわれ、それぞれ所定の位置毎について第1および第2の位相成分に対応する画像信号が検出される。
【0207】
そして、上記のようにして検出された画像信号は位相画像生成部65に入力される。そして、位相画像生成部65は、各放射線源1aから射出された放射線の照射範囲に対応する周期情報撮像放射線画像検出器200の検出範囲毎についてそれぞれ検出された複数の位相成分の画像信号に基づいて、各検出範囲毎について部分位相画像を生成する。つまり、1つの放射線源1aに対応する部分位相画像を生成する。そして、その部分位相画像を合成して1画面全体の位相画像を形成する。
【0208】
そして、次に、放射線照射部1が、上記第3の実施形態と同様に、Y方向に移動させられ、所定の各位置において、放射線照射部1の各放射線源1aから放射線が射出されるとともに、回折格子25および周期情報撮像放射線画像検出器200の移動が行われ、放射線照射部1の各位置毎の位相画像が順次生成される。
【0209】
そして、位相画像生成部65において生成された複数の位相画像を表す画像信号が断層像生成部4に入力される。そして、断層像生成部4は、上記第3の実施形態と同様にして、入力された複数の画像信号に対して、所望の被写体の断面位置に応じてシフト処理を施し、そのシフト処理の施された画像信号を加算することによって、上記断面位置に応じた断層像を生成する。
【0210】
なお、上記第4の実施形態の放射線位相画像撮影装置において、回折格子移動機構55により周期情報撮像放射線画像検出器200および回折格子25をそれぞれの面に沿って線状電極と直交する方向に、たとえば、ピッチPの1/3ずつ動かして、それぞれの位置で放射線画像の撮影を行なうことにより6種類の位相成分に対応する画像信号が取得できる。
【0211】
また、上記第4の実施形態の放射線位相画像撮影装置においても、上記第3の実施形態の周期情報撮像放射線画像検出器と同様に、それぞれの線状電極群が順番に配列された線状電極群の組を異なる位置に互いに位相が異なるように配置することができる。そうすることによって上述した移動機構がなくても位相画像を形成するのに十分な数の位相成分に対応する画像を同時に得ることができる。
【0212】
ここで、上述したように、放射線源1aから射出される放射線は、被写体10の位置における照射範囲が隙間なく重なるようにするとともに、放射線の回折格子25および周期情報撮像放射線画像検出器200の位置における照射範囲の辺縁において、回折格子25および周期情報撮像放射線画像検出器200の線状電極群の回折特性に実質的に影響を与えないような角度で放射線を射出するものであることが望ましい。以下のその角度について検討する。なお、ここでは、上記角度の許容範囲を周期情報撮像放射線画像検出器200の線状電極の位置ずれに換算して検討するものとする。
【0213】
まず、放射線源1aから射出される放射線の中心軸Cと周期情報撮像放射線画像検出器200との交点Qから線状電極に直交する方向に距離xだけ離れた場所(r,x)における線状電極の必要なピッチをΔxとすると、Δxは下式(13)のように表わすことができる(図25参照。図25は、図14に示す放射線位相画像撮影装置の上面図であり、紙面厚さ方向が図14のY方向に相当する。)
【数13】

【0214】
ただし、rは放射線源1a(放射線照射部において後述するスリットを用いる場合はスリットの位置)から周期情報撮像放射線画像検出器200までの距離であり、rΔθは放射線ビームの中心軸Cと周期情報撮像放射線画像検出器200との交点Qにおける線状電極のピッチである。
【0215】
そして、x/r=tanθであるので、これを式(13)に代入すると、Δxは下式(14)で表わすことができる。
【数14】

【0216】
したがって、(r,x)におけるピッチと交点QにおけるピッチrΔθとの比は下式(15)で表わすことができる。
【数15】

【0217】
そして、上式(15)に基づいてθとΔx/rΔθとの関係を求めると、下表のようになる。
【表3】

【0218】
ここで、周期情報撮像放射線画像検出器200の線状電極組のピッチPを8μm、線状電極組の幅を3μmとすると1画素は約80μm幅になる。
【0219】
そして、各線状電極組の位相がピッチの1/8程度以上ずれると別の位相成分の信号が同じ画素に混入することになって好ましくないと考えられる。放射線ビームが中心軸CからX方向(線状電極に直交する方向)に広がることを考慮すると、1画素内の線状電極組の位置ずれを8/8×1/2=8/16=0.5μm以下に抑えることが好ましい。
【0220】
中心軸C上での線状電極組のピッチを8μmとすると、放射線ビームの辺縁における画素内の両端にある線状電極組の中心間はΔx/rΔθ×8×9だけ離れていることになる。
【0221】
したがって、Δx/rΔθ×8×9−72<0.5を満たせばよいことになる。
【0222】
よって、Δx/rΔθ<1.007となる。
【0223】
したがって、表3より、放射線ビームのX方向片側の広がり角θを2°以下に抑えればよい。
【0224】
たとえば、r=1000mmとすると、2×1000×tan2°=70mmとなるので、1つの放射線源1aから射出される放射線ビームの周期情報撮像放射線画像検出器200上におけるX方向の幅が70mm以下となるようにすればよい。
【0225】
また、上記第4の実施形態の放射線トモシンセシス撮影装置においては、放射線画像の記録時に負電圧が印加される周期情報撮像放射線画像検出器200を用いるようにしたが、これに限らず、放射線画像の記録時に正の電圧が印加される光読取方式の周期情報撮像放射線画像検出器を用いるようにしてもよい。
【0226】
また、上記第3および第4の実施形態の放射線位相画像撮影装置の説明においては、被写体10が放射線照射部1と回折格子25との間に位置する場合を説明したが、被写体10が回折格子25と周期情報撮像放射線画像検出器45,200との間に位置する場合であっても、周期情報撮像放射線画像検出器45,200の位置に生成される回折格子25の自己像が被写体10により変形する。したがって、この場合でも、周期情報撮像放射線画像検出器45,200により被写体10に起因して変調された位相成分の画像信号を検出することができる。すなわち、上記第3および第4の放射線位相画像撮影装置においては、被写体10を放射線照射部1と回折格子25との間に配置してもよいし、回折格子25と周期情報撮像放射線画像検出器45,200との間に配置するようにしてもよい。
【0227】
また、上述したとおり、上記第3および第4の実施形態においても、放射線照射部1の構成として、上記第1の実施形態および第2の実施形態において説明した種々の構成を採用することができる。ただし、図10に示すようなマルチスリット16dを備えたものを採用する場合には、そのマルチスリットと回折格子25の回折部材および線状電極とが平行になるようにする必要がある。また、コリメータを透過した放射線の被写体10の位置における照射範囲が隙間なく重なるようになるとともに、コリメータを透過した放射線が回折格子25の位置における照射範囲の辺縁において、回折格子25の回折特性に実質的に影響を与えないような角度となるように放射線の照射範囲を制限するものであることが望ましい。
【0228】
また、図10に示す放射線照射部16において、金属ターゲット16cを金属ワイヤで構成する場合には、その金属ワイヤと回折格子25の回折部材22および線状電極とが平行になるようにする必要がある。
【0229】
また、図10に示す放射線照射部16において、冷陰極電子源16aを線状の冷陰極電子源で構成する場合には、その線状の冷陰極電子源と回折格子25の回折部材および電条電極とが平行になるようにする必要がある。
【0230】
なお、放射線照射部として図10に示す構成および上述したその変形例の構成を用いた場合には、タルボ・ロー干渉計を構成するものとなる。
【図面の簡単な説明】
【0231】
【図1】本発明の放射線トモシンセシス撮影装置の第1の実施形態の概略構成図
【図2】図1に示す放射線トモシンセシス撮影装置のZ−Y断面図
【図3A】放射線源から射出されるファンビームの広がり角が大きい方の面を示す図
【図3B】放射線源から射出されるファンビームの広がり角が小さい方の面を示す図
【図4】各放射線源から射出されるファンビームの照射範囲を示す図
【図5】放射線源が2次元的に配置された放射線照射部を示す図
【図6】放射線源から射出される放射線の照射方向を変化させる実施形態を説明するための図
【図7】放射線照射部のその他の実施形態を示す図
【図8】本発明の放射線トモシンセシス撮影装置の第2の実施形態の概略構成図
【図9】図8に示す放射線トモシンセシス撮影装置の上面図
【図10】放射線照射部のその他の実施形態を示す図
【図11】第1の回折格子の概略構成図
【図12】第2の回折格子の概略構成図
【図13】放射線源から射出される放射線の広がり角の条件を説明するための図
【図14】本発明の放射線トモシンセシス撮影装置の第3の実施形態の概略構成図
【図15】図14に示す放射線トモシンセシス撮影装置の上面図
【図16】第3の実施形態の放射線トモシンセシス撮影装置における周期情報撮像放射線画像検出器の概略構成を示す断面図
【図17】周期情報撮像放射線画像検出器の一部平面図
【図18】図17に示す周期情報撮像放射線画像検出器の一部の6−6線断面図
【図19】図17に示す周期情報撮像放射線画像検出器の一部の7−7線断面図
【図20】4画素に対応する単位素子の第1の線状電極群と第2の線状電極群との模式図
【図21】第1の線状電極群によって半導体層内に形成される電界を示す図
【図22】第3の実施形態の放射線トモシンセシス撮影装置における周期情報撮像放射線画像検出器の変形例を示す図
【図23】第3の実施形態の放射線トモシンセシス撮影装置における周期情報撮像放射線画像検出器の変形例を示す図
【図24】第3の実施形態の放射線トモシンセシス撮影装置における周期情報撮像放射線画像検出器の変形例を示す図
【図25】放射線源から射出される放射線の広がり角の条件を説明するための図
【図26】第3の実施形態の放射線トモシンセシス撮影装置における周期情報撮像放射線画像検出器の変形例を示す図
【図27】第3の実施形態の放射線トモシンセシス撮影装置における周期情報撮像放射線画像検出器の変形例を示す図
【図28】第3の実施形態の放射線トモシンセシス撮影装置における周期情報撮像放射線画像検出器の変形例を示す図
【図29】第3の実施形態の放射線トモシンセシス撮影装置における周期情報撮像放射線画像検出器の変形例を示す図
【図30】第3の実施形態の放射線トモシンセシス撮影装置における周期情報撮像放射線画像検出器の変形例を示す図
【図31】(A)本発明の放射線トモシンセシス撮影装置の第4の実施形態における周期情報撮像放射線画像検出器の概略構成を示す断面図、(B)(A)に示す周期情報撮像放射線画像検出器のXZ面断面図、(C)(A)に示す周期情報撮像放射線画像検出器のXY面断面図
【図32】本発明の放射線位相画像撮影装置の第4の実施形態における周期情報撮像放射線画像検出器の線状電極の構成を説明するための図
【図33】本発明の放射線トモシンセシス撮影装置の第4の実施形態における周期情報撮像放射線画像検出器への放射線画像の記録の作用を説明するための図
【図34】本発明の放射線トモシンセシス撮影装置の第4の実施形態における周期情報撮像放射線画像検出器からの画像信号の読取りの作用を説明するための図
【符号の説明】
【0232】
1 放射線照射部
1a 放射線源
2 移動機構
3 放射線画像検出器
4 断層像生成部
10 被写体
16 放射線照射部
20 第1の回折格子
21 基板
22 回折部材
25 回折格子
30 第2の回折格子
31 基板
32 回折部材
40,200 周期情報撮像放射線画像検出器
51 回折格子移動機構
55 回折格子移動機構
61 位相画像生成部
200 周期情報撮像放射線画像検出器

【特許請求の範囲】
【請求項1】
被写体に向けて放射線を射出する多数の放射線源を有し、該各放射線源から射出されて前記被写体を透過した放射線が前記被写体の投影像の一部分を形成するように前記多数の放射線源が分散配置された放射線照射部と、該放射線照射部の各放射線源から射出された放射線を検出する放射線画像検出器と、前記放射線照射部より前記被写体に対して互いに異なる位置から放射線を照射することによって前記放射線画像検出器により検出された検出情報に基づいて前記被写体の断層像を生成する断層像生成部とを備え、
前記各放射線源が、ファンビームの放射線を射出するものであるとともに、該ファンビームの広がり角が大きい方の面が前記多数の放射線源の配列方向と交差し、互いに平行に並ぶように配置されていることを特徴とする放射線トモシンセシス撮影装置。
【請求項2】
前記ファンビームの広がり角が大きい方の面の前記広がり角が、前記面に垂直な方向についての前記ファンビームの広がり角の10倍以上であることを特徴とする請求項1記載の放射線トモシンセシス撮影装置。
【請求項3】
前記放射線照射部が、前記多数の放射線源を線上に配置したものであり、
前記放射線照射部を前記放射線画像検出器の検出面と対向する面に沿って移動させる移動機構を備え、
前記断層像生成部が、前記放射線照射部の移動によって前記被写体に対して互いに異なる位置から放射線を照射することによって前記放射線画像検出器により検出された検出情報に基づいて前記被写体の断層像を生成するものであることを特徴とする請求項1または2記載の放射線トモシンセシス撮影装置。
【請求項4】
前記放射線照射部が、前記多数の放射線源を直線上に配置したものであり、
前記移動機構が、前記放射線照射部を前記直線に直交する方向に移動させるものであることを特徴とする請求項3記載の放射線トモシンセシス撮影装置。
【請求項5】
前記放射線照射部が、前記多数の放射線源を2次元的に配置したものであり、
前記放射線源を順次切り替えることによって前記被写体に対して互いに異なる位置から放射線を照射するものであることを特徴とする請求項1または2記載の放射線トモシンセシス撮影装置。
【請求項6】
前記放射線照射部における多数の放射線源から射出された放射線が照射され、該照射によりタルボ干渉またはタルボ・ロー干渉を生じさせるように構成された第1の回折格子と、
該第1の回折格子により回折された放射線を回折する第2の回折格子とをさらに備え、
前記第1の回折格子が、該第1の回折格子を構成する回折部材の延伸方向が前記ファンビームの広がり角が大きい方の面の広がり方向と同じになるように配置されるとともに、前記第2の回折格子が、該第2の回折格子を構成する回折部材の延伸方向が前記ファンビームの広がり角が大きい方の面の広がり方向と同じになるように配置され、
前記放射線画像検出器が、該第2の回折格子により回折された放射線を検出するものであることを特徴とする請求項1から5いずれか1項記載の放射線トモシンセシス撮影装置。
【請求項7】
前記第1の回折格子の回折部材の延伸方向に直交する方向の前記多数の放射線源の間隔が前記放射線源から前記第1の回折格子までの距離に比べて小さくなるように前記多数の放射線源と前記第1の回折格子とが配置されており、
前記多数の放射線源が、互いに隣接する前記放射線源から射出された放射線の前記被写体の位置における照射範囲が隙間なく重なるように放射線を射出するものであるとともに、前記各放射線源から射出された放射線の前記第1の回折格子の位置における照射範囲の辺縁において前記第1の回折格子の回折特性に実質的に影響を与えないような角度で放射線を射出するものであることを特徴とする請求項6記載の放射線トモシンセシス撮影装置。
【請求項8】
前記放射線照射部における多数の放射線源から射出された放射線が照射され、該照射によりタルボ干渉またはタルボ・ロー干渉を生じさせるように構成された回折格子をさらに備え、
前記放射線画像検出器が、前記回折格子により回折された放射線の周期情報を検出する周期情報撮像放射線画像検出器であり、
前記回折格子が、該回折格子を構成する回折部材の延伸方向が前記ファンビームの広がり角が大きい方の面の広がり方向と同じになるように配置されるとともに、前記周期情報撮像放射線画像検出器が、該周期情報撮像放射線画像検出器が有する周期構造部材の延伸方向が前記ファンビームの広がり角が大きい方の面の広がり方向と同じになるように配置されたものであることを特徴とする請求項1から5いずれか1項記載の放射線トモシンセシス撮影装置。
【請求項9】
前記回折格子の回折部材の延伸方向に直交する方向の前記多数の放射線源の間隔が前記放射線源から前記回折格子までの距離に比べて小さくなるように前記多数の放射線源と前記回折格子とが配置されており、
前記多数の放射線源が、互いに隣接する前記放射線源から射出された放射線の前記被写体の位置における照射範囲が隙間なく重なるように放射線を射出するものであるとともに、前記各放射線源から射出された放射線の前記回折格子の位置における照射範囲の辺縁において前記回折格子の回折特性に実質的に影響を与えないような角度で放射線を射出するものであることを特徴とする請求項8記載の放射線トモシンセシス撮影装置。
【請求項10】
前記放射線照射部が、前記ファンビームの広がり角が大きい方の面に垂直な方向について配置された多数の放射線源のうちの一部の放射線源群と該一部以外の放射線源群とを順次切り替えて各放射線源群から放射線を射出させるものであり、
前記各放射線源群に属する放射線源が、前記放射線源から同時に射出された放射線の前記放射線画像検出器の位置における照射範囲が離れるように放射線を射出するものであること特徴とする請求項1から9いずれか1項記載の放射線トモシンセシス撮影装置。

【図1】
image rotate

【図2】
image rotate

【図3A】
image rotate

【図3B】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate

【図27】
image rotate

【図28】
image rotate

【図29】
image rotate

【図30】
image rotate

【図31】
image rotate

【図32】
image rotate

【図33】
image rotate

【図34】
image rotate


【公開番号】特開2010−75620(P2010−75620A)
【公開日】平成22年4月8日(2010.4.8)
【国際特許分類】
【出願番号】特願2008−250276(P2008−250276)
【出願日】平成20年9月29日(2008.9.29)
【出願人】(306037311)富士フイルム株式会社 (25,513)
【復代理人】
【識別番号】100128451
【弁理士】
【氏名又は名称】安田 隆一
【Fターム(参考)】